FileMood

Download [08-2020] python-data-science-machine-learning-bootcamp

08 2020 python data science machine learning bootcamp

Name

[08-2020] python-data-science-machine-learning-bootcamp

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

25.0 GB

Total Files

452

Last Seen

Hash

4C282EBF0C8F3A6AE9D82600EB0553989A797B2A

/04 Introduction to Optimisation and the Gradient Descent Algorithm/

036 [Python] - Loops and the Gradient Descent Algorithm.mp4

471.0 MB

031 Course-Resources.txt

0.1 KB

031 What's Coming Up_.en_US.srt

3.6 KB

031 What's Coming Up_.mp4

25.8 MB

032 How a Machine Learns.en_US.srt

6.9 KB

032 How a Machine Learns.mp4

17.4 MB

033 Introduction to Cost Functions.en_US.srt

9.0 KB

033 Introduction to Cost Functions.mp4

80.6 MB

034 LaTeX Markdown and Generating Data with Numpy.en_US.srt

16.2 KB

034 LaTeX Markdown and Generating Data with Numpy.mp4

81.0 MB

035 Understanding the Power Rule & Creating Charts with Subplots.en_US.srt

17.0 KB

035 Understanding the Power Rule & Creating Charts with Subplots.mp4

109.5 MB

036 [Python] - Loops and the Gradient Descent Algorithm.en_US.srt

41.2 KB

037 [exercise] Python Loops Coding Exercise.zip

0.3 KB

037 [exercise_info] Python Loops Coding Exercise.html

15.9 KB

037 [exercise_solution] Python Loops Coding Exercise.zip

0.3 KB

037 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).en_US.srt

40.5 KB

037 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4

468.5 MB

038 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).en_US.srt

31.6 KB

038 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4

317.0 MB

039 Understanding the Learning Rate.en_US.srt

35.5 KB

039 Understanding the Learning Rate.mp4

294.2 MB

040 How to Create 3-Dimensional Charts.en_US.srt

24.6 KB

040 How to Create 3-Dimensional Charts.mp4

308.6 MB

041 Understanding Partial Derivatives and How to use SymPy.en_US.srt

19.2 KB

041 Understanding Partial Derivatives and How to use SymPy.mp4

202.7 MB

042 Implementing Batch Gradient Descent with SymPy.en_US.srt

12.3 KB

042 Implementing Batch Gradient Descent with SymPy.mp4

123.2 MB

043 [Python] - Loops and Performance Considerations.en_US.srt

17.1 KB

043 [Python] - Loops and Performance Considerations.mp4

215.6 MB

044 Reshaping and Slicing N-Dimensional Arrays.en_US.srt

21.7 KB

044 Reshaping and Slicing N-Dimensional Arrays.mp4

176.5 MB

045 Concatenating Numpy Arrays.en_US.srt

8.5 KB

045 Concatenating Numpy Arrays.mp4

89.3 MB

046 Introduction to the Mean Squared Error (MSE).en_US.srt

12.0 KB

046 Introduction to the Mean Squared Error (MSE).mp4

78.8 MB

047 Transposing and Reshaping Arrays.en_US.srt

12.8 KB

047 Transposing and Reshaping Arrays.mp4

106.6 MB

048 Implementing a MSE Cost Function.en_US.srt

12.8 KB

048 Implementing a MSE Cost Function.mp4

102.2 MB

049 Understanding Nested Loops and Plotting the MSE Function (Part 1).en_US.srt

13.2 KB

049 Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4

87.4 MB

050 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).en_US.srt

16.4 KB

050 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4

72.2 MB

051 Running Gradient Descent with a MSE Cost Function.en_US.srt

21.0 KB

051 Running Gradient Descent with a MSE Cost Function.mp4

136.1 MB

052 Visualising the Optimisation on a 3D Surface.en_US.srt

10.2 KB

052 Visualising the Optimisation on a 3D Surface.mp4

92.5 MB

053 03-Gradient-Descent.ipynb.zip

1.2 MB

053 Download the Complete Notebook Here.html

0.7 KB

054 Any Feedback on this Section_.html

1.0 KB

/01 Introduction to the Course/

001 What is Machine Learning_.mp4

33.9 MB

