|
/04 Introduction to Optimisation and the Gradient Descent Algorithm/
|
|
036 [Python] - Loops and the Gradient Descent Algorithm.mp4
|
471.0 MB
|
|
031 Course-Resources.txt
|
0.1 KB
|
|
031 What's Coming Up_.en_US.srt
|
3.6 KB
|
|
031 What's Coming Up_.mp4
|
25.8 MB
|
|
032 How a Machine Learns.en_US.srt
|
6.9 KB
|
|
032 How a Machine Learns.mp4
|
17.4 MB
|
|
033 Introduction to Cost Functions.en_US.srt
|
9.0 KB
|
|
033 Introduction to Cost Functions.mp4
|
80.6 MB
|
|
034 LaTeX Markdown and Generating Data with Numpy.en_US.srt
|
16.2 KB
|
|
034 LaTeX Markdown and Generating Data with Numpy.mp4
|
81.0 MB
|
|
035 Understanding the Power Rule & Creating Charts with Subplots.en_US.srt
|
17.0 KB
|
|
035 Understanding the Power Rule & Creating Charts with Subplots.mp4
|
109.5 MB
|
|
036 [Python] - Loops and the Gradient Descent Algorithm.en_US.srt
|
41.2 KB
|
|
037 [exercise] Python Loops Coding Exercise.zip
|
0.3 KB
|
|
037 [exercise_info] Python Loops Coding Exercise.html
|
15.9 KB
|
|
037 [exercise_solution] Python Loops Coding Exercise.zip
|
0.3 KB
|
|
037 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).en_US.srt
|
40.5 KB
|
|
037 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4
|
468.5 MB
|
|
038 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).en_US.srt
|
31.6 KB
|
|
038 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4
|
317.0 MB
|
|
039 Understanding the Learning Rate.en_US.srt
|
35.5 KB
|
|
039 Understanding the Learning Rate.mp4
|
294.2 MB
|
|
040 How to Create 3-Dimensional Charts.en_US.srt
|
24.6 KB
|
|
040 How to Create 3-Dimensional Charts.mp4
|
308.6 MB
|
|
041 Understanding Partial Derivatives and How to use SymPy.en_US.srt
|
19.2 KB
|
|
041 Understanding Partial Derivatives and How to use SymPy.mp4
|
202.7 MB
|
|
042 Implementing Batch Gradient Descent with SymPy.en_US.srt
|
12.3 KB
|
|
042 Implementing Batch Gradient Descent with SymPy.mp4
|
123.2 MB
|
|
043 [Python] - Loops and Performance Considerations.en_US.srt
|
17.1 KB
|
|
043 [Python] - Loops and Performance Considerations.mp4
|
215.6 MB
|
|
044 Reshaping and Slicing N-Dimensional Arrays.en_US.srt
|
21.7 KB
|
|
044 Reshaping and Slicing N-Dimensional Arrays.mp4
|
176.5 MB
|
|
045 Concatenating Numpy Arrays.en_US.srt
|
8.5 KB
|
|
045 Concatenating Numpy Arrays.mp4
|
89.3 MB
|
|
046 Introduction to the Mean Squared Error (MSE).en_US.srt
|
12.0 KB
|
|
046 Introduction to the Mean Squared Error (MSE).mp4
|
78.8 MB
|
|
047 Transposing and Reshaping Arrays.en_US.srt
|
12.8 KB
|
|
047 Transposing and Reshaping Arrays.mp4
|
106.6 MB
|
|
048 Implementing a MSE Cost Function.en_US.srt
|
12.8 KB
|
|
048 Implementing a MSE Cost Function.mp4
|
102.2 MB
|
|
049 Understanding Nested Loops and Plotting the MSE Function (Part 1).en_US.srt
|
13.2 KB
|
|
049 Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4
|
87.4 MB
|
|
050 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).en_US.srt
|
16.4 KB
|
|
050 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4
|
72.2 MB
|
|
051 Running Gradient Descent with a MSE Cost Function.en_US.srt
|
21.0 KB
|
|
051 Running Gradient Descent with a MSE Cost Function.mp4
|
136.1 MB
|
|
052 Visualising the Optimisation on a 3D Surface.en_US.srt
|
10.2 KB
|
|
052 Visualising the Optimisation on a 3D Surface.mp4
|
92.5 MB
|
|
053 03-Gradient-Descent.ipynb.zip
|
1.2 MB
|
|
053 Download the Complete Notebook Here.html
|
0.7 KB
|
|
054 Any Feedback on this Section_.html
|
1.0 KB
|
|
/01 Introduction to the Course/
|
|
001 What is Machine Learning_.mp4
|
33.9 MB
|
|
002 What is Data Science_.en_US.srt
|
5.5 KB
|
|
002 What is Data Science_.mp4
|
75.1 MB
|
|
003 Download the Syllabus.html
|
2.2 KB
|
|
003 ML-Data-Science-Syllabus.pdf
|
106.5 KB
|
|
004 App-Brewery-Cornell-Notes-Template.txt
|
0.1 KB
|
|
004 Top Tips for Succeeding on this Course.html
|
2.8 KB
|
|
005 Course Resources List.html
