FileMood

Download [FreeCourseSite.com] Udemy - Machine Learning & Deep Learning in Python & R

FreeCourseSite com Udemy Machine Learning Deep Learning in Python

Name

[FreeCourseSite.com] Udemy - Machine Learning & Deep Learning in Python & R

  DOWNLOAD Copy Link

Total Size

14.1 GB

Total Files

559

Hash

5A9B8524969D3F34B3FD8226EAA63A38D5B4E63C

/0. Websites you may like/

[CourseClub.ME].url

0.1 KB

[FCS Forum].url

0.1 KB

[FreeCourseSite.com].url

0.1 KB

/1. Introduction/

1. Introduction.mp4

30.8 MB

1. Introduction.srt

4.6 KB

2. Course Resources.html

0.4 KB

/10. Logistic Regression/

1. Logistic Regression.mp4

34.5 MB

1. Logistic Regression.srt

8.8 KB

10. Evaluating performance of model.mp4

36.9 MB

10. Evaluating performance of model.srt

9.6 KB

11. Evaluating model performance in Python.mp4

9.4 MB

11. Evaluating model performance in Python.srt

2.7 KB

12. Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4

58.4 MB

12. Predicting probabilities, assigning classes and making Confusion Matrix in R.srt

7.6 KB

2. Training a Simple Logistic Model in Python.mp4

50.2 MB

2. Training a Simple Logistic Model in Python.srt

10.9 KB

3. Training a Simple Logistic model in R.mp4

26.8 MB

3. Training a Simple Logistic model in R.srt

4.3 KB

4. Result of Simple Logistic Regression.mp4

28.2 MB

4. Result of Simple Logistic Regression.srt

6.0 KB

5. Logistic with multiple predictors.mp4

9.0 MB

5. Logistic with multiple predictors.srt

3.0 KB

6. Training multiple predictor Logistic model in Python.mp4

27.5 MB

6. Training multiple predictor Logistic model in Python.srt

6.2 KB

7. Training multiple predictor Logistic model in R.mp4

16.6 MB

7. Training multiple predictor Logistic model in R.srt

2.1 KB

8. Confusion Matrix.mp4

22.1 MB

8. Confusion Matrix.srt

5.0 KB

9. Creating Confusion Matrix in Python.mp4

53.7 MB

9. Creating Confusion Matrix in Python.srt

11.1 KB

/11. Linear Discriminant Analysis (LDA)/

1. Linear Discriminant Analysis.mp4

42.9 MB

1. Linear Discriminant Analysis.srt

12.2 KB

2. LDA in Python.mp4

12.0 MB

2. LDA in Python.srt

2.6 KB

3. Linear Discriminant Analysis in R.mp4

78.0 MB

3. Linear Discriminant Analysis in R.srt

10.5 KB

/12. K-Nearest Neighbors classifier/

1. Test-Train Split.mp4

41.2 MB

1. Test-Train Split.srt

10.8 KB

2. Test-Train Split in Python.mp4

34.7 MB

2. Test-Train Split in Python.srt

7.6 KB

3. Test-Train Split in R.mp4

77.8 MB

3. Test-Train Split in R.srt

10.0 KB

4. K-Nearest Neighbors classifier.mp4

79.1 MB

4. K-Nearest Neighbors classifier.srt

10.2 KB

5. K-Nearest Neighbors in Python Part 1.mp4

39.0 MB

5. K-Nearest Neighbors in Python Part 1.srt

6.0 KB

6. K-Nearest Neighbors in Python Part 2.mp4

44.4 MB

6. K-Nearest Neighbors in Python Part 2.srt

7.1 KB

7. K-Nearest Neighbors in R.mp4

68.0 MB

7. K-Nearest Neighbors in R.srt

9.2 KB

/13. Comparing results from 3 models/

1. Understanding the results of classification models.mp4

43.7 MB

1. Understanding the results of classification models.srt

7.7 KB

2. Summary of the three models.mp4

23.3 MB

2. Summary of the three models.srt

6.1 KB

/14. Simple Decision Trees/

1. Basics of Decision Trees.mp4

44.7 MB

1. Basics of Decision Trees.srt

11.5 KB

10. Test-Train split in Python.mp4

26.1 MB

10. Test-Train split in Python.srt

6.3 KB

11. Splitting Data into Test and Train Set in R.mp4

46.1 MB

11. Splitting Data into Test and Train Set in R.srt

6.0 KB

12. Creating Decision tree in Python.mp4

18.7 MB

12. Creating Decision tree in Python.srt

4.4 KB