002 What is Data Science_.en_US.srt

5.5 KB

002 What is Data Science_.mp4

75.1 MB

003 Download the Syllabus.html

2.2 KB

003 ML-Data-Science-Syllabus.pdf

106.5 KB

004 App-Brewery-Cornell-Notes-Template.txt

0.1 KB

004 Top Tips for Succeeding on this Course.html

2.8 KB

005 Course Resources List.html

1.8 KB

001 What is Machine Learning_.en_US.srt

6.6 KB

/02 Predict Movie Box Office Revenue with Linear Regression/

006 Course-Resources.txt

0.1 KB

006 Introduction to Linear Regression & Specifying the Problem.en_US.srt

8.3 KB

006 Introduction to Linear Regression & Specifying the Problem.mp4

40.7 MB

007 cost-revenue-dirty.csv

383.7 KB

007 Gather & Clean the Data.en_US.srt

13.2 KB

007 Gather & Clean the Data.mp4

72.4 MB

007 The-Numbers-Movie-Budgets.txt

0.0 KB

008 cost-revenue-clean.csv

93.0 KB

008 Explore & Visualise the Data with Python.en_US.srt

29.3 KB

008 Explore & Visualise the Data with Python.mp4

197.9 MB

008 Try-Jupyter-in-your-Browser.txt

0.0 KB

009 01-Linear-Regression-checkpoint.ipynb.zip

38.5 KB

009 The Intuition behind the Linear Regression Model.en_US.srt

10.3 KB

009 The Intuition behind the Linear Regression Model.mp4

20.4 MB

010 Analyse and Evaluate the Results.en_US.srt

21.3 KB

010 Analyse and Evaluate the Results.mp4

149.1 MB

011 01-Linear-Regression-complete.ipynb.zip

77.1 KB

011 Download the Complete Notebook Here.html

0.7 KB

012 Join the Student Community.html

1.4 KB

013 Any Feedback on this Section_.html

1.0 KB

/03 Python Programming for Data Science and Machine Learning/

014 Course-Resources.txt

0.1 KB

014 Windows Users - Install Anaconda.en_US.srt

8.4 KB

014 Windows Users - Install Anaconda.mp4

61.0 MB

015 Course-Resources.txt

0.1 KB

015 Mac Users - Install Anaconda.en_US.srt

7.7 KB

015 Mac Users - Install Anaconda.mp4

85.3 MB

016 Does LSD Make You Better at Maths_.en_US.srt

7.0 KB

016 Does LSD Make You Better at Maths_.mp4

70.2 MB

017 12-Rules-to-Learn-to-Code.pdf

2.4 MB

017 Download the 12 Rules to Learn to Code.html

1.8 KB

018 [Python] - Variables and Types.en_US.srt

15.7 KB

018 [Python] - Variables and Types.mp4

88.4 MB

019 [exercise] Python Variable Coding Exercise.zip

0.2 KB

019 [exercise_info] Python Variable Coding Exercise.html

1.9 KB

019 [exercise_solution] Python Variable Coding Exercise.zip

0.2 KB

019 [Python] - Lists and Arrays.en_US.srt

11.5 KB

019 [Python] - Lists and Arrays.mp4

63.9 MB

020 [exercise] Python Lists Coding Exercise.zip

0.2 KB

020 [exercise_info] Python Lists Coding Exercise.html

2.0 KB

020 [exercise_solution] Python Lists Coding Exercise.zip

0.2 KB

020 [Python & Pandas] - Dataframes and Series.en_US.srt

26.6 KB

020 [Python & Pandas] - Dataframes and Series.mp4

213.5 MB

020 lsd-math-score-data.csv

0.2 KB

021 [Python] - Module Imports.en_US.srt

34.2 KB

021 [Python] - Module Imports.mp4

366.5 MB

022 [Python] - Functions - Part 1_ Defining and Calling Functions.en_US.srt

10.0 KB

022 [Python] - Functions - Part 1_ Defining and Calling Functions.mp4

49.3 MB

023 [exercise] Python Functions Coding Exercise - Part 1.zip

0.3 KB

023 [exercise_info] Python Functions Coding Exercise - Part 1.html

1.7 KB

023 [exercise_solution] Python Functions Coding Exercise - Part 1.zip

0.3 KB

023 [Python] - Functions - Part 2_ Arguments & Parameters.en_US.srt

19.7 KB

023 [Python] - Functions - Part 2_ Arguments & Parameters.mp4

198.9 MB

024 [exercise] Python Functions Coding Exercise - Part 2.zip

0.3 KB

024 [exercise_info] Python Functions Coding Exercise - Part 2.html

1.4 KB

024 [exercise_solution] Python Functions Coding Exercise - Part 2.zip

0.3 KB