|
1.8 KB
|
|
001 What is Machine Learning_.en_US.srt
|
6.6 KB
|
|
/02 Predict Movie Box Office Revenue with Linear Regression/
|
|
006 Course-Resources.txt
|
0.1 KB
|
|
006 Introduction to Linear Regression & Specifying the Problem.en_US.srt
|
8.3 KB
|
|
006 Introduction to Linear Regression & Specifying the Problem.mp4
|
40.7 MB
|
|
007 cost-revenue-dirty.csv
|
383.7 KB
|
|
007 Gather & Clean the Data.en_US.srt
|
13.2 KB
|
|
007 Gather & Clean the Data.mp4
|
72.4 MB
|
|
007 The-Numbers-Movie-Budgets.txt
|
0.0 KB
|
|
008 cost-revenue-clean.csv
|
93.0 KB
|
|
008 Explore & Visualise the Data with Python.en_US.srt
|
29.3 KB
|
|
008 Explore & Visualise the Data with Python.mp4
|
197.9 MB
|
|
008 Try-Jupyter-in-your-Browser.txt
|
0.0 KB
|
|
009 01-Linear-Regression-checkpoint.ipynb.zip
|
38.5 KB
|
|
009 The Intuition behind the Linear Regression Model.en_US.srt
|
10.3 KB
|
|
009 The Intuition behind the Linear Regression Model.mp4
|
20.4 MB
|
|
010 Analyse and Evaluate the Results.en_US.srt
|
21.3 KB
|
|
010 Analyse and Evaluate the Results.mp4
|
149.1 MB
|
|
011 01-Linear-Regression-complete.ipynb.zip
|
77.1 KB
|
|
011 Download the Complete Notebook Here.html
|
0.7 KB
|
|
012 Join the Student Community.html
|
1.4 KB
|
|
013 Any Feedback on this Section_.html
|
1.0 KB
|
|
/03 Python Programming for Data Science and Machine Learning/
|
|
014 Course-Resources.txt
|
0.1 KB
|
|
014 Windows Users - Install Anaconda.en_US.srt
|
8.4 KB
|
|
014 Windows Users - Install Anaconda.mp4
|
61.0 MB
|
|
015 Course-Resources.txt
|
0.1 KB
|
|
015 Mac Users - Install Anaconda.en_US.srt
|
7.7 KB
|
|
015 Mac Users - Install Anaconda.mp4
|
85.3 MB
|
|
016 Does LSD Make You Better at Maths_.en_US.srt
|
7.0 KB
|
|
016 Does LSD Make You Better at Maths_.mp4
|
70.2 MB
|
|
017 12-Rules-to-Learn-to-Code.pdf
|
2.4 MB
|
|
017 Download the 12 Rules to Learn to Code.html
|
1.8 KB
|
|
018 [Python] - Variables and Types.en_US.srt
|
15.7 KB
|
|
018 [Python] - Variables and Types.mp4
|
88.4 MB
|
|
019 [exercise] Python Variable Coding Exercise.zip
|
0.2 KB
|
|
019 [exercise_info] Python Variable Coding Exercise.html
|
1.9 KB
|
|
019 [exercise_solution] Python Variable Coding Exercise.zip
|
0.2 KB
|
|
019 [Python] - Lists and Arrays.en_US.srt
|
11.5 KB
|
|
019 [Python] - Lists and Arrays.mp4
|
63.9 MB
|
|
020 [exercise] Python Lists Coding Exercise.zip
|
0.2 KB
|
|
020 [exercise_info] Python Lists Coding Exercise.html
|
2.0 KB
|
|
020 [exercise_solution] Python Lists Coding Exercise.zip
|
0.2 KB
|
|
020 [Python & Pandas] - Dataframes and Series.en_US.srt
|
26.6 KB
|
|
020 [Python & Pandas] - Dataframes and Series.mp4
|
213.5 MB
|
|
020 lsd-math-score-data.csv
|
0.2 KB
|
|
021 [Python] - Module Imports.en_US.srt
|
34.2 KB
|
|
021 [Python] - Module Imports.mp4
|
366.5 MB
|
|
022 [Python] - Functions - Part 1_ Defining and Calling Functions.en_US.srt
|
10.0 KB
|
|
022 [Python] - Functions - Part 1_ Defining and Calling Functions.mp4
|
49.3 MB
|
|
023 [exercise] Python Functions Coding Exercise - Part 1.zip
|
0.3 KB
|
|
023 [exercise_info] Python Functions Coding Exercise - Part 1.html
|
1.7 KB
|
|
023 [exercise_solution] Python Functions Coding Exercise - Part 1.zip
|
0.3 KB
|
|
023 [Python] - Functions - Part 2_ Arguments & Parameters.en_US.srt
|
19.7 KB
|
|
023 [Python] - Functions - Part 2_ Arguments & Parameters.mp4
|
198.9 MB
|
|
024 [exercise] Python Functions Coding Exercise - Part 2.zip
|
0.3 KB
|
|
024 [exercise_info] Python Functions Coding Exercise - Part 2.html
|
1.4 KB
|
|
024 [exercise_solution] Python Functions Coding Exercise - Part 2.zip
|
0.3 KB
|
|
024 [Python] - Functions - Part 3_ Results & Return Values.en_US.srt
|
15.7 KB
|
|
024 [Python] - Functions - Part 3_ Results & Return Values.mp4
|
98.9 MB
|
|
025 [exercise] Python Functions Coding Exercise - Part 3.zip
|
0.2 KB
|
|