13. Building a Regression Tree in R.mp4

108.4 MB

13. Building a Regression Tree in R.srt

15.9 KB

14. Evaluating model performance in Python.mp4

17.2 MB

14. Evaluating model performance in Python.srt

4.8 KB

15. Plotting decision tree in Python.mp4

22.5 MB

15. Plotting decision tree in Python.srt

5.4 KB

16. Pruning a tree.mp4

19.4 MB

16. Pruning a tree.srt

4.6 KB

17. Pruning a tree in Python.mp4

77.1 MB

17. Pruning a tree in Python.srt

11.0 KB

18. Pruning a Tree in R.mp4

86.1 MB

18. Pruning a Tree in R.srt

9.9 KB

2. Understanding a Regression Tree.mp4

45.8 MB

2. Understanding a Regression Tree.srt

12.2 KB

3. The stopping criteria for controlling tree growth.mp4

14.6 MB

3. The stopping criteria for controlling tree growth.srt

3.6 KB

4. The Data set for this part.mp4

39.1 MB

4. The Data set for this part.srt

3.4 KB

5. Importing the Data set into Python.mp4

27.1 MB

5. Importing the Data set into Python.srt

6.0 KB

6. Importing the Data set into R.mp4

45.8 MB

6. Importing the Data set into R.srt

7.4 KB

7. Missing value treatment in Python.mp4

18.8 MB

7. Missing value treatment in Python.srt

3.8 KB

8. Dummy Variable creation in Python.mp4

26.2 MB

8. Dummy Variable creation in Python.srt

5.5 KB

9. Dependent- Independent Data split in Python.mp4

15.9 MB

9. Dependent- Independent Data split in Python.srt

4.3 KB

/15. Simple Classification Tree/

1. Classification tree.mp4

29.6 MB

1. Classification tree.srt

6.9 KB

2. The Data set for Classification problem.mp4

19.5 MB

2. The Data set for Classification problem.srt

2.0 KB

3. Classification tree in Python Preprocessing.mp4

47.6 MB

3. Classification tree in Python Preprocessing.srt

9.1 KB

4. Classification tree in Python Training.mp4

86.7 MB

4. Classification tree in Python Training.srt

14.9 KB

5. Building a classification Tree in R.mp4

89.2 MB

5. Building a classification Tree in R.srt

10.4 KB

6. Advantages and Disadvantages of Decision Trees.mp4

7.2 MB

6. Advantages and Disadvantages of Decision Trees.srt

1.7 KB

/16. Ensemble technique 1 - Bagging/

1. Ensemble technique 1 - Bagging.mp4

29.5 MB

1. Ensemble technique 1 - Bagging.srt

7.4 KB

2. Ensemble technique 1 - Bagging in Python.mp4

81.1 MB

2. Ensemble technique 1 - Bagging in Python.srt

12.6 KB

3. Bagging in R.mp4

61.8 MB

3. Bagging in R.srt

7.3 KB

/17. Ensemble technique 2 - Random Forests/

1. Ensemble technique 2 - Random Forests.mp4

19.1 MB

1. Ensemble technique 2 - Random Forests.srt

4.7 KB

2. Ensemble technique 2 - Random Forests in Python.mp4

49.0 MB

2. Ensemble technique 2 - Random Forests in Python.srt

6.9 KB

3. Using Grid Search in Python.mp4

84.6 MB

3. Using Grid Search in Python.srt

14.0 KB

4. Random Forest in R.mp4

32.2 MB

4. Random Forest in R.srt

4.9 KB

/18. Ensemble technique 3 - Boosting/

1. Boosting.mp4

32.1 MB

1. Boosting.srt

8.0 KB

2. Ensemble technique 3a - Boosting in Python.mp4

41.8 MB

2. Ensemble technique 3a - Boosting in Python.srt

5.6 KB

3. Gradient Boosting in R.mp4

72.5 MB

3. Gradient Boosting in R.srt

8.8 KB

4. Ensemble technique 3b - AdaBoost in Python.mp4

32.0 MB

4. Ensemble technique 3b - AdaBoost in Python.srt

4.5 KB

5. AdaBoosting in R.mp4

93.0 MB

5. AdaBoosting in R.srt

10.8 KB

6. Ensemble technique 3c - XGBoost in Python.mp4

78.6 MB

6. Ensemble technique 3c - XGBoost in Python.srt

11.7 KB

7. XGBoosting in R.mp4

169.1 MB

7. XGBoosting in R.srt

18.9 KB

/19. Maximum Margin Classifier/

1. Content flow.mp4

9.1 MB

1. Content flow.srt

1.8 KB