024 [Python] - Functions - Part 3_ Results & Return Values.en_US.srt

15.7 KB

024 [Python] - Functions - Part 3_ Results & Return Values.mp4

98.9 MB

025 [exercise] Python Functions Coding Exercise - Part 3.zip

0.2 KB

025 [exercise_info] Python Functions Coding Exercise - Part 3.html

1.5 KB

025 [exercise_solution] Python Functions Coding Exercise - Part 3.zip

0.2 KB

025 [Python] - Objects - Understanding Attributes and Methods.en_US.srt

28.2 KB

025 [Python] - Objects - Understanding Attributes and Methods.mp4

245.9 MB

026 How to Make Sense of Python Documentation for Data Visualisation.en_US.srt

25.1 KB

026 How to Make Sense of Python Documentation for Data Visualisation.mp4

277.9 MB

027 Working with Python Objects to Analyse Data.en_US.srt

25.7 KB

027 Working with Python Objects to Analyse Data.mp4

271.4 MB

028 [Python] - Tips, Code Style and Naming Conventions.en_US.srt

15.9 KB

028 [Python] - Tips, Code Style and Naming Conventions.mp4

137.1 MB

029 02-Python-Intro.ipynb.zip

37.3 KB

029 Download the Complete Notebook Here.html

0.7 KB

030 Any Feedback on this Section_.html

1.0 KB

/05 Predict House Prices with Multivariable Linear Regression/

055 Course-Resources.txt

0.1 KB

055 Defining the Problem.en_US.srt

6.1 KB

055 Defining the Problem.mp4

60.6 MB

056 Gathering the Boston House Price Data.en_US.srt

8.2 KB

056 Gathering the Boston House Price Data.mp4

95.5 MB

057 Clean and Explore the Data (Part 1)_ Understand the Nature of the Dataset.en_US.srt

14.8 KB

057 Clean and Explore the Data (Part 1)_ Understand the Nature of the Dataset.mp4

104.2 MB

058 Clean and Explore the Data (Part 2)_ Find Missing Values.en_US.srt

17.7 KB

058 Clean and Explore the Data (Part 2)_ Find Missing Values.mp4

218.0 MB

059 Visualising Data (Part 1)_ Historams, Distributions & Outliers.en_US.srt

13.5 KB

059 Visualising Data (Part 1)_ Historams, Distributions & Outliers.mp4

75.4 MB

060 Visualising Data (Part 2)_ Seaborn and Probability Density Functions.en_US.srt

8.5 KB

060 Visualising Data (Part 2)_ Seaborn and Probability Density Functions.mp4

69.4 MB

061 Working with Index Data, Pandas Series, and Dummy Variables.en_US.srt

19.6 KB

061 Working with Index Data, Pandas Series, and Dummy Variables.mp4

205.1 MB

062 Understanding Descriptive Statistics_ the Mean vs the Median.en_US.srt

11.6 KB

062 Understanding Descriptive Statistics_ the Mean vs the Median.mp4

76.0 MB

063 Introduction to Correlation_ Understanding Strength & Direction.en_US.srt

8.0 KB

063 Introduction to Correlation_ Understanding Strength & Direction.mp4

21.4 MB

064 Calculating Correlations and the Problem posed by Multicollinearity.en_US.srt

16.9 KB

064 Calculating Correlations and the Problem posed by Multicollinearity.mp4

162.4 MB

065 Visualising Correlations with a Heatmap.en_US.srt

23.1 KB

065 Visualising Correlations with a Heatmap.mp4

200.8 MB

066 Techniques to Style Scatter Plots.en_US.srt

19.5 KB

066 Techniques to Style Scatter Plots.mp4

157.3 MB

067 A Note for the Next Lesson.html

1.0 KB

068 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.en_US.srt

27.2 KB

068 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4

350.7 MB

069 Understanding Multivariable Regression.en_US.srt

7.1 KB

069 Understanding Multivariable Regression.mp4

64.6 MB

070 How to Shuffle and Split Training & Testing Data.en_US.srt

10.9 KB

070 How to Shuffle and Split Training & Testing Data.mp4

87.4 MB

071 Running a Multivariable Regression.en_US.srt

9.3 KB

071 Running a Multivariable Regression.mp4

77.6 MB

072 How to Calculate the Model Fit with R-Squared.en_US.srt

4.2 KB

072 How to Calculate the Model Fit with R-Squared.mp4