025 [exercise_info] Python Functions Coding Exercise - Part 3.html
|
1.5 KB
|
|
025 [exercise_solution] Python Functions Coding Exercise - Part 3.zip
|
0.2 KB
|
|
025 [Python] - Objects - Understanding Attributes and Methods.en_US.srt
|
28.2 KB
|
|
025 [Python] - Objects - Understanding Attributes and Methods.mp4
|
245.9 MB
|
|
026 How to Make Sense of Python Documentation for Data Visualisation.en_US.srt
|
25.1 KB
|
|
026 How to Make Sense of Python Documentation for Data Visualisation.mp4
|
277.9 MB
|
|
027 Working with Python Objects to Analyse Data.en_US.srt
|
25.7 KB
|
|
027 Working with Python Objects to Analyse Data.mp4
|
271.4 MB
|
|
028 [Python] - Tips, Code Style and Naming Conventions.en_US.srt
|
15.9 KB
|
|
028 [Python] - Tips, Code Style and Naming Conventions.mp4
|
137.1 MB
|
|
029 02-Python-Intro.ipynb.zip
|
37.3 KB
|
|
029 Download the Complete Notebook Here.html
|
0.7 KB
|
|
030 Any Feedback on this Section_.html
|
1.0 KB
|
|
/05 Predict House Prices with Multivariable Linear Regression/
|
|
055 Course-Resources.txt
|
0.1 KB
|
|
055 Defining the Problem.en_US.srt
|
6.1 KB
|
|
055 Defining the Problem.mp4
|
60.6 MB
|
|
056 Gathering the Boston House Price Data.en_US.srt
|
8.2 KB
|
|
056 Gathering the Boston House Price Data.mp4
|
95.5 MB
|
|
057 Clean and Explore the Data (Part 1)_ Understand the Nature of the Dataset.en_US.srt
|
14.8 KB
|
|
057 Clean and Explore the Data (Part 1)_ Understand the Nature of the Dataset.mp4
|
104.2 MB
|
|
058 Clean and Explore the Data (Part 2)_ Find Missing Values.en_US.srt
|
17.7 KB
|
|
058 Clean and Explore the Data (Part 2)_ Find Missing Values.mp4
|
218.0 MB
|
|
059 Visualising Data (Part 1)_ Historams, Distributions & Outliers.en_US.srt
|
13.5 KB
|
|
059 Visualising Data (Part 1)_ Historams, Distributions & Outliers.mp4
|
75.4 MB
|
|
060 Visualising Data (Part 2)_ Seaborn and Probability Density Functions.en_US.srt
|
8.5 KB
|
|
060 Visualising Data (Part 2)_ Seaborn and Probability Density Functions.mp4
|
69.4 MB
|
|
061 Working with Index Data, Pandas Series, and Dummy Variables.en_US.srt
|
19.6 KB
|
|
061 Working with Index Data, Pandas Series, and Dummy Variables.mp4
|
205.1 MB
|
|
062 Understanding Descriptive Statistics_ the Mean vs the Median.en_US.srt
|
11.6 KB
|
|
062 Understanding Descriptive Statistics_ the Mean vs the Median.mp4
|
76.0 MB
|
|
063 Introduction to Correlation_ Understanding Strength & Direction.en_US.srt
|
8.0 KB
|
|
063 Introduction to Correlation_ Understanding Strength & Direction.mp4
|
21.4 MB
|
|
064 Calculating Correlations and the Problem posed by Multicollinearity.en_US.srt
|
16.9 KB
|
|
064 Calculating Correlations and the Problem posed by Multicollinearity.mp4
|
162.4 MB
|
|
065 Visualising Correlations with a Heatmap.en_US.srt
|
23.1 KB
|
|
065 Visualising Correlations with a Heatmap.mp4
|
200.8 MB
|
|
066 Techniques to Style Scatter Plots.en_US.srt
|
19.5 KB
|
|
066 Techniques to Style Scatter Plots.mp4
|
157.3 MB
|
|
067 A Note for the Next Lesson.html
|
1.0 KB
|
|
068 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.en_US.srt
|
27.2 KB
|
|
068 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4
|
350.7 MB
|
|
069 Understanding Multivariable Regression.en_US.srt
|
7.1 KB
|
|
069 Understanding Multivariable Regression.mp4
|
64.6 MB
|
|
070 How to Shuffle and Split Training & Testing Data.en_US.srt
|
10.9 KB
|
|
070 How to Shuffle and Split Training & Testing Data.mp4
|
87.4 MB
|
|
071 Running a Multivariable Regression.en_US.srt
|
9.3 KB
|
|
071 Running a Multivariable Regression.mp4
|
77.6 MB
|
|
072 How to Calculate the Model Fit with R-Squared.en_US.srt
|
4.2 KB
|
|
072 How to Calculate the Model Fit with R-Squared.mp4
|
40.4 MB
|
|
073 Introduction to Model Evaluation.en_US.srt
|
3.6 KB
|
|
073 Introduction to Model Evaluation.mp4
|
12.6 MB
|
|
074 Improving the Model by Transforming the Data.en_US.srt
|
