FileMood

Download Machine Learning Made Easy - Beginner to Advanced using R

Machine Learning Made Easy Beginner to Advanced using

Name

Machine Learning Made Easy - Beginner to Advanced using R

 DOWNLOAD Copy Link

Total Size

2.1 GB

Total Files

309

Hash

FFC8ABD4AA28467122201DA7FABCCDF1D2A46904

/.../2. Data Handling in R/

1.3 Section 2. Data Handling Dataset.zip.zip

42.6 MB

1. Introduction to Data Handling.mp4

2.8 MB

1. Introduction to Data Handling.srt

2.2 KB

1.1 Section 2.R Data Handling.R.zip.zip

2.7 KB

1.2 2. R DataHandling_Class_v1.pdf.pdf

534.1 KB

2. Importing the Datasets.mp4

12.9 MB

2. Importing the Datasets.srt

9.5 KB

3. Checklist.mp4

12.7 MB

3. Checklist.srt

7.8 KB

4. Subsetting the Data.mp4

10.6 MB

4. Subsetting the Data.srt

6.6 KB

5. Subsetting Variable Condition.mp4

15.7 MB

5. Subsetting Variable Condition.srt

7.7 KB

6. Calculated Fields_ifelse.mp4

16.6 MB

6. Calculated Fields_ifelse.srt

10.6 KB

7. Sorting and Duplicates.mp4

22.7 MB

7. Sorting and Duplicates.srt

13.5 KB

8. Joining and Merging.mp4

12.6 MB

8. Joining and Merging.srt

7.7 KB

9. Exporting the Data.mp4

9.0 MB

9. Exporting the Data.srt

4.6 KB

10. Data handling quiz.html

0.2 KB

/

Visit Coursedrive.org.url

0.1 KB

ReadMe.txt

0.2 KB

/Machine Learning Made Easy - Beginner to Advanced using R/

ReadMe.txt

0.2 KB

Visit Coursedrive.org.url

0.1 KB

/1. Introduction to R/

1. Getting Started.mp4

10.7 MB

1. Getting Started.srt

7.1 KB

1.1 1.R Introuction Class_v2.pdf.pdf

669.4 KB

1.2 Section 1. R Introduction.R.zip.zip

1.6 KB

2. R Environment.mp4

10.1 MB

2. R Environment.srt

7.0 KB

3. R Packages.mp4

11.6 MB

3. R Packages.srt

5.6 KB

4. R Data types Vectors.mp4

33.3 MB

4. R Data types Vectors.srt

14.6 KB

5. R Data Frames.mp4

28.3 MB

5. R Data Frames.srt

17.5 KB

6. List.mp4

22.1 MB

6. List.srt

14.1 KB

7. Factor and Matrix.mp4

8.1 MB

7. Factor and Matrix.srt

5.0 KB

8. R History and Scripts.mp4

23.2 MB

8. R History and Scripts.srt

13.0 KB

9. R Functions.mp4

10.2 MB

9. R Functions.srt

7.3 KB

10. Errors.mp4

16.0 MB

10. Errors.srt

12.1 KB

11. Introduction to R quiz.html

0.2 KB

/.../3. Basic Statistics and Graph/

1. Introduction and Sampling.mp4

6.7 MB

1. Introduction and Sampling.srt

5.6 KB

1.1 3. R Basic Statistics Graphs and Reporting_Class_v2 .pdf.pdf

643.0 KB

1.2 Section 3. R Basic Statistics Dataset.zip.zip

39.0 MB

1.3 Section 3. R Basic Statistics Graphs and Reporting .R.zip.zip

1.3 KB

2. Descriptive Statistics.mp4

19.1 MB

2. Descriptive Statistics.srt

13.3 KB

3. Percentiles and Quartiles.mp4

9.0 MB

3. Percentiles and Quartiles.srt

6.5 KB

4. Box Plots.mp4

10.7 MB

4. Box Plots.srt

6.6 KB

5. Creating Graphs and Conclusions.mp4

17.4 MB

5. Creating Graphs and Conclusions.srt

10.2 KB

6. Basic Statistics and graph quiz.html