40.4 MB

073 Introduction to Model Evaluation.en_US.srt

3.6 KB

073 Introduction to Model Evaluation.mp4

12.6 MB

074 Improving the Model by Transforming the Data.en_US.srt

20.4 KB

074 Improving the Model by Transforming the Data.mp4

149.4 MB

075 How to Interpret Coefficients using p-Values and Statistical Significance.en_US.srt

10.3 KB

075 How to Interpret Coefficients using p-Values and Statistical Significance.mp4

93.4 MB

076 Understanding VIF & Testing for Multicollinearity.en_US.srt

24.2 KB

076 Understanding VIF & Testing for Multicollinearity.mp4

172.6 MB

077 Model Simplification & Baysian Information Criterion.en_US.srt

21.9 KB

077 Model Simplification & Baysian Information Criterion.mp4

240.6 MB

078 How to Analyse and Plot Regression Residuals.en_US.srt

14.0 KB

078 How to Analyse and Plot Regression Residuals.mp4

48.9 MB

079 Residual Analysis (Part 1)_ Predicted vs Actual Values.en_US.srt

17.2 KB

079 Residual Analysis (Part 1)_ Predicted vs Actual Values.mp4

153.6 MB

080 Residual Analysis (Part 2)_ Graphing and Comparing Regression Residuals.en_US.srt

21.5 KB

080 Residual Analysis (Part 2)_ Graphing and Comparing Regression Residuals.mp4

186.9 MB

081 Making Predictions (Part 1)_ MSE & R-Squared.en_US.srt

22.4 KB

081 Making Predictions (Part 1)_ MSE & R-Squared.mp4

228.4 MB

082 Making Predictions (Part 2)_ Standard Deviation, RMSE, and Prediction Intervals.en_US.srt

14.0 KB

082 Making Predictions (Part 2)_ Standard Deviation, RMSE, and Prediction Intervals.mp4

122.2 MB

083 Build a Valuation Tool (Part 1)_ Working with Pandas Series & Numpy ndarrays.en_US.srt

19.5 KB

083 Build a Valuation Tool (Part 1)_ Working with Pandas Series & Numpy ndarrays.mp4

208.1 MB

084 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).en_US.srt

20.1 KB

084 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4

167.6 MB

085 [exercise] Python Conditional Statement Coding Exercise.zip

0.2 KB

085 [exercise_info] Python Conditional Statement Coding Exercise.html

2.6 KB

085 [exercise_solution] Python Conditional Statement Coding Exercise.zip

0.2 KB

085 Build a Valuation Tool (Part 3)_ Docstrings & Creating your own Python Module.en_US.srt

26.7 KB

085 Build a Valuation Tool (Part 3)_ Docstrings & Creating your own Python Module.mp4

176.1 MB

086 04-Multivariable-Regression.ipynb.zip

3.7 MB

086 04-Valuation-Tool.ipynb.zip

3.0 KB

086 boston-valuation.py

3.1 KB

086 Download the Complete Notebook Here.html

0.7 KB

087 Any Feedback on this Section_.html

1.0 KB

/06 Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails_ Part 1/

088 Course-Resources.txt

0.1 KB

088 How to Translate a Business Problem into a Machine Learning Problem.en_US.srt

9.2 KB

088 How to Translate a Business Problem into a Machine Learning Problem.mp4

60.2 MB

089 Gathering Email Data and Working with Archives & Text Editors.en_US.srt

13.4 KB

089 Gathering Email Data and Working with Archives & Text Editors.mp4

195.9 MB

089 SpamData.zip

22.3 MB

090 How to Add the Lesson Resources to the Project.en_US.srt

4.7 KB

090 How to Add the Lesson Resources to the Project.mp4

36.8 MB

091 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.en_US.srt

5.8 KB

091 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4

59.9 MB

092 Basic Probability.en_US.srt

5.0 KB

092 Basic Probability.mp4

16.3 MB

093 Joint & Conditional Probability.en_US.srt

18.8 KB

093 Joint & Conditional Probability.mp4

177.5 MB

094 Bayes Theorem.en_US.srt

14.4 KB

094 Bayes Theorem.mp4

99.1 MB

095 Reading Files (Part 1)_ Absolute Paths and Relative Paths.en_US.srt

11.2 KB

095 Reading Files (Part 1)_ Absolute Paths and Relative Paths.mp4

74.6 MB

096 Reading Files (Part 2)_ Stream Objects and Email Structure.en_US.srt

13.8 KB

096 Reading Files (Part 2)_ Stream Objects and Email Structure.mp4

175.5 MB

097 Extracting the Text in the Email Body.en_US.srt

5.7 KB

097 Extracting the Text in the Email Body.mp4

57.9 MB

098 [Python] - Generator Functions & the yield Keyword.en_US.srt

21.2 KB

098 [Python] - Generator Functions & the yield Keyword.mp4

207.3 MB

099 Create a Pandas DataFrame of Email Bodies.en_US.srt

6.8 KB

099 Create a Pandas DataFrame of Email Bodies.mp4

71.2 MB

100 Cleaning Data (Part 1)_ Check for Empty Emails & Null Entries.en_US.srt

16.9 KB

100 Cleaning Data (Part 1)_ Check for Empty Emails & Null Entries.mp4

201.2 MB

101 Cleaning Data (Part 2)_ Working with a DataFrame Index.en_US.srt

8.7 KB

101 Cleaning Data (Part 2)_ Working with a DataFrame Index.mp4

89.0 MB

102 Saving a JSON File with Pandas.en_US.srt

6.6 KB

102 Saving a JSON File with Pandas.mp4

85.2 MB

103 Data Visualisation (Part 1)_ Pie Charts.en_US.srt

15.3 KB

103 Data Visualisation (Part 1)_ Pie Charts.mp4

137.4 MB

104 Data Visualisation (Part 2)_ Donut Charts.en_US.srt

9.1 KB

104 Data Visualisation (Part 2)_ Donut Charts.mp4

77.0 MB

105 Introduction to Natural Language Processing (NLP).en_US.srt

7.8 KB

105 Introduction to Natural Language Processing (NLP).mp4

61.0 MB

106 Tokenizing, Removing Stop Words and the Python Set Data Structure.en_US.srt

18.0 KB

106 Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4

144.8 MB

107 Word Stemming & Removing Punctuation.en_US.srt

10.1 KB

107 Word Stemming & Removing Punctuation.mp4

87.7 MB

108 Removing HTML tags with BeautifulSoup.en_US.srt

10.5 KB

108 Removing HTML tags with BeautifulSoup.mp4

175.6 MB

109 Creating a Function for Text Processing.en_US.srt

8.2 KB

109 Creating a Function for Text Processing.mp4

46.9 MB

110 A Note for the Next Lesson.html

1.0 KB

111 Advanced Subsetting on DataFrames_ the apply() Function.en_US.srt

12.8 KB

111 Advanced Subsetting on DataFrames_ the apply() Function.mp4

102.7 MB

112 [Python] - Logical Operators to Create Subsets and Indices.en_US.srt

15.2 KB

112 [Python] - Logical Operators to Create Subsets and Indices.mp4

106.2 MB

113 Word Clouds & How to install Additional Python Packages.en_US.srt

11.4 KB

113 Word Clouds & How to install Additional Python Packages.mp4

96.9 MB

114 Creating your First Word Cloud.en_US.srt

13.0 KB

114 Creating your First Word Cloud.mp4

160.0 MB

115 Styling the Word Cloud with a Mask.en_US.srt

15.8 KB

115 Styling the Word Cloud with a Mask.mp4

193.6 MB

116 Solving the Hamlet Challenge.en_US.srt

5.7 KB

116 Solving the Hamlet Challenge.mp4

97.1 MB

117 Styling Word Clouds with Custom Fonts.en_US.srt

14.0 KB

117 Styling Word Clouds with Custom Fonts.mp4

193.1 MB

118 Create the Vocabulary for the Spam Classifier.en_US.srt

16.8 KB

118 Create the Vocabulary for the Spam Classifier.mp4

130.1 MB

119 Coding Challenge_ Check for Membership in a Collection.en_US.srt

5.8 KB

119 Coding Challenge_ Check for Membership in a Collection.mp4

20.9 MB

120 Coding Challenge_ Find the Longest Email.en_US.srt

7.1 KB

120 Coding Challenge_ Find the Longest Email.mp4

80.3 MB

121 Sparse Matrix (Part 1)_ Split the Training and Testing Data.en_US.srt

14.4 KB

121 Sparse Matrix (Part 1)_ Split the Training and Testing Data.mp4

125.3 MB

122 Sparse Matrix (Part 2)_ Data Munging with Nested Loops.en_US.srt

21.1 KB

122 Sparse Matrix (Part 2)_ Data Munging with Nested Loops.mp4

168.3 MB

123 Sparse Matrix (Part 3)_ Using groupby() and Saving .txt Files.en_US.srt

11.5 KB

123 Sparse Matrix (Part 3)_ Using groupby() and Saving .txt Files.mp4

116.2 MB

124 Coding Challenge Solution_ Preparing the Test Data.en_US.srt

4.3 KB

124 Coding Challenge Solution_ Preparing the Test Data.mp4

39.4 MB

125 Checkpoint_ Understanding the Data.en_US.srt

12.9 KB

125 Checkpoint_ Understanding the Data.mp4

140.9 MB

126 06-Bayes-Classifier-Pre-Processing.ipynb.zip

1.0 MB

126 Download the Complete Notebook Here.html

0.7 KB

127 Any Feedback on this Section_.html

1.0 KB

/07 Train a Naive Bayes Classifier to Create a Spam Filter_ Part 2/

128 Course-Resources.txt

0.1 KB

128 Setting up the Notebook and Understanding Delimiters in a Dataset.en_US.srt

11.0 KB

128 Setting up the Notebook and Understanding Delimiters in a Dataset.mp4

104.0 MB

128 SpamData.zip

23.4 MB

129 Create a Full Matrix.en_US.srt

21.4 KB

129 Create a Full Matrix.mp4

210.2 MB

130 Count the Tokens to Train the Naive Bayes Model.en_US.srt

18.1 KB

130 Count the Tokens to Train the Naive Bayes Model.mp4

116.8 MB

131 Sum the Tokens across the Spam and Ham Subsets.en_US.srt

7.7 KB

131 Sum the Tokens across the Spam and Ham Subsets.mp4

41.6 MB

132 Calculate the Token Probabilities and Save the Trained Model.en_US.srt

9.3 KB

132 Calculate the Token Probabilities and Save the Trained Model.mp4

74.0 MB

133 Coding Challenge_ Prepare the Test Data.en_US.srt

5.1 KB

133 Coding Challenge_ Prepare the Test Data.mp4

56.3 MB

134 07-Bayes-Classifier-Training.ipynb.zip

6.0 KB

134 Download the Complete Notebook Here.html

0.7 KB

135 Any Feedback on this Section_.html

1.0 KB

/08 Test and Evaluate a Naive Bayes Classifier_ Part 3/

136 Course-Resources.txt

0.1 KB

136 Set up the Testing Notebook.en_US.srt

3.8 KB

136 Set up the Testing Notebook.mp4

38.7 MB

136 SpamData.zip

23.9 MB

137 Joint Conditional Probability (Part 1)_ Dot Product.en_US.srt

12.5 KB

137 Joint Conditional Probability (Part 1)_ Dot Product.mp4

88.8 MB

138 Joint Conditional Probablity (Part 2)_ Priors.en_US.srt

10.4 KB

138 Joint Conditional Probablity (Part 2)_ Priors.mp4

95.1 MB

139 Making Predictions_ Comparing Joint Probabilities.en_US.srt

9.5 KB

139 Making Predictions_ Comparing Joint Probabilities.mp4

71.4 MB

140 The Accuracy Metric.en_US.srt

7.5 KB

140 The Accuracy Metric.mp4

48.7 MB

141 Visualising the Decision Boundary.en_US.srt

33.0 KB

141 Visualising the Decision Boundary.mp4

290.8 MB

142 False Positive vs False Negatives.en_US.srt

12.6 KB

142 False Positive vs False Negatives.mp4

75.1 MB

143 The Recall Metric.en_US.srt

6.4 KB

143 The Recall Metric.mp4

33.5 MB

144 The Precision Metric.en_US.srt

9.4 KB

144 The Precision Metric.mp4

64.5 MB

145 The F-score or F1 Metric.en_US.srt

4.4 KB

145 The F-score or F1 Metric.mp4

30.1 MB

146 A Naive Bayes Implementation using SciKit Learn.en_US.srt

33.1 KB

146 A Naive Bayes Implementation using SciKit Learn.mp4

283.7 MB

147 07-Bayes-Classifier-Testing-Inference-Evaluation.ipynb.zip

248.9 KB

147 08-Naive-Bayes-with-scikit-learn.ipynb.zip

13.6 KB

147 Download the Complete Notebook Here.html

0.7 KB

148 Any Feedback on this Section_.html

1.0 KB

/09 Introduction to Neural Networks and How to Use Pre-Trained Models/

149 Course-Resources.txt

0.1 KB

149 The Human Brain and the Inspiration for Artificial Neural Networks.en_US.srt

10.7 KB

149 The Human Brain and the Inspiration for Artificial Neural Networks.mp4

63.5 MB

150 Layers, Feature Generation and Learning.en_US.srt

27.4 KB

150 Layers, Feature Generation and Learning.mp4

248.7 MB

151 Costs and Disadvantages of Neural Networks.en_US.srt

19.0 KB

151 Costs and Disadvantages of Neural Networks.mp4

153.0 MB

152 Preprocessing Image Data and How RGB Works.en_US.srt

15.9 KB

152 Preprocessing Image Data and How RGB Works.mp4

135.9 MB

152 TF-Keras-Classification-Images.zip

513.1 KB

153 Importing Keras Models and the Tensorflow Graph.en_US.srt

11.3 KB

153 Importing Keras Models and the Tensorflow Graph.mp4

76.9 MB

154 Making Predictions using InceptionResNet.en_US.srt

18.6 KB

154 Making Predictions using InceptionResNet.mp4

190.0 MB

155 Coding Challenge Solution_ Using other Keras Models.en_US.srt

12.8 KB

155 Coding Challenge Solution_ Using other Keras Models.mp4

162.5 MB

156 09-Neural-Nets-Pretrained-Image-Classification.ipynb.zip

585.6 KB

156 Download the Complete Notebook Here.html

0.7 KB

157 Any Feedback on this Section_.html

1.0 KB

/10 Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/

158 Course-Resources.txt

0.1 KB

158 Solving a Business Problem with Image Classification.en_US.srt

4.9 KB

158 Solving a Business Problem with Image Classification.mp4

39.4 MB

159 Installing Tensorflow and Keras for Jupyter.en_US.srt

6.4 KB

159 Installing Tensorflow and Keras for Jupyter.mp4

61.3 MB

160 Gathering the CIFAR 10 Dataset.en_US.srt

6.0 KB

160 Gathering the CIFAR 10 Dataset.mp4

37.1 MB

161 Exploring the CIFAR Data.en_US.srt

17.9 KB

161 Exploring the CIFAR Data.mp4

158.4 MB

162 Pre-processing_ Scaling Inputs and Creating a Validation Dataset.en_US.srt

19.6 KB

162 Pre-processing_ Scaling Inputs and Creating a Validation Dataset.mp4

108.7 MB

163 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.en_US.srt

18.4 KB

163 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4

146.4 MB

164 Interacting with the Operating System and the Python Try-Catch Block.en_US.srt

23.4 KB

164 Interacting with the Operating System and the Python Try-Catch Block.mp4

203.1 MB

165 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.en_US.srt

13.9 KB

165 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4

152.7 MB

166 Use Regularisation to Prevent Overfitting_ Early Stopping & Dropout Techniques.en_US.srt

27.9 KB

166 Use Regularisation to Prevent Overfitting_ Early Stopping & Dropout Techniques.mp4

301.0 MB

167 Use the Model to Make Predictions.en_US.srt

32.5 KB

167 Use the Model to Make Predictions.mp4

314.6 MB

168 Model Evaluation and the Confusion Matrix.en_US.srt

10.6 KB

168 Model Evaluation and the Confusion Matrix.mp4

85.8 MB

169 Model Evaluation and the Confusion Matrix.en_US.srt

39.9 KB

169 Model Evaluation and the Confusion Matrix.mp4

384.2 MB

170 10-Neural-Nets-Keras-CIFAR10-Classification.ipynb.zip

123.0 KB

170 Download the Complete Notebook Here.html

0.7 KB

171 Any Feedback on this Section_.html

1.0 KB

/11 Use Tensorflow to Classify Handwritten Digits/

172 Course-Resources.txt

0.1 KB

172 What's coming up_.en_US.srt

2.5 KB

172 What's coming up_.mp4

8.0 MB

173 Getting the Data and Loading it into Numpy Arrays.en_US.srt

8.9 KB

173 Getting the Data and Loading it into Numpy Arrays.mp4

78.7 MB

173 MNIST.zip

15.5 MB

174 Data Exploration and Understanding the Structure of the Input Data.en_US.srt

6.4 KB

174 Data Exploration and Understanding the Structure of the Input Data.mp4

37.4 MB

175 Data Preprocessing_ One-Hot Encoding and Creating the Validation Dataset.en_US.srt

12.5 KB

175 Data Preprocessing_ One-Hot Encoding and Creating the Validation Dataset.mp4

92.8 MB

176 What is a Tensor_.en_US.srt

8.9 KB

176 What is a Tensor_.mp4

73.1 MB

177 Creating Tensors and Setting up the Neural Network Architecture.en_US.srt

28.6 KB

177 Creating Tensors and Setting up the Neural Network Architecture.mp4

215.1 MB

178 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.en_US.srt

13.9 KB

178 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4

89.0 MB

179 TensorFlow Sessions and Batching Data.en_US.srt

20.2 KB

179 TensorFlow Sessions and Batching Data.mp4

135.1 MB

180 Tensorboard Summaries and the Filewriter.en_US.srt

22.9 KB

180 Tensorboard Summaries and the Filewriter.mp4

195.6 MB

181 Understanding the Tensorflow Graph_ Nodes and Edges.en_US.srt

20.9 KB

181 Understanding the Tensorflow Graph_ Nodes and Edges.mp4

175.5 MB

182 Name Scoping and Image Visualisation in Tensorboard.en_US.srt

25.9 KB

182 Name Scoping and Image Visualisation in Tensorboard.mp4

93.0 MB

183 Different Model Architectures_ Experimenting with Dropout.en_US.srt

29.7 KB

183 Different Model Architectures_ Experimenting with Dropout.mp4

352.1 MB

184 Prediction and Model Evaluation.en_US.srt

18.6 KB

184 Prediction and Model Evaluation.mp4

170.2 MB

185 11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip

6.8 KB

185 Download the Complete Notebook Here.html

0.7 KB

186 Any Feedback on this Section_.html

1.0 KB

/12 Serving a Tensorflow Model through a Website/

187 What you'll make.en_US.srt

9.6 KB

187 What you'll make.mp4

67.5 MB

188 11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip

6.5 KB

188 Saving Tensorflow Models.en_US.srt

20.9 KB

188 Saving Tensorflow Models.mp4

201.1 MB

189 12-TF-SavedModel-Export-Completed.ipynb.zip

6.3 KB

189 Loading a SavedModel.en_US.srt

25.8 KB

189 Loading a SavedModel.mp4

151.9 MB

189 MNIST-Model-Load-Files.zip

3.0 MB

190 Converting a Model to Tensorflow.js.en_US.srt

20.8 KB

190 Converting a Model to Tensorflow.js.mp4

179.9 MB

190 TFJS.zip

1.6 MB

191 Introducing the Website Project and Tooling.en_US.srt

17.0 KB

191 Introducing the Website Project and Tooling.mp4

131.5 MB

191 math-garden-stub.zip

45.1 KB

192 HTML and CSS Styling.en_US.srt

37.4 KB

192 HTML and CSS Styling.mp4

256.5 MB

193 Loading a Tensorflow.js Model and Starting your own Server.en_US.srt

36.7 KB

193 Loading a Tensorflow.js Model and Starting your own Server.mp4

336.9 MB

193 x-test0-ylabel7.txt

4.7 KB

193 x-test1-ylabel2.txt

4.7 KB

193 x-test2-ylabel1.txt

4.7 KB

194 Adding a Favicon.en_US.srt

7.3 KB

194 Adding a Favicon.mp4

44.2 MB

195 Styling an HTML Canvas.en_US.srt

38.9 KB

195 Styling an HTML Canvas.mp4

327.6 MB

196 Drawing on an HTML Canvas.en_US.srt

37.2 KB

196 Drawing on an HTML Canvas.mp4

305.1 MB

197 Data Pre-Processing for Tensorflow.js.en_US.srt

11.8 KB

197 Data Pre-Processing for Tensorflow.js.mp4

44.4 MB

198 Introduction to OpenCV.en_US.srt

37.8 KB

198 Introduction to OpenCV.mp4

453.3 MB

198 math-garden-stub-12.12-checkpoint.zip

4.3 MB

199 Resizing and Adding Padding to Images.en_US.srt

26.4 KB

199 Resizing and Adding Padding to Images.mp4

300.2 MB

200 Calculating the Centre of Mass and Shifting the Image.en_US.srt

34.9 KB

200 Calculating the Centre of Mass and Shifting the Image.mp4

425.6 MB

201 Making a Prediction from a Digit drawn on the HTML Canvas.en_US.srt

16.8 KB

201 Making a Prediction from a Digit drawn on the HTML Canvas.mp4

190.6 MB

202 Adding the Game Logic.en_US.srt

37.4 KB

202 Adding the Game Logic.mp4

299.9 MB

202 math-garden-stub-complete.zip

4.3 MB

203 Publish and Share your Website!.en_US.srt

9.4 KB

203 Publish and Share your Website!.mp4

62.4 MB

204 Any Feedback on this Section_.html

1.0 KB

/13 Next Steps/

205 Where next_.html

4.7 KB

206 What Modules Do You Want to See_.html

0.9 KB

207 Stay in Touch!.html

1.6 KB

 

Total files 452


Copyright © 2026 FileMood.com