20.4 KB
|
|
074 Improving the Model by Transforming the Data.mp4
|
149.4 MB
|
|
075 How to Interpret Coefficients using p-Values and Statistical Significance.en_US.srt
|
10.3 KB
|
|
075 How to Interpret Coefficients using p-Values and Statistical Significance.mp4
|
93.4 MB
|
|
076 Understanding VIF & Testing for Multicollinearity.en_US.srt
|
24.2 KB
|
|
076 Understanding VIF & Testing for Multicollinearity.mp4
|
172.6 MB
|
|
077 Model Simplification & Baysian Information Criterion.en_US.srt
|
21.9 KB
|
|
077 Model Simplification & Baysian Information Criterion.mp4
|
240.6 MB
|
|
078 How to Analyse and Plot Regression Residuals.en_US.srt
|
14.0 KB
|
|
078 How to Analyse and Plot Regression Residuals.mp4
|
48.9 MB
|
|
079 Residual Analysis (Part 1)_ Predicted vs Actual Values.en_US.srt
|
17.2 KB
|
|
079 Residual Analysis (Part 1)_ Predicted vs Actual Values.mp4
|
153.6 MB
|
|
080 Residual Analysis (Part 2)_ Graphing and Comparing Regression Residuals.en_US.srt
|
21.5 KB
|
|
080 Residual Analysis (Part 2)_ Graphing and Comparing Regression Residuals.mp4
|
186.9 MB
|
|
081 Making Predictions (Part 1)_ MSE & R-Squared.en_US.srt
|
22.4 KB
|
|
081 Making Predictions (Part 1)_ MSE & R-Squared.mp4
|
228.4 MB
|
|
082 Making Predictions (Part 2)_ Standard Deviation, RMSE, and Prediction Intervals.en_US.srt
|
14.0 KB
|
|
082 Making Predictions (Part 2)_ Standard Deviation, RMSE, and Prediction Intervals.mp4
|
122.2 MB
|
|
083 Build a Valuation Tool (Part 1)_ Working with Pandas Series & Numpy ndarrays.en_US.srt
|
19.5 KB
|
|
083 Build a Valuation Tool (Part 1)_ Working with Pandas Series & Numpy ndarrays.mp4
|
208.1 MB
|
|
084 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).en_US.srt
|
20.1 KB
|
|
084 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4
|
167.6 MB
|
|
085 [exercise] Python Conditional Statement Coding Exercise.zip
|
0.2 KB
|
|
085 [exercise_info] Python Conditional Statement Coding Exercise.html
|
2.6 KB
|
|
085 [exercise_solution] Python Conditional Statement Coding Exercise.zip
|
0.2 KB
|
|
085 Build a Valuation Tool (Part 3)_ Docstrings & Creating your own Python Module.en_US.srt
|
26.7 KB
|
|
085 Build a Valuation Tool (Part 3)_ Docstrings & Creating your own Python Module.mp4
|
176.1 MB
|
|
086 04-Multivariable-Regression.ipynb.zip
|
3.7 MB
|
|
086 04-Valuation-Tool.ipynb.zip
|
3.0 KB
|
|
086 boston-valuation.py
|
3.1 KB
|
|
086 Download the Complete Notebook Here.html
|
0.7 KB
|
|
087 Any Feedback on this Section_.html
|
1.0 KB
|
|
/06 Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails_ Part 1/
|
|
088 Course-Resources.txt
|
0.1 KB
|
|
088 How to Translate a Business Problem into a Machine Learning Problem.en_US.srt
|
9.2 KB
|
|
088 How to Translate a Business Problem into a Machine Learning Problem.mp4
|
60.2 MB
|
|
089 Gathering Email Data and Working with Archives & Text Editors.en_US.srt
|
13.4 KB
|
|
089 Gathering Email Data and Working with Archives & Text Editors.mp4
|
195.9 MB
|
|
089 SpamData.zip
|
22.3 MB
|
|
090 How to Add the Lesson Resources to the Project.en_US.srt
|
4.7 KB
|
|
090 How to Add the Lesson Resources to the Project.mp4
|
36.8 MB
|
|
091 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.en_US.srt
|
5.8 KB
|
|
091 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4
|
59.9 MB
|
|
092 Basic Probability.en_US.srt
|
5.0 KB
|
|
092 Basic Probability.mp4
|
16.3 MB
|
|
093 Joint & Conditional Probability.en_US.srt
|
18.8 KB
|
|
093 Joint & Conditional Probability.mp4
|
177.5 MB
|
|
094 Bayes Theorem.en_US.srt
|
14.4 KB
|
|
094 Bayes Theorem.mp4
|
99.1 MB
|
|
095 Reading Files (Part 1)_ Absolute Paths and Relative Paths.en_US.srt
|
11.2 KB
|
|
095 Reading Files (Part 1)_ Absolute Paths and Relative Paths.mp4
|
74.6 MB
|
|
096 Reading Files (Part 2)_ Stream Objects and Email Structure.en_US.srt
|
13.8 KB
|
|