0.2 KB

/.../4. Data Cleaning and Treatment/

1. Introduction to Data Cleaning and Model Building Cycle.mp4

3.9 MB

1. Introduction to Data Cleaning and Model Building Cycle.srt

3.2 KB

1.1 Section 4. Datasets.zip.zip

2.8 MB

1.2 Section 4. Data Cleaning Preparing data for Analysis_v2.R.zip.zip

1.9 KB

1.3 4. R.Data Cleaning Preparing data for Analysis_Class_v1.pdf.pdf

963.2 KB

2. Model Building Cycle.mp4

13.5 MB

2. Model Building Cycle.srt

10.9 KB

3. Data Cleaning Case Study.mp4

14.5 MB

3. Data Cleaning Case Study.srt

9.9 KB

4. CS lab step one basic content of dataset.mp4

25.5 MB

4. CS lab step one basic content of dataset.srt

14.0 KB

5. Variable Level Exploration Catagorical.mp4

8.2 MB

5. Variable Level Exploration Catagorical.srt

6.7 KB

6. Reading Data Dictionary.mp4

26.9 MB

6. Reading Data Dictionary.srt

14.1 KB

7. Step two Lab Categorical Variable Exploration.mp4

31.4 MB

7. Step two Lab Categorical Variable Exploration.srt

17.2 KB

8. Step three Lab Variable Level Exploration Continues.mp4

30.3 MB

8. Step three Lab Variable Level Exploration Continues.srt

14.3 KB

9. Data Cleaning and Treatment.mp4

14.2 MB

9. Data Cleaning and Treatment.srt

10.6 KB

10. Step four Treatment-Scenario 1.mp4

16.2 MB

10. Step four Treatment-Scenario 1.srt

9.5 KB

11. Step four Treatment-Scenario 2.mp4

22.0 MB

11. Step four Treatment-Scenario 2.srt

13.2 KB

12. Data Cleaning Scenario 3.mp4

12.2 MB

12. Data Cleaning Scenario 3.srt

7.8 KB

13. Some Other Variables.mp4

5.5 MB

13. Some Other Variables.srt

3.7 KB

14. Conclusions.mp4

4.1 MB

14. Conclusions.srt

2.9 KB

/5. Linear Regression/

1. Introduction and Correlation.mp4

28.6 MB

1. Introduction and Correlation.srt

5.6 KB

1.1 Section 5. Regression Datasets.zip.zip

18.0 KB

1.2 Section 5. Regression code.R.zip.zip

1.4 KB

1.3 5.Regression_in_R_Classv1.pdf.pdf

2.1 MB

2. LBA Correlation Calculation in R.mp4

8.5 MB

2. LBA Correlation Calculation in R.srt

6.4 KB

3. Beyond Pearson Correlation.mp4

5.7 MB

3. Beyond Pearson Correlation.srt

4.7 KB

4. From Correlation to Regression.mp4

16.1 MB

4. From Correlation to Regression.srt

13.7 KB

5. Regression Line Fitting in R.mp4

15.2 MB

5. Regression Line Fitting in R.srt

10.2 KB

6. R Squared.mp4

21.9 MB

6. R Squared.srt

16.2 KB

7. Multiple Regression.mp4

18.6 MB

7. Multiple Regression.srt

12.9 KB

8. Adjusted R Squared.mp4

8.2 MB

8. Adjusted R Squared.srt

6.7 KB

9. Issue with Multiple Regression.mp4

25.1 MB

9. Issue with Multiple Regression.srt

14.9 KB

10. Multicollinearity.mp4

23.9 MB

10. Multicollinearity.srt

17.6 KB

11. Regression Conclusion.mp4

4.3 MB

11. Regression Conclusion.srt

2.9 KB

12. Regression Quiz.html

0.2 KB

/6. Logistic Regression/

1. Need of Non-Linear Regression.mp4

25.3 MB

1. Need of Non-Linear Regression.srt

