FileMood

Download 2021 Python for Data Science & Machine Learning from A-Z

2021 Python for Data Science Machine Learning from

Name

2021 Python for Data Science & Machine Learning from A-Z

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

7.9 GB

Total Files

429

Last Seen

2025-07-14 23:45

Hash

D03029C9B730E4036A994E7DA3B86E143FF93D69

/19. PCA/

7. PCA - Image Compression.mp4

262.1 MB

7. PCA - Image Compression.srt

40.3 KB

9. PCA - Biplot and the Screen Plot.mp4

142.2 MB

9. PCA - Biplot and the Screen Plot.srt

27.0 KB

8. PCA Data Preprocessing.srt

21.6 KB

4. PCA Algorithm Steps (Mathematics).srt

19.0 KB

2. What is PCA.srt

14.9 KB

10. PCA - Feature Scaling and Screen Plot.srt

14.7 KB

12. PCA - Visualization.srt

11.2 KB

11. PCA - Supervised vs Unsupervised.srt

7.3 KB

1. PCA Section Overview.srt

7.2 KB

5. Covariance Matrix vs SVD.srt

6.7 KB

3. PCA Drawbacks.srt

5.0 KB

6. PCA - Main Applications.srt

4.0 KB

8. PCA Data Preprocessing.mp4

126.3 MB

10. PCA - Feature Scaling and Screen Plot.mp4

71.5 MB

12. PCA - Visualization.mp4

71.3 MB

4. PCA Algorithm Steps (Mathematics).mp4

60.5 MB

2. What is PCA.mp4

49.6 MB

5. Covariance Matrix vs SVD.mp4

40.6 MB

11. PCA - Supervised vs Unsupervised.mp4

37.5 MB

1. PCA Section Overview.mp4

33.3 MB

3. PCA Drawbacks.mp4

20.4 MB

6. PCA - Main Applications.mp4

10.5 MB

/

TutsNode.com.txt

0.1 KB

[TGx]Downloaded from torrentgalaxy.to .txt

0.6 KB

/.../6. NumPy Data Analysis/

1.1 NumPy Basics.pdf

79.0 KB

1. Intro NumPy Array Data Types.srt

18.7 KB

3. NumPy Arrays Basics.srt

17.2 KB

4. NumPy Array Indexing.srt

14.4 KB

2. NumPy Arrays.srt

11.4 KB

5. NumPy Array Computations.srt

8.8 KB

6. Broadcasting.srt

6.5 KB

3. NumPy Arrays Basics.mp4

41.9 MB

4. NumPy Array Indexing.mp4

36.4 MB

1. Intro NumPy Array Data Types.mp4

36.4 MB

2. NumPy Arrays.mp4

33.9 MB

6. Broadcasting.mp4

18.7 MB

5. NumPy Array Computations.mp4

17.8 MB

/.pad/

0

1.9 KB

1

0.4 KB

2

0.0 KB

3

0.3 KB

4

0.0 KB

5

2.1 KB

6

0.0 KB

7

0.1 KB

8

373.6 KB

9

845.8 KB

10

61.9 KB

11

568.3 KB

12

34.5 KB

13

473.1 KB

14

651.7 KB

15

401.2 KB

16

861.2 KB

17

459.9 KB

18

79.5 KB

19

301.4 KB

20

29.4 KB

21

730.9 KB

22

5.3 KB

23

26.7 KB

24

250.1 KB

25

61.8 KB

26

760.4 KB

27

619.4 KB

28

916.1 KB

29

764.5 KB

30

206.2 KB

31

550.4 KB

32

22.0 KB

33

200.4 KB

34

1.0 MB

35

83.6 KB

36

965.0 KB

37

948.1 KB

38

782.2 KB

39

839.8 KB

40

869.8 KB

41

1.0 MB

42

378.8 KB

43

439.9 KB

44

40.6 KB

45

512.6 KB

46

431.0 KB

47

604.4 KB

48

283.5 KB

49

768.9 KB

50

128.1 KB

51

407.6 KB

52

488.3 KB

53

463.0 KB

54

523.1 KB

55

638.2 KB

56

150.6 KB

57

272.0 KB

58

778.6 KB

59

977.2 KB

60

65.3 KB

61

177.9 KB

62

11.8 KB

63

1.0 MB

64

1.0 MB

65

22.7 KB

66

350.3 KB

67

408.3 KB

68

270.9 KB

69

780.5 KB

70

841.5 KB

71

963.5 KB

72

221.9 KB

73

587.3 KB

74

721.3 KB

75

956.0 KB

76

270.2 KB

77

341.2 KB

78

405.7 KB

79

615.3 KB

80

321.4 KB

81

698.6 KB

82

241.9 KB

83

351.2 KB

84

208.6 KB

85

534.6 KB

86

538.6 KB

87

575.8 KB

88

797.4 KB

89

832.7 KB

90

470.6 KB

91

546.8 KB

92

594.4 KB

93

606.3 KB

94

81.0 KB

95

368.7 KB

96

594.9 KB

97

874.5 KB

98

561.9 KB

99

412.5 KB

100

413.2 KB

101

494.4 KB

102

4.2 KB

103

369.3 KB

104

451.6 KB

105

319.7 KB

106

450.2 KB

107

45.9 KB

108

541.2 KB

109

592.0 KB

110

796.9 KB

111

980.7 KB

112

327.6 KB

113

591.0 KB

114

655.1 KB

115

855.8 KB

116

618.1 KB

117

684.5 KB

118

146.2 KB

119

146.5 KB

120

883.4 KB

121

47.0 KB

122

67.6 KB

123

567.8 KB

124

710.4 KB

125

970.4 KB

126

51.7 KB

127

75.7 KB

128

383.4 KB

129

664.3 KB

130

931.8 KB

131