096 Reading Files (Part 2)_ Stream Objects and Email Structure.mp4
|
175.5 MB
|
|
097 Extracting the Text in the Email Body.en_US.srt
|
5.7 KB
|
|
097 Extracting the Text in the Email Body.mp4
|
57.9 MB
|
|
098 [Python] - Generator Functions & the yield Keyword.en_US.srt
|
21.2 KB
|
|
098 [Python] - Generator Functions & the yield Keyword.mp4
|
207.3 MB
|
|
099 Create a Pandas DataFrame of Email Bodies.en_US.srt
|
6.8 KB
|
|
099 Create a Pandas DataFrame of Email Bodies.mp4
|
71.2 MB
|
|
100 Cleaning Data (Part 1)_ Check for Empty Emails & Null Entries.en_US.srt
|
16.9 KB
|
|
100 Cleaning Data (Part 1)_ Check for Empty Emails & Null Entries.mp4
|
201.2 MB
|
|
101 Cleaning Data (Part 2)_ Working with a DataFrame Index.en_US.srt
|
8.7 KB
|
|
101 Cleaning Data (Part 2)_ Working with a DataFrame Index.mp4
|
89.0 MB
|
|
102 Saving a JSON File with Pandas.en_US.srt
|
6.6 KB
|
|
102 Saving a JSON File with Pandas.mp4
|
85.2 MB
|
|
103 Data Visualisation (Part 1)_ Pie Charts.en_US.srt
|
15.3 KB
|
|
103 Data Visualisation (Part 1)_ Pie Charts.mp4
|
137.4 MB
|
|
104 Data Visualisation (Part 2)_ Donut Charts.en_US.srt
|
9.1 KB
|
|
104 Data Visualisation (Part 2)_ Donut Charts.mp4
|
77.0 MB
|
|
105 Introduction to Natural Language Processing (NLP).en_US.srt
|
7.8 KB
|
|
105 Introduction to Natural Language Processing (NLP).mp4
|
61.0 MB
|
|
106 Tokenizing, Removing Stop Words and the Python Set Data Structure.en_US.srt
|
18.0 KB
|
|
106 Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4
|
144.8 MB
|
|
107 Word Stemming & Removing Punctuation.en_US.srt
|
10.1 KB
|
|
107 Word Stemming & Removing Punctuation.mp4
|
87.7 MB
|
|
108 Removing HTML tags with BeautifulSoup.en_US.srt
|
10.5 KB
|
|
108 Removing HTML tags with BeautifulSoup.mp4
|
175.6 MB
|
|
109 Creating a Function for Text Processing.en_US.srt
|
8.2 KB
|
|
109 Creating a Function for Text Processing.mp4
|
46.9 MB
|
|
110 A Note for the Next Lesson.html
|
1.0 KB
|
|
111 Advanced Subsetting on DataFrames_ the apply() Function.en_US.srt
|
12.8 KB
|
|
111 Advanced Subsetting on DataFrames_ the apply() Function.mp4
|
102.7 MB
|
|
112 [Python] - Logical Operators to Create Subsets and Indices.en_US.srt
|
15.2 KB
|
|
112 [Python] - Logical Operators to Create Subsets and Indices.mp4
|
106.2 MB
|
|
113 Word Clouds & How to install Additional Python Packages.en_US.srt
|
11.4 KB
|
|
113 Word Clouds & How to install Additional Python Packages.mp4
|
96.9 MB
|
|
114 Creating your First Word Cloud.en_US.srt
|
13.0 KB
|
|
114 Creating your First Word Cloud.mp4
|
160.0 MB
|
|
115 Styling the Word Cloud with a Mask.en_US.srt
|
15.8 KB
|
|
115 Styling the Word Cloud with a Mask.mp4
|
193.6 MB
|
|
116 Solving the Hamlet Challenge.en_US.srt
|
5.7 KB
|
|
116 Solving the Hamlet Challenge.mp4
|
97.1 MB
|
|
117 Styling Word Clouds with Custom Fonts.en_US.srt
|
14.0 KB
|
|
117 Styling Word Clouds with Custom Fonts.mp4
|
193.1 MB
|
|
118 Create the Vocabulary for the Spam Classifier.en_US.srt
|
16.8 KB
|
|
118 Create the Vocabulary for the Spam Classifier.mp4
|
130.1 MB
|
|
119 Coding Challenge_ Check for Membership in a Collection.en_US.srt
|
5.8 KB
|
|
119 Coding Challenge_ Check for Membership in a Collection.mp4
|
20.9 MB
|
|
120 Coding Challenge_ Find the Longest Email.en_US.srt
|
7.1 KB
|
|
120 Coding Challenge_ Find the Longest Email.mp4
|
80.3 MB
|
|
121 Sparse Matrix (Part 1)_ Split the Training and Testing Data.en_US.srt
|
14.4 KB
|
|
121 Sparse Matrix (Part 1)_ Split the Training and Testing Data.mp4
|
125.3 MB
|
|
122 Sparse Matrix (Part 2)_ Data Munging with Nested Loops.en_US.srt
|
21.1 KB
|
|
122 Sparse Matrix (Part 2)_ Data Munging with Nested Loops.mp4
|
168.3 MB
|
|
123 Sparse Matrix (Part 3)_ Using groupby() and Saving .txt Files.en_US.srt
|
11.5 KB
|
|
123 Sparse Matrix (Part 3)_ Using groupby() and Saving .txt Files.mp4
|
116.2 MB
|
|
124 Coding Challenge Solution_ Preparing the Test Data.en_US.srt