19.8 KB

1.1 Section 6. Logistic Regression_Code.R.zip.zip

1.4 KB

1.2 6.Logistic Regression_in_R_Classv1.pdf.pdf

991.2 KB

1.3 Section 6. Logistic Regression Datasets.zip.zip

504.1 KB

2. Logistic Function and Line.mp4

17.1 MB

2. Logistic Function and Line.srt

13.0 KB

3. Multiple Logistic Regression.mp4

14.1 MB

3. Multiple Logistic Regression.srt

10.5 KB

4. Goodness of Fit for a Logistic Regression.mp4

21.6 MB

4. Goodness of Fit for a Logistic Regression.srt

16.0 KB

5. Multicollinearity in Logistic Regression.mp4

12.8 MB

5. Multicollinearity in Logistic Regression.srt

9.8 KB

6. Individual Impact of Variables.mp4

10.2 MB

6. Individual Impact of Variables.srt

6.5 KB

7. Model Selection.mp4

24.8 MB

7. Model Selection.srt

16.0 KB

8. Logistic Regression Conclusion.mp4

2.5 MB

8. Logistic Regression Conclusion.srt

1.9 KB

9. Logistic Regression Quiz.html

0.2 KB

/7. Decision Tree/

1. Introduction to Decision Tree and Segmentation.mp4

11.6 MB

1. Introduction to Decision Tree and Segmentation.srt

9.0 KB

1.1 Section 7. Decision Tree Datasets.zip.zip

589.7 KB

1.2 Section 7. Decision Trees code.R.zip.zip

1.3 KB

1.3 7.Decision_Trees_in_R_Classv1.pdf.pdf

2.1 MB

2. The Decision Tree Philosophy & The Decision Tree Approach.mp4

26.6 MB

2. The Decision Tree Philosophy & The Decision Tree Approach.srt

19.1 KB

3. The Splitting Criterion & Entropy Calculation.mp4

29.1 MB

3. The Splitting Criterion & Entropy Calculation.srt

19.2 KB

4. Information Gain & Calculation.mp4

16.7 MB

4. Information Gain & Calculation.srt

11.6 KB

5. The Decision Tree Algorithm.mp4

19.6 MB

5. The Decision Tree Algorithm.srt

15.7 KB

6. Split for Variable & The Decision Tree Lab - Part 1.mp4

29.9 MB

6. Split for Variable & The Decision Tree Lab - Part 1.srt

19.0 KB

7. The Decision Tree Lab - Part 2 & Validation.mp4

28.7 MB

7. The Decision Tree Lab - Part 2 & Validation.srt

17.0 KB

8. The Decision Tree Lab - Part 3 & Overfitting.mp4

38.5 MB

8. The Decision Tree Lab - Part 3 & Overfitting.srt

20.6 KB

9. Pruning & Complexity Parameters.mp4

10.4 MB

9. Pruning & Complexity Parameters.srt

6.6 KB

10. Choosing Cp & Cross Validation Error.mp4

24.9 MB

10. Choosing Cp & Cross Validation Error.srt

13.6 KB

11. Two Types of Pruning.mp4

7.3 MB

11. Two Types of Pruning.srt

3.4 KB

12. Tree Building and Model Selection.mp4

38.9 MB

12. Tree Building and Model Selection.srt

18.4 KB

13. Conclusion.mp4

3.6 MB

13. Conclusion.srt

2.7 KB

14. Decision Trees Quiz.html

0.2 KB

/.../8. Model Selection and Cross Validation/

1. Introduction to Model Selection.mp4

3.6 MB

1. Introduction to Model Selection.srt

2.7 KB

1.1 Section 8. Model Selection Cross Validation_v3.R.zip.zip

1.8 KB

1.2 8. Model Selection and Cross Validation_in_R_Classv3.pdf.pdf

2.0 MB