293.8 KB

132

453.7 KB

133

512.3 KB

134

113.8 KB

135

994.3 KB

136

104.2 KB

137

779.4 KB

138

956.6 KB

/.../16. Ensemble Learning and Random Forests/

6. Implementing Random Forests from scratch Part 1.mp4

212.4 MB

6. Implementing Random Forests from scratch Part 1.srt

30.8 KB

13. AdaBoost Part 2.srt

21.4 KB

2. What is Ensemble Learning.srt

17.8 KB

3. What is Bootstrap Sampling.srt

11.4 KB

5. Out-of-Bag Error (OOB Error).srt

10.2 KB

7. Implementing Random Forests from scratch Part 2.srt

8.5 KB

10. Random Forests Pros and Cons.srt

8.0 KB

4. What is Bagging.srt

7.9 KB

11. What is Boosting.srt

7.0 KB

9. Random Forests Hyper-Parameters.srt

6.1 KB

12. AdaBoost Part 1.srt

5.6 KB

1. Ensemble Learning Section Overview.srt

5.3 KB

8. Compare with sklearn implementation.srt

5.1 KB

2. What is Ensemble Learning.mp4

96.4 MB

13. AdaBoost Part 2.mp4

90.1 MB

3. What is Bootstrap Sampling.mp4

58.6 MB

7. Implementing Random Forests from scratch Part 2.mp4

53.0 MB

5. Out-of-Bag Error (OOB Error).mp4

44.1 MB

9. Random Forests Hyper-Parameters.mp4

41.6 MB

11. What is Boosting.mp4

37.2 MB

4. What is Bagging.mp4

30.9 MB

8. Compare with sklearn implementation.mp4

29.0 MB

12. AdaBoost Part 1.mp4

26.8 MB

10. Random Forests Pros and Cons.mp4

20.6 MB

1. Ensemble Learning Section Overview.mp4

16.9 MB

/.../3. Python For Data Science/

3.1 Jupyter Notebook.pdf

314.5 KB

2.2 Python Basics.pdf

130.8 KB

2.1 Importing Python Data.pdf

63.0 KB

7. Python Operators.srt

32.2 KB

15. Python Dictionaries.srt

28.4 KB

13. More about Lists.srt

19.9 KB

19. Object Oriented Programming in Python.srt

26.3 KB

18. Python Functions.srt

21.3 KB

10. Python Conditional Statements.srt

18.6 KB

17. Compound Data Types & When to use each one.srt

18.4 KB

9. Python Strings.srt

16.5 KB

5. Python Variables, Booleans and None.srt

15.6 KB

14. Python Tuples.srt

15.3 KB

16. Python Sets.srt

13.8 KB

6. Getting Started with Google Colab.srt

12.7 KB

11. Python For Loops and While Loops.srt

11.0 KB

8. Python Numbers & Booleans.srt

9.8 KB

1. What is Programming.srt

9.2 KB

12. Python Lists.srt

7.3 KB

2. Why Python for Data Science.srt

6.9 KB

3. What is Jupyter.srt

6.1 KB

4. What is Google Colab.srt

5.0 KB

15. Python Dictionaries.mp4

109.2 MB

7. Python Operators.mp4

91.0 MB

19. Object Oriented Programming in Python.mp4

73.7 MB

18. Python Functions.mp4

65.5 MB

13. More about Lists.mp4

63.4 MB

9. Python Strings.mp4

59.0 MB

10. Python Conditional Statements.mp4

57.3 MB

14. Python Tuples.mp4

57.2 MB

17. Compound Data Types & When to use each one.mp4

49.4 MB

5. Python Variables, Booleans and None.mp4

40.1 MB

6. Getting Started with Google Colab.mp4

36.8 MB

16. Python Sets.mp4

30.9 MB

8. Python Numbers & Booleans.mp4

26.9 MB

11. Python For Loops and While Loops.mp4

26.8 MB

12. Python Lists.mp4

22.5 MB

1. What is Programming.mp4

19.2 MB

2. Why Python for Data Science.mp4

17.1 MB

3. What is Jupyter.mp4

15.3 MB

4. What is Google Colab.mp4

8.7 MB

/18. K-means/

1. Unsupervised Machine Learning Intro.srt

30.1 KB

2. Unsupervised Machine Learning Continued.srt

29.9 KB

3. Representing Clusters.srt

29.0 KB

1.1 Unsupervised Learning.pdf

651.8 KB

3. Representing Clusters.mp4

114.9 MB

1. Unsupervised Machine Learning Intro.mp4

105.8 MB

2. Unsupervised Machine Learning Continued.mp4

87.2 MB

/.../15. Decision Trees/

7. ID3 - Putting Everything Together.mp4

191.3 MB

7. ID3 - Putting Everything Together.srt

31.8 KB

3. What is Entropy and Information Gain.srt

30.0 KB

3. What is Entropy and Information Gain.mp4

142.7 MB

8. Evaluating our ID3 implementation.srt

25.1 KB

13. Pruning.srt

24.9 KB

2. EDA on Adult Dataset.srt

24.3 KB

12. Decision Trees