|
4.3 KB
|
|
124 Coding Challenge Solution_ Preparing the Test Data.mp4
|
39.4 MB
|
|
125 Checkpoint_ Understanding the Data.en_US.srt
|
12.9 KB
|
|
125 Checkpoint_ Understanding the Data.mp4
|
140.9 MB
|
|
126 06-Bayes-Classifier-Pre-Processing.ipynb.zip
|
1.0 MB
|
|
126 Download the Complete Notebook Here.html
|
0.7 KB
|
|
127 Any Feedback on this Section_.html
|
1.0 KB
|
|
/07 Train a Naive Bayes Classifier to Create a Spam Filter_ Part 2/
|
|
128 Course-Resources.txt
|
0.1 KB
|
|
128 Setting up the Notebook and Understanding Delimiters in a Dataset.en_US.srt
|
11.0 KB
|
|
128 Setting up the Notebook and Understanding Delimiters in a Dataset.mp4
|
104.0 MB
|
|
128 SpamData.zip
|
23.4 MB
|
|
129 Create a Full Matrix.en_US.srt
|
21.4 KB
|
|
129 Create a Full Matrix.mp4
|
210.2 MB
|
|
130 Count the Tokens to Train the Naive Bayes Model.en_US.srt
|
18.1 KB
|
|
130 Count the Tokens to Train the Naive Bayes Model.mp4
|
116.8 MB
|
|
131 Sum the Tokens across the Spam and Ham Subsets.en_US.srt
|
7.7 KB
|
|
131 Sum the Tokens across the Spam and Ham Subsets.mp4
|
41.6 MB
|
|
132 Calculate the Token Probabilities and Save the Trained Model.en_US.srt
|
9.3 KB
|
|
132 Calculate the Token Probabilities and Save the Trained Model.mp4
|
74.0 MB
|
|
133 Coding Challenge_ Prepare the Test Data.en_US.srt
|
5.1 KB
|
|
133 Coding Challenge_ Prepare the Test Data.mp4
|
56.3 MB
|
|
134 07-Bayes-Classifier-Training.ipynb.zip
|
6.0 KB
|
|
134 Download the Complete Notebook Here.html
|
0.7 KB
|
|
135 Any Feedback on this Section_.html
|
1.0 KB
|
|
/08 Test and Evaluate a Naive Bayes Classifier_ Part 3/
|
|
136 Course-Resources.txt
|
0.1 KB
|
|
136 Set up the Testing Notebook.en_US.srt
|
3.8 KB
|
|
136 Set up the Testing Notebook.mp4
|
38.7 MB
|
|
136 SpamData.zip
|
23.9 MB
|
|
137 Joint Conditional Probability (Part 1)_ Dot Product.en_US.srt
|
12.5 KB
|
|
137 Joint Conditional Probability (Part 1)_ Dot Product.mp4
|
88.8 MB
|
|
138 Joint Conditional Probablity (Part 2)_ Priors.en_US.srt
|
10.4 KB
|
|
138 Joint Conditional Probablity (Part 2)_ Priors.mp4
|
95.1 MB
|
|
139 Making Predictions_ Comparing Joint Probabilities.en_US.srt
|
9.5 KB
|
|
139 Making Predictions_ Comparing Joint Probabilities.mp4
|
71.4 MB
|
|
140 The Accuracy Metric.en_US.srt
|
7.5 KB
|
|
140 The Accuracy Metric.mp4
|
48.7 MB
|
|
141 Visualising the Decision Boundary.en_US.srt
|
33.0 KB
|
|
141 Visualising the Decision Boundary.mp4
|
290.8 MB
|
|
142 False Positive vs False Negatives.en_US.srt
|
12.6 KB
|
|
142 False Positive vs False Negatives.mp4
|
75.1 MB
|
|
143 The Recall Metric.en_US.srt
|
6.4 KB
|
|
143 The Recall Metric.mp4
|
33.5 MB
|
|
144 The Precision Metric.en_US.srt
|
9.4 KB
|
|
144 The Precision Metric.mp4
|
64.5 MB
|
|
145 The F-score or F1 Metric.en_US.srt
|
4.4 KB
|
|
145 The F-score or F1 Metric.mp4
|
30.1 MB
|
|
146 A Naive Bayes Implementation using SciKit Learn.en_US.srt
|
33.1 KB
|
|
146 A Naive Bayes Implementation using SciKit Learn.mp4
|
283.7 MB
|
|
147 07-Bayes-Classifier-Testing-Inference-Evaluation.ipynb.zip
|
248.9 KB
|
|
147 08-Naive-Bayes-with-scikit-learn.ipynb.zip
|
13.6 KB
|
|
147 Download the Complete Notebook Here.html
|
0.7 KB
|
|
148 Any Feedback on this Section_.html
|
1.0 KB
|
|
/09 Introduction to Neural Networks and How to Use Pre-Trained Models/
|
|
149 Course-Resources.txt
|
0.1 KB
|
|
149 The Human Brain and the Inspiration for Artificial Neural Networks.en_US.srt
|
10.7 KB
|
|
149 The Human Brain and the Inspiration for Artificial Neural Networks.mp4
|
63.5 MB
|
|
150 Layers, Feature Generation and Learning.en_US.srt
|
27.4 KB
|
|
150 Layers, Feature Generation and Learning.mp4
|
248.7 MB
|
|
151 Costs and Disadvantages of Neural Networks.en_US.srt
|
19.0 KB
|
|
151 Costs and Disadvantages of Neural Networks.mp4
|
153.0 MB
|
|
152 Preprocessing Image Data and How RGB Works.en_US.srt