1.3 Section 8. MSCV Datasets.zip.zip

504.1 KB

2. Sensitivity Specificity.mp4

20.1 MB

2. Sensitivity Specificity.srt

12.7 KB

3. Sensitivity Specificity Continued.mp4

19.3 MB

3. Sensitivity Specificity Continued.srt

13.2 KB

4. ROC AUC.mp4

23.5 MB

4. ROC AUC.srt

11.6 KB

5. The Best Model.mp4

10.1 MB

5. The Best Model.srt

5.1 KB

6. Errors.mp4

10.6 MB

6. Errors.srt

7.6 KB

7. Overfitting Underfitting.mp4

29.9 MB

7. Overfitting Underfitting.srt

15.2 KB

8. Bias_Variance Treadoff.mp4

17.6 MB

8. Bias_Variance Treadoff.srt

11.7 KB

9. Holdout Data Validation.mp4

12.9 MB

9. Holdout Data Validation.srt

5.8 KB

10. Ten fold CV.mp4

24.8 MB

10. Ten fold CV.srt

12.5 KB

11. Kfold CV.mp4

19.2 MB

11. Kfold CV.srt

11.4 KB

12. MSCV Conclusion.mp4

3.3 MB

12. MSCV Conclusion.srt

2.4 KB

13. Model selection cross validation Quiz.html

0.2 KB

/9. Neural Networks/

1. Introduction and Logistic Regression Recap.mp4

16.8 MB

1. Introduction and Logistic Regression Recap.srt

9.1 KB

1.1 Section 9. Neural Net Datasets.zip.zip

4.5 MB

1.2 9.Neural Network_in_R_Classv2.pdf.pdf

3.4 MB

1.3 Section 9.Neural Network_v7.R.zip.zip

3.2 KB

2. Decision Boundary.mp4

6.7 MB

2. Decision Boundary.srt

3.6 KB

3. Non Linear Decision Boundary NN.mp4

14.8 MB

3. Non Linear Decision Boundary NN.srt

8.0 KB

4. Non Linear Decision Boundary and Solution.mp4

29.8 MB

4. Non Linear Decision Boundary and Solution.srt

13.1 KB

5. Neural Net Intution.mp4

14.4 MB

5. Neural Net Intution.srt

9.6 KB

6. Neural Net Algorithm.mp4

12.9 MB

6. Neural Net Algorithm.srt

9.6 KB

7. Neural Net Algorithm Demo.mp4

12.3 MB

7. Neural Net Algorithm Demo.srt

7.9 KB

8. Building a Neural Network.mp4

25.8 MB

8. Building a Neural Network.srt

12.7 KB

9. Local Vs Global Min.mp4

10.6 MB

9. Local Vs Global Min.srt

6.3 KB

10. Digit Recognizer second attempt part1.mp4

12.3 MB

10. Digit Recognizer second attempt part1.srt

4.9 KB

11. Digit Recognizer second attempt part2.mp4

19.1 MB

11. Digit Recognizer second attempt part2.srt

8.9 KB

12. Lab Digit Reconizer.mp4

11.7 MB

12. Lab Digit Reconizer.srt

4.6 KB

13. Conclusion.mp4

11.7 MB

13. Conclusion.srt

6.2 KB

14. Neural Networks.html

0.2 KB

/.../10. Support Vector Machines/

1. Introduction to SVM.mp4

3.9 MB

1. Introduction to SVM.srt

2.2 KB

1.1 Section 10. SVM Datasets.zip.zip

4.9 MB

1.2 Section 10. SVM code.R.zip.zip

1.8 KB

1.3 10.SVM_in_R_Classv4.pdf.pdf

2.1 MB

2. The Classifier and Decision Boundary.mp4

11.9 MB

2. The Classifier and Decision Boundary.srt

6.4 KB

3. SVM- The Large Margin Classifier.mp4

3.1 MB

3. SVM- The Large Margin Classifier.srt

1.8 KB

4. The SVM Alogirithm and Results.mp4

7.4 MB

4. The SVM Alogirithm and Results.srt

4.7 KB

5. SVM on R.mp4

12.1 MB

5. SVM on R.srt

5.1 KB

6. Non Linear Boundary.mp4

6.8 MB