2. The Concept of a Hyperplane.mp4

30.8 MB

2. The Concept of a Hyperplane.srt

5.4 KB

3. Maximum Margin Classifier.mp4

23.6 MB

3. Maximum Margin Classifier.srt

3.5 KB

4. Limitations of Maximum Margin Classifier.mp4

11.1 MB

4. Limitations of Maximum Margin Classifier.srt

2.7 KB

/2. Setting up Python and Jupyter Notebook/

1. Installing Python and Anaconda.mp4

17.1 MB

1. Installing Python and Anaconda.srt

2.7 KB

2. Opening Jupyter Notebook.mp4

68.4 MB

2. Opening Jupyter Notebook.srt

10.1 KB

3. Introduction to Jupyter.mp4

42.9 MB

3. Introduction to Jupyter.srt

13.5 KB

4. Arithmetic operators in Python Python Basics.mp4

13.4 MB

4. Arithmetic operators in Python Python Basics.srt

4.5 KB

5. Strings in Python Python Basics.mp4

67.6 MB

5. Strings in Python Python Basics.srt

18.4 KB

6. Lists, Tuples and Directories Python Basics.mp4

63.3 MB

6. Lists, Tuples and Directories Python Basics.srt

20.6 KB

7. Working with Numpy Library of Python.mp4

46.0 MB

7. Working with Numpy Library of Python.srt

12.1 KB

8. Working with Pandas Library of Python.mp4

49.2 MB

8. Working with Pandas Library of Python.srt

10.4 KB

9. Working with Seaborn Library of Python.mp4

42.3 MB

9. Working with Seaborn Library of Python.srt

8.4 KB

/20. Support Vector Classifier/

1. Support Vector classifiers.mp4

58.9 MB

1. Support Vector classifiers.srt

11.1 KB

2. Limitations of Support Vector Classifiers.mp4

11.3 MB

2. Limitations of Support Vector Classifiers.srt

1.7 KB

/21. Support Vector Machines/

1. Kernel Based Support Vector Machines.mp4

42.1 MB

1. Kernel Based Support Vector Machines.srt

6.9 KB

/22. Creating Support Vector Machine Model in Python/

1. Regression and Classification Models.mp4

4.2 MB

1. Regression and Classification Models.srt

0.8 KB

10. Classification model - Standardizing the data.mp4

10.2 MB

10. Classification model - Standardizing the data.srt

1.9 KB

11. SVM Based classification model.mp4

67.2 MB

11. SVM Based classification model.srt

12.7 KB

12. Hyper Parameter Tuning.mp4

60.5 MB

12. Hyper Parameter Tuning.srt

11.0 KB

13. Polynomial Kernel with Hyperparameter Tuning.mp4

24.0 MB

13. Polynomial Kernel with Hyperparameter Tuning.srt

4.6 KB

14. Radial Kernel with Hyperparameter Tuning.mp4

39.0 MB

14. Radial Kernel with Hyperparameter Tuning.srt

7.4 KB

2. The Data set for the Regression problem.mp4

39.0 MB

2. The Data set for the Regression problem.srt

3.4 KB

3. Importing data for regression model.mp4

27.1 MB

3. Importing data for regression model.srt

6.0 KB

4. X-y Split.mp4

15.9 MB

4. X-y Split.srt

4.3 KB

5. Test-Train Split.mp4

26.1 MB

5. Test-Train Split.srt

6.3 KB

6. Standardizing the data.mp4

40.3 MB

6. Standardizing the data.srt

6.7 KB

7. SVM based Regression Model in Python.mp4

70.9 MB

7. SVM based Regression Model in Python.srt

10.7 KB

8. The Data set for the Classification problem.mp4

19.4 MB

8. The Data set for the Classification problem.srt

2.0 KB

9. Classification model - Preprocessing.mp4

47.6 MB

9. Classification model - Preprocessing.srt

9.1 KB

/23. Creating Support Vector Machine Model in R/

1. Importing Data into R.mp4

56.3 MB

1. Importing Data into R.srt

9.1 KB

2. Test-Train Split.mp4

52.9 MB

2. Test-Train Split.srt

6.2 KB

3. Classification SVM model using Linear Kernel.mp4

145.9 MB

3. Classification SVM model using Linear Kernel.srt

18.2 KB

4. Hyperparameter Tuning for Linear Kernel.mp4

63.4 MB

4. Hyperparameter Tuning for Linear Kernel.srt

7.1 KB

5. Polynomial Kernel with Hyperparameter Tuning.mp4

87.2 MB

5. Polynomial Kernel with Hyperparameter Tuning.srt

11.8 KB

6. Radial Kernel with Hyperparameter Tuning.mp4

59.4 MB

6. Radial Kernel with Hyperparameter Tuning.srt

7.4 KB

7. SVM based Regression Model in R.mp4

111.3 MB

7. SVM based Regression Model in R.srt

12.3 KB

/24. Introduction - Deep Learning/

1. Introduction to Neural Networks and Course flow.mp4

30.5 MB

1. Introduction to Neural Networks and Course flow.srt

4.9 KB

2. Perceptron.mp4

46.9 MB

2. Perceptron.srt

10.5 KB

3. Activation Functions.mp4

36.3 MB

3. Activation Functions.srt

8.4 KB

4. Python - Creating Perceptron model.mp4

90.8 MB

4. Python - Creating Perceptron model.srt

16.1 KB

/25. Neural Networks - Stacking cells to create network/

1. Basic Terminologies.mp4

42.4 MB

1. Basic Terminologies.srt

11.1 KB

2. Gradient Descent.mp4

63.3 MB

2. Gradient Descent.srt

13.0 KB

3. Back Propagation.mp4

128.1 MB

3. Back Propagation.srt

25.4 KB

4. Some Important Concepts.mp4

65.2 MB

4. Some Important Concepts.srt

14.0 KB

5. Hyperparameter.mp4

47.6 MB

5. Hyperparameter.srt

9.5 KB

/26. ANN in Python/

1. Keras and Tensorflow.mp4

15.6 MB

1. Keras and Tensorflow.srt

3.9 KB

10. Using Functional API for complex architectures.mp4

96.6 MB

10. Using Functional API for complex architectures.srt

13.3 KB

11. Saving - Restoring Models and Using Callbacks.mp4

158.9 MB

11. Saving - Restoring Models and Using Callbacks.srt

21.3 KB

12. Hyperparameter Tuning.mp4

63.6 MB

12. Hyperparameter Tuning.srt

10.0 KB

2. Installing Tensorflow and Keras.mp4

21.0 MB

2. Installing Tensorflow and Keras.srt

4.2 KB

3. Dataset for classification.mp4

58.9 MB

3. Dataset for classification.srt

8.1 KB

4. Normalization and Test-Train split.mp4

46.3 MB

4. Normalization and Test-Train split.srt

6.3 KB

5. Different ways to create ANN using Keras.mp4

11.3 MB

5. Different ways to create ANN using Keras.srt

2.0 KB

6. Building the Neural Network using Keras.mp4

83.0 MB

6. Building the Neural Network using Keras.srt

13.2 KB

7. Compiling and Training the Neural Network model.mp4

85.6 MB

7. Compiling and Training the Neural Network model.srt

10.3 KB

8. Evaluating performance and Predicting using Keras.mp4

73.3 MB

8. Evaluating performance and Predicting using Keras.srt

10.0 KB

9. Building Neural Network for Regression Problem.mp4

163.5 MB

9. Building Neural Network for Regression Problem.srt

24.3 KB

/27. ANN in R/

1. Installing Keras and Tensorflow.mp4

23.9 MB

1. Installing Keras and Tensorflow.srt

3.1 KB

2. Data Normalization and Test-Train Split.mp4

117.2 MB

2. Data Normalization and Test-Train Split.srt

13.2 KB

3. Building,Compiling and Training.mp4

137.1 MB

3. Building,Compiling and Training.srt

16.7 KB

4. Evaluating and Predicting.mp4

104.1 MB

4. Evaluating and Predicting.srt

10.4 KB

5. ANN with NeuralNets Package.mp4

88.5 MB

5. ANN with NeuralNets Package.srt

8.6 KB

6. Building Regression Model with Functional API.mp4

137.5 MB

6. Building Regression Model with Functional API.srt

13.9 KB

7. Complex Architectures using Functional API.mp4

83.4 MB

7. Complex Architectures using Functional API.srt

9.1 KB

8. Saving - Restoring Models and Using Callbacks.mp4

226.5 MB

8. Saving - Restoring Models and Using Callbacks.srt

21.9 KB

/28. CNN - Basics/

1. CNN Introduction.mp4

53.6 MB

1. CNN Introduction.srt

8.3 KB

2. Stride.mp4

17.4 MB

2. Stride.srt

3.1 KB

3. Padding.mp4

33.2 MB

3. Padding.srt

5.1 KB

4. Filters and Feature maps.mp4

55.3 MB

4. Filters and Feature maps.srt

7.8 KB

5. Channels.mp4

71.1 MB

5. Channels.srt

6.4 KB

6. PoolingLayer.mp4

49.2 MB

6. PoolingLayer.srt

6.0 KB

/29. Creating CNN model in Python/

1. CNN model in Python - Preprocessing.mp4

42.6 MB

1. CNN model in Python - Preprocessing.srt

5.9 KB

2. CNN model in Python - structure and Compile.mp4

45.4 MB

2. CNN model in Python - structure and Compile.srt

7.4 KB

3. CNN model in Python - Training and results.mp4

57.8 MB

3. CNN model in Python - Training and results.srt

6.6 KB

4. Comparison - Pooling vs Without Pooling in Python.mp4

60.8 MB

4. Comparison - Pooling vs Without Pooling in Python.srt

5.7 KB

/3. Setting up R Studio and R crash course/

1. Installing R and R studio.mp4

37.5 MB

1. Installing R and R studio.srt

7.0 KB

2. Basics of R and R studio.mp4

40.7 MB

2. Basics of R and R studio.srt

12.3 KB

3. Packages in R.mp4

87.0 MB

3. Packages in R.srt

12.5 KB

4. Inputting data part 1 Inbuilt datasets of R.mp4

42.7 MB

4. Inputting data part 1 Inbuilt datasets of R.srt

4.8 KB

5. Inputting data part 2 Manual data entry.mp4

26.8 MB

5. Inputting data part 2 Manual data entry.srt

3.4 KB

6. Inputting data part 3 Importing from CSV or Text files.mp4

63.0 MB

6. Inputting data part 3 Importing from CSV or Text files.srt

7.2 KB

7. Creating Barplots in R.mp4

101.4 MB

7. Creating Barplots in R.srt

15.4 KB

8. Creating Histograms in R.mp4

44.1 MB

8. Creating Histograms in R.srt

6.3 KB

/30. Creating CNN model in R/

1. CNN on MNIST Fashion Dataset - Model Architecture.mp4

7.7 MB

1. CNN on MNIST Fashion Dataset - Model Architecture.srt

2.4 KB

2. Data Preprocessing.mp4

70.3 MB

2. Data Preprocessing.srt

7.6 KB

3. Creating Model Architecture.mp4

75.1 MB

3. Creating Model Architecture.srt

6.4 KB

4. Compiling and training.mp4

33.8 MB

4. Compiling and training.srt

3.2 KB

5. Model Performance.mp4

71.4 MB

5. Model Performance.srt

6.7 KB

6. Comparison - Pooling vs Without Pooling in R.mp4

46.8 MB

6. Comparison - Pooling vs Without Pooling in R.srt

4.3 KB

/31. Project Creating CNN model from scratch in Python/

1. Project - Introduction.mp4

51.8 MB

1. Project - Introduction.srt

7.7 KB

2. Data for the project.html

0.2 KB

3. Project - Data Preprocessing in Python.mp4

75.3 MB

3. Project - Data Preprocessing in Python.srt

9.4 KB

4. Project - Training CNN model in Python.mp4

69.2 MB

4. Project - Training CNN model in Python.srt

9.4 KB

5. Project in Python - model results.mp4

22.1 MB

5. Project in Python - model results.srt

3.0 KB

/32. Project Creating CNN model from scratch/

1. Project in R - Data Preprocessing.mp4

92.0 MB

1. Project in R - Data Preprocessing.srt

12.2 KB

2. CNN Project in R - Structure and Compile.mp4

48.4 MB

2. CNN Project in R - Structure and Compile.srt

5.7 KB

3. Project in R - Training.mp4

25.8 MB

3. Project in R - Training.srt

3.2 KB

4. Project in R - Model Performance.mp4

24.3 MB

4. Project in R - Model Performance.srt

2.6 KB

5. Project in R - Data Augmentation.mp4

59.1 MB

5. Project in R - Data Augmentation.srt

8.0 KB

6. Project in R - Validation Performance.mp4

24.8 MB

6. Project in R - Validation Performance.srt

2.6 KB

/33. Project Data Augmentation for avoiding overfitting/

1. Project - Data Augmentation Preprocessing.mp4

43.4 MB

1. Project - Data Augmentation Preprocessing.srt

7.4 KB

2. Project - Data Augmentation Training and Results.mp4

55.6 MB

2. Project - Data Augmentation Training and Results.srt

7.0 KB

/34. Transfer Learning Basics/

1. ILSVRC.mp4

21.9 MB

1. ILSVRC.srt

4.7 KB

2. LeNET.mp4

7.3 MB

2. LeNET.srt

1.9 KB

3. VGG16NET.mp4

10.9 MB

3. VGG16NET.srt

2.0 KB

4. GoogLeNet.mp4

22.4 MB

4. GoogLeNet.srt

3.3 KB

5. Transfer Learning.mp4

31.5 MB

5. Transfer Learning.srt

5.6 KB

6. Project - Transfer Learning - VGG16.mp4

135.4 MB

6. Project - Transfer Learning - VGG16.srt

20.9 KB

/35. Transfer Learning in R/

1. Project - Transfer Learning - VGG16 (Implementation).mp4

106.5 MB

1. Project - Transfer Learning - VGG16 (Implementation).srt

14.5 KB

2. Project - Transfer Learning - VGG16 (Performance).mp4

67.2 MB

2. Project - Transfer Learning - VGG16 (Performance).srt

9.0 KB

/36. Time Series Analysis and Forecasting/

1. Introduction.mp4

12.9 MB

1. Introduction.srt

2.2 KB

2. Time Series Forecasting - Use cases.mp4

27.2 MB

2. Time Series Forecasting - Use cases.srt

2.6 KB

3. Forecasting model creation - Steps.mp4

10.6 MB

3. Forecasting model creation - Steps.srt

3.0 KB

4. Forecasting model creation - Steps 1 (Goal).mp4

36.2 MB

4. Forecasting model creation - Steps 1 (Goal).srt

6.6 KB

5. Time Series - Basic Notations.mp4

65.5 MB

5. Time Series - Basic Notations.srt

9.9 KB

/37. Time Series - Preprocessing in Python/

1. Data Loading in Python.mp4

114.1 MB

1. Data Loading in Python.srt

18.1 KB

10. Exponential Smoothing.mp4

8.8 MB

10. Exponential Smoothing.srt

2.2 KB

2. Time Series - Visualization Basics.mp4

66.8 MB

2. Time Series - Visualization Basics.srt

10.5 KB

3. Time Series - Visualization in Python.mp4

173.2 MB

3. Time Series - Visualization in Python.srt

29.6 KB

4. Time Series - Feature Engineering Basics.mp4

62.4 MB

4. Time Series - Feature Engineering Basics.srt

12.0 KB

5. Time Series - Feature Engineering in Python.mp4

118.2 MB

5. Time Series - Feature Engineering in Python.srt

19.7 KB

6. Time Series - Upsampling and Downsampling.mp4

17.8 MB

6. Time Series - Upsampling and Downsampling.srt

4.4 KB

7. Time Series - Upsampling and Downsampling in Python.mp4

105.6 MB

7. Time Series - Upsampling and Downsampling in Python.srt

18.0 KB

8. Time Series - Power Transformation.mp4

15.6 MB

8. Time Series - Power Transformation.srt

2.7 KB

9. Moving Average.mp4

40.6 MB

9. Moving Average.srt

8.0 KB

/38. Time Series - Important Concepts/

1. White Noise.mp4

11.9 MB

1. White Noise.srt

2.6 KB

2. Random Walk.mp4

22.2 MB

2. Random Walk.srt

4.7 KB

3. Decomposing Time Series in Python.mp4

62.7 MB

3. Decomposing Time Series in Python.srt

10.7 KB

4. Differencing.mp4

33.9 MB

4. Differencing.srt

6.9 KB

5. Differencing in Python.mp4

118.5 MB

5. Differencing in Python.srt

16.1 KB

/39. Time Series - Implementation in Python/

1. Test Train Split in Python.mp4

60.2 MB

1. Test Train Split in Python.srt

12.3 KB

2. Naive (Persistence) model in Python.mp4

45.5 MB

2. Naive (Persistence) model in Python.srt

8.4 KB

3. Auto Regression Model - Basics.mp4

17.7 MB

3. Auto Regression Model - Basics.srt

3.7 KB

4. Auto Regression Model creation in Python.mp4

56.1 MB

4. Auto Regression Model creation in Python.srt

10.4 KB

5. Auto Regression with Walk Forward validation in Python.mp4

52.0 MB

5. Auto Regression with Walk Forward validation in Python.srt

9.0 KB

6. Moving Average model -Basics.mp4

25.3 MB

6. Moving Average model -Basics.srt

5.1 KB

7. Moving Average model in Python.mp4

59.4 MB

7. Moving Average model in Python.srt

9.8 KB

/4. Basics of Statistics/

1. Types of Data.mp4

23.8 MB

1. Types of Data.srt

5.4 KB

2. Types of Statistics.mp4

11.9 MB

2. Types of Statistics.srt

3.4 KB

3. Describing data Graphically.mp4

72.6 MB

3. Describing data Graphically.srt

14.2 KB

4. Measures of Centers.mp4

42.8 MB

4. Measures of Centers.srt

8.4 KB

5. Measures of Dispersion.mp4

25.9 MB

5. Measures of Dispersion.srt

6.2 KB

/40. Time Series - ARIMA model/

1. ACF and PACF.mp4

43.2 MB

1. ACF and PACF.srt

8.9 KB

2. ARIMA model - Basics.mp4

22.4 MB

2. ARIMA model - Basics.srt

5.2 KB

3. ARIMA model in Python.mp4

78.1 MB

3. ARIMA model in Python.srt

14.6 KB

4. ARIMA model with Walk Forward Validation in Python.mp4

33.7 MB

4. ARIMA model with Walk Forward Validation in Python.srt

6.4 KB

/41. Time Series - SARIMA model/

1. SARIMA model.mp4

40.9 MB

1. SARIMA model.srt

8.1 KB

2. SARIMA model in Python.mp4

69.5 MB

2. SARIMA model in Python.srt

11.9 KB

3. Stationary time Series.mp4

5.9 MB

3. Stationary time Series.srt

1.7 KB

/42. Bonus Section/

1. Congratulations & About your certificate.html

1.6 KB

/5. Introduction to Machine Learning/

1. Introduction to Machine Learning.mp4

114.5 MB

1. Introduction to Machine Learning.srt

20.2 KB

2. Building a Machine Learning Model.mp4

41.4 MB

2. Building a Machine Learning Model.srt

10.5 KB

/6. Data Preprocessing/

1. Gathering Business Knowledge.mp4

23.4 MB

1. Gathering Business Knowledge.srt

4.2 KB

10. Outlier Treatment in Python.mp4

73.7 MB

10. Outlier Treatment in Python.srt

14.5 KB

11. Outlier Treatment in R.mp4

32.2 MB

11. Outlier Treatment in R.srt

5.0 KB

12. Missing Value Imputation.mp4

26.2 MB

12. Missing Value Imputation.srt

4.3 KB

13. Missing Value Imputation in Python.mp4

24.6 MB

13. Missing Value Imputation in Python.srt

4.9 KB

14. Missing Value imputation in R.mp4

27.3 MB

14. Missing Value imputation in R.srt

4.2 KB

15. Seasonality in Data.mp4

17.9 MB

15. Seasonality in Data.srt

4.1 KB

16. Bi-variate analysis and Variable transformation.mp4

105.3 MB

16. Bi-variate analysis and Variable transformation.srt

19.8 KB

17. Variable transformation and deletion in Python.mp4

46.3 MB

17. Variable transformation and deletion in Python.srt

9.2 KB

18. Variable transformation in R.mp4

58.1 MB

18. Variable transformation in R.srt

10.2 KB

19. Non-usable variables.mp4

21.2 MB

19. Non-usable variables.srt

6.2 KB

2. Data Exploration.mp4

21.5 MB

2. Data Exploration.srt

4.0 KB

20. Dummy variable creation Handling qualitative data.mp4

38.6 MB

20. Dummy variable creation Handling qualitative data.srt

5.9 KB

21. Dummy variable creation in Python.mp4

27.8 MB

21. Dummy variable creation in Python.srt

6.4 KB

22. Dummy variable creation in R.mp4

46.1 MB

22. Dummy variable creation in R.srt

6.2 KB

23. Correlation Analysis.mp4

75.1 MB

23. Correlation Analysis.srt

12.2 KB

24. Correlation Analysis in Python.mp4

58.0 MB

24. Correlation Analysis in Python.srt

7.1 KB

25. Correlation Matrix in R.mp4

87.2 MB

25. Correlation Matrix in R.srt

9.8 KB

26. Quiz.html

0.1 KB

3. The Dataset and the Data Dictionary.mp4

72.6 MB

3. The Dataset and the Data Dictionary.srt

9.0 KB

4. Importing Data in Python.mp4

29.2 MB

4. Importing Data in Python.srt

6.6 KB

5. Importing the dataset into R.mp4

13.8 MB

5. Importing the dataset into R.srt

2.9 KB

6. Univariate analysis and EDD.mp4

25.4 MB

6. Univariate analysis and EDD.srt

4.1 KB

7. EDD in Python.mp4

64.8 MB

7. EDD in Python.srt

11.9 KB

8. EDD in R.mp4

101.7 MB

8. EDD in R.srt

13.5 KB

9. Outlier Treatment.mp4

25.7 MB

9. Outlier Treatment.srt

5.2 KB

/7. Linear Regression/

1. The Problem Statement.mp4

9.8 MB

1. The Problem Statement.srt

1.7 KB

10. Multiple Linear Regression in Python.mp4

73.1 MB

10. Multiple Linear Regression in Python.srt

14.6 KB

11. Multiple Linear Regression in R.mp4

65.4 MB

11. Multiple Linear Regression in R.srt

9.4 KB

12. Test-train split.mp4

43.9 MB

12. Test-train split.srt

11.1 KB

13. Bias Variance trade-off.mp4

26.3 MB

13. Bias Variance trade-off.srt

7.1 KB

14. Test train split in Python.mp4

47.1 MB

14. Test train split in Python.srt

8.9 KB

15. Test-Train Split in R.mp4

79.3 MB

15. Test-Train Split in R.srt

9.6 KB

16. Regression models other than OLS.mp4

17.4 MB

16. Regression models other than OLS.srt

4.9 KB

17. Subset selection techniques.mp4

82.9 MB

17. Subset selection techniques.srt

14.0 KB

18. Subset selection in R.mp4

66.6 MB

18. Subset selection in R.srt

8.4 KB

19. Shrinkage methods Ridge and Lasso.mp4

35.0 MB

19. Shrinkage methods Ridge and Lasso.srt

9.2 KB

2. Basic Equations and Ordinary Least Squares (OLS) method.mp4

45.5 MB

2. Basic Equations and Ordinary Least Squares (OLS) method.srt

10.7 KB

20. Ridge regression and Lasso in Python.mp4

135.1 MB

20. Ridge regression and Lasso in Python.srt

21.4 KB

21. Ridge regression and Lasso in R.mp4

108.5 MB

21. Ridge regression and Lasso in R.srt

12.7 KB

22. Heteroscedasticity.mp4

15.2 MB

22. Heteroscedasticity.srt

2.9 KB

3. Assessing accuracy of predicted coefficients.mp4

96.6 MB

3. Assessing accuracy of predicted coefficients.srt

17.8 KB

4. Assessing Model Accuracy RSE and R squared.mp4

45.7 MB

4. Assessing Model Accuracy RSE and R squared.srt

8.6 KB

5. Simple Linear Regression in Python.mp4

66.5 MB

5. Simple Linear Regression in Python.srt

13.4 KB

6. Simple Linear Regression in R.mp4

42.8 MB

6. Simple Linear Regression in R.srt

9.5 KB

7. Multiple Linear Regression.mp4

36.0 MB

7. Multiple Linear Regression.srt

6.5 KB

8. The F - statistic.mp4

58.7 MB

8. The F - statistic.srt

9.9 KB

9. Interpreting results of Categorical variables.mp4

23.6 MB

9. Interpreting results of Categorical variables.srt

6.1 KB

/8. Classification Models Data Preparation/

1. The Data and the Data Dictionary.mp4

82.8 MB

1. The Data and the Data Dictionary.srt

9.5 KB

10. Variable transformation and Deletion in Python.mp4

30.7 MB

10. Variable transformation and Deletion in Python.srt

4.4 KB

11. Variable transformation in R.mp4

39.9 MB

11. Variable transformation in R.srt

6.9 KB

12. Dummy variable creation in Python.mp4

27.7 MB

12. Dummy variable creation in Python.srt

6.3 KB

13. Dummy variable creation in R.mp4

46.5 MB

13. Dummy variable creation in R.srt

6.6 KB

2. Data Import in Python.mp4

23.1 MB

2. Data Import in Python.srt

5.4 KB

3. Importing the dataset into R.mp4

14.1 MB

3. Importing the dataset into R.srt

2.9 KB

4. EDD in Python.mp4

81.4 MB

4. EDD in Python.srt

18.2 KB

5. EDD in R.mp4

69.7 MB

5. EDD in R.srt

11.6 KB

6. Outlier treatment in Python.mp4

49.6 MB

6. Outlier treatment in Python.srt

9.8 KB

7. Outlier Treatment in R.mp4

26.6 MB

7. Outlier Treatment in R.srt

4.9 KB

8. Missing Value Imputation in Python.mp4

23.7 MB

8. Missing Value Imputation in Python.srt

4.9 KB

9. Missing Value imputation in R.mp4

20.0 MB

9. Missing Value imputation in R.srt

4.2 KB

/9. The Three classification models/

1. Three Classifiers and the problem statement.mp4

21.3 MB

1. Three Classifiers and the problem statement.srt

4.0 KB

2. Why can't we use Linear Regression.mp4

17.8 MB

2. Why can't we use Linear Regression.srt

5.6 KB

 

Total files 559


Copyright © 2025 FileMood.com