|
15.9 KB
|
|
152 Preprocessing Image Data and How RGB Works.mp4
|
135.9 MB
|
|
152 TF-Keras-Classification-Images.zip
|
513.1 KB
|
|
153 Importing Keras Models and the Tensorflow Graph.en_US.srt
|
11.3 KB
|
|
153 Importing Keras Models and the Tensorflow Graph.mp4
|
76.9 MB
|
|
154 Making Predictions using InceptionResNet.en_US.srt
|
18.6 KB
|
|
154 Making Predictions using InceptionResNet.mp4
|
190.0 MB
|
|
155 Coding Challenge Solution_ Using other Keras Models.en_US.srt
|
12.8 KB
|
|
155 Coding Challenge Solution_ Using other Keras Models.mp4
|
162.5 MB
|
|
156 09-Neural-Nets-Pretrained-Image-Classification.ipynb.zip
|
585.6 KB
|
|
156 Download the Complete Notebook Here.html
|
0.7 KB
|
|
157 Any Feedback on this Section_.html
|
1.0 KB
|
|
/10 Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/
|
|
158 Course-Resources.txt
|
0.1 KB
|
|
158 Solving a Business Problem with Image Classification.en_US.srt
|
4.9 KB
|
|
158 Solving a Business Problem with Image Classification.mp4
|
39.4 MB
|
|
159 Installing Tensorflow and Keras for Jupyter.en_US.srt
|
6.4 KB
|
|
159 Installing Tensorflow and Keras for Jupyter.mp4
|
61.3 MB
|
|
160 Gathering the CIFAR 10 Dataset.en_US.srt
|
6.0 KB
|
|
160 Gathering the CIFAR 10 Dataset.mp4
|
37.1 MB
|
|
161 Exploring the CIFAR Data.en_US.srt
|
17.9 KB
|
|
161 Exploring the CIFAR Data.mp4
|
158.4 MB
|
|
162 Pre-processing_ Scaling Inputs and Creating a Validation Dataset.en_US.srt
|
19.6 KB
|
|
162 Pre-processing_ Scaling Inputs and Creating a Validation Dataset.mp4
|
108.7 MB
|
|
163 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.en_US.srt
|
18.4 KB
|
|
163 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4
|
146.4 MB
|
|
164 Interacting with the Operating System and the Python Try-Catch Block.en_US.srt
|
23.4 KB
|
|
164 Interacting with the Operating System and the Python Try-Catch Block.mp4
|
203.1 MB
|
|
165 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.en_US.srt
|
13.9 KB
|
|
165 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4
|
152.7 MB
|
|
166 Use Regularisation to Prevent Overfitting_ Early Stopping & Dropout Techniques.en_US.srt
|
27.9 KB
|
|
166 Use Regularisation to Prevent Overfitting_ Early Stopping & Dropout Techniques.mp4
|
301.0 MB
|
|
167 Use the Model to Make Predictions.en_US.srt
|
32.5 KB
|
|
167 Use the Model to Make Predictions.mp4
|
314.6 MB
|
|
168 Model Evaluation and the Confusion Matrix.en_US.srt
|
10.6 KB
|
|
168 Model Evaluation and the Confusion Matrix.mp4
|
85.8 MB
|
|
169 Model Evaluation and the Confusion Matrix.en_US.srt
|
39.9 KB
|
|
169 Model Evaluation and the Confusion Matrix.mp4
|
384.2 MB
|
|
170 10-Neural-Nets-Keras-CIFAR10-Classification.ipynb.zip
|
123.0 KB
|
|
170 Download the Complete Notebook Here.html
|
0.7 KB
|
|
171 Any Feedback on this Section_.html
|
1.0 KB
|
|
/11 Use Tensorflow to Classify Handwritten Digits/
|
|
172 Course-Resources.txt
|
0.1 KB
|
|
172 What's coming up_.en_US.srt
|
2.5 KB
|
|
172 What's coming up_.mp4
|
8.0 MB
|
|
173 Getting the Data and Loading it into Numpy Arrays.en_US.srt
|
8.9 KB
|
|
173 Getting the Data and Loading it into Numpy Arrays.mp4
|
78.7 MB
|
|
173 MNIST.zip
|
15.5 MB
|
|
174 Data Exploration and Understanding the Structure of the Input Data.en_US.srt
|
6.4 KB
|
|
174 Data Exploration and Understanding the Structure of the Input Data.mp4
|
37.4 MB
|
|
175 Data Preprocessing_ One-Hot Encoding and Creating the Validation Dataset.en_US.srt
|
12.5 KB
|
|
175 Data Preprocessing_ One-Hot Encoding and Creating the Validation Dataset.mp4
|
92.8 MB
|
|
176 What is a Tensor_.en_US.srt
|
8.9 KB
|
|
176 What is a Tensor_.mp4
|
73.1 MB
|
|
177 Creating Tensors and Setting up the Neural Network Architecture.en_US.srt
|
28.6 KB
|
|
177 Creating Tensors and Setting up the Neural Network Architecture.mp4
|
215.1 MB
|
|