6. Non Linear Boundary.srt

4.1 KB

7. Kernal Trick.mp4

11.4 MB

7. Kernal Trick.srt

7.4 KB

8. Kernal Trick on R.mp4

18.5 MB

8. Kernal Trick on R.srt

7.3 KB

9. Soft Margin and Validation.mp4

6.7 MB

9. Soft Margin and Validation.srt

4.6 KB

10. SVM Advantage, Disadvantage and Applications.mp4

5.2 MB

10. SVM Advantage, Disadvantage and Applications.srt

3.5 KB

11. Lab Digit Reconizer.mp4

26.0 MB

11. Lab Digit Reconizer.srt

8.2 KB

12. SVM Conclusion.mp4

2.1 MB

12. SVM Conclusion.srt

1.1 KB

13. support vector machine.html

0.2 KB

/.../11. Ensamble Learning, Random Forest and Boosting/

1. Introduction to Bagging RF Boosting.mp4

1.5 MB

1. Introduction to Bagging RF Boosting.srt

1.0 KB

1.1 11.2.Basic Boosted Models.pdf.pdf

932.3 KB

1.2 11.1.Basic Ensemble Models & Random Forests_R _v2.pdf.pdf

932.4 KB

1.3 Section 11. Random Forest Datasets.zip.zip

18.5 MB

1.4 Section 11. Random Forest code.R.zip.zip

2.2 KB

2. Wisdom of Crowd.mp4

10.9 MB

2. Wisdom of Crowd.srt

7.7 KB

3. Ensemble Learning.mp4

11.5 MB

3. Ensemble Learning.srt

6.8 KB

4. Ensamble Models.mp4

12.1 MB

4. Ensamble Models.srt

7.2 KB

5. Bagging.mp4

15.0 MB

5. Bagging.srt

9.5 KB

6. Bagging Models.mp4

17.3 MB

6. Bagging Models.srt

7.6 KB

7. Random Forest.mp4

23.2 MB

7. Random Forest.srt

14.3 KB

8. Random Forest Lab.mp4

13.7 MB

8. Random Forest Lab.srt

6.3 KB

9. Boosting.mp4

13.8 MB

9. Boosting.srt

9.0 KB

10. Boosting Illustration.mp4

15.5 MB

10. Boosting Illustration.srt

10.7 KB

11. Boosting Lab.mp4

30.7 MB

11. Boosting Lab.srt

12.1 KB

12. Conclusion.mp4

7.4 MB

12. Conclusion.srt

4.8 KB

13. Random forest and boosting.html

0.2 KB

/.../12. Cluster Analysis/

1. Introduction to Clustering via Segmentation.mp4

17.3 MB

1. Introduction to Clustering via Segmentation.srt

12.7 KB

1.1 12.Cluster Aalysis in R Class V3.pdf.pdf

1.3 MB

1.2 Section 12. Cluster Analysis DataSets.zip.zip

35.1 KB

1.3 Section 12. Cluster Analysis Code_v3.R.zip.zip

1.5 KB

2. Types of Cluster.mp4

8.1 MB

2. Types of Cluster.srt

6.5 KB

3. Similiarities and Dissimilarity.mp4

11.6 MB

3. Similiarities and Dissimilarity.srt

9.1 KB

4. Calculating the Distance.mp4

8.5 MB

4. Calculating the Distance.srt

7.3 KB

5. Calculating Distance in R.mp4

10.7 MB

5. Calculating Distance in R.srt

7.1 KB

6. Clustering Algorithms- Kmeans.mp4

23.1 MB

6. Clustering Algorithms- Kmeans.srt

16.5 KB

7. Kmeans Clustering on R.mp4

27.4 MB

7. Kmeans Clustering on R.srt

14.4 KB

8. More on Kmeans.mp4

26.9 MB

8. More on Kmeans.srt

14.5 KB

9. Data Standardisation and Non-numeric Data.mp4

22.8 MB

9. Data Standardisation and Non-numeric Data.srt

17.1 KB

10. Clustering Conclusion.mp4

4.3 MB

10. Clustering Conclusion.srt

3.6 KB

11. Cluster Analysis.html

0.2 KB

 

Total files 309


Copyright © 2024 FileMood.com