178 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.en_US.srt
|
13.9 KB
|
|
178 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4
|
89.0 MB
|
|
179 TensorFlow Sessions and Batching Data.en_US.srt
|
20.2 KB
|
|
179 TensorFlow Sessions and Batching Data.mp4
|
135.1 MB
|
|
180 Tensorboard Summaries and the Filewriter.en_US.srt
|
22.9 KB
|
|
180 Tensorboard Summaries and the Filewriter.mp4
|
195.6 MB
|
|
181 Understanding the Tensorflow Graph_ Nodes and Edges.en_US.srt
|
20.9 KB
|
|
181 Understanding the Tensorflow Graph_ Nodes and Edges.mp4
|
175.5 MB
|
|
182 Name Scoping and Image Visualisation in Tensorboard.en_US.srt
|
25.9 KB
|
|
182 Name Scoping and Image Visualisation in Tensorboard.mp4
|
93.0 MB
|
|
183 Different Model Architectures_ Experimenting with Dropout.en_US.srt
|
29.7 KB
|
|
183 Different Model Architectures_ Experimenting with Dropout.mp4
|
352.1 MB
|
|
184 Prediction and Model Evaluation.en_US.srt
|
18.6 KB
|
|
184 Prediction and Model Evaluation.mp4
|
170.2 MB
|
|
185 11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip
|
6.8 KB
|
|
185 Download the Complete Notebook Here.html
|
0.7 KB
|
|
186 Any Feedback on this Section_.html
|
1.0 KB
|
|
/12 Serving a Tensorflow Model through a Website/
|
|
187 What you'll make.en_US.srt
|
9.6 KB
|
|
187 What you'll make.mp4
|
67.5 MB
|
|
188 11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip
|
6.5 KB
|
|
188 Saving Tensorflow Models.en_US.srt
|
20.9 KB
|
|
188 Saving Tensorflow Models.mp4
|
201.1 MB
|
|
189 12-TF-SavedModel-Export-Completed.ipynb.zip
|
6.3 KB
|
|
189 Loading a SavedModel.en_US.srt
|
25.8 KB
|
|
189 Loading a SavedModel.mp4
|
151.9 MB
|
|
189 MNIST-Model-Load-Files.zip
|
3.0 MB
|
|
190 Converting a Model to Tensorflow.js.en_US.srt
|
20.8 KB
|
|
190 Converting a Model to Tensorflow.js.mp4
|
179.9 MB
|
|
190 TFJS.zip
|
1.6 MB
|
|
191 Introducing the Website Project and Tooling.en_US.srt
|
17.0 KB
|
|
191 Introducing the Website Project and Tooling.mp4
|
131.5 MB
|
|
191 math-garden-stub.zip
|
45.1 KB
|
|
192 HTML and CSS Styling.en_US.srt
|
37.4 KB
|
|
192 HTML and CSS Styling.mp4
|
256.5 MB
|
|
193 Loading a Tensorflow.js Model and Starting your own Server.en_US.srt
|
36.7 KB
|
|
193 Loading a Tensorflow.js Model and Starting your own Server.mp4
|
336.9 MB
|
|
193 x-test0-ylabel7.txt
|
4.7 KB
|
|
193 x-test1-ylabel2.txt
|
4.7 KB
|
|
193 x-test2-ylabel1.txt
|
4.7 KB
|
|
194 Adding a Favicon.en_US.srt
|
7.3 KB
|
|
194 Adding a Favicon.mp4
|
44.2 MB
|
|
195 Styling an HTML Canvas.en_US.srt
|
38.9 KB
|
|
195 Styling an HTML Canvas.mp4
|
327.6 MB
|
|
196 Drawing on an HTML Canvas.en_US.srt
|
37.2 KB
|
|
196 Drawing on an HTML Canvas.mp4
|
305.1 MB
|
|
197 Data Pre-Processing for Tensorflow.js.en_US.srt
|
11.8 KB
|
|
197 Data Pre-Processing for Tensorflow.js.mp4
|
44.4 MB
|
|
198 Introduction to OpenCV.en_US.srt
|
37.8 KB
|
|
198 Introduction to OpenCV.mp4
|
453.3 MB
|
|
198 math-garden-stub-12.12-checkpoint.zip
|
4.3 MB
|
|
199 Resizing and Adding Padding to Images.en_US.srt
|
26.4 KB
|
|
199 Resizing and Adding Padding to Images.mp4
|
300.2 MB
|
|
200 Calculating the Centre of Mass and Shifting the Image.en_US.srt
|
34.9 KB
|
|
200 Calculating the Centre of Mass and Shifting the Image.mp4
|
425.6 MB
|
|
201 Making a Prediction from a Digit drawn on the HTML Canvas.en_US.srt
|
16.8 KB
|
|
201 Making a Prediction from a Digit drawn on the HTML Canvas.mp4
|
190.6 MB
|
|
202 Adding the Game Logic.en_US.srt
|
37.4 KB
|
|
202 Adding the Game Logic.mp4
|
299.9 MB
|
|
202 math-garden-stub-complete.zip
|
4.3 MB
|
|
203 Publish and Share your Website!.en_US.srt
|
9.4 KB
|
|
203 Publish and Share your Website!.mp4
|
62.4 MB
|
|
204 Any Feedback on this Section_.html
|
1.0 KB
|
|
/13 Next Steps/
|
|
205 Where next_.html
|
4.7 KB
|
|
206 What Modules Do You Want to See_.html
|
0.9 KB
|
|
207 Stay in Touch!.html
|
1.6 KB
|
|
Total files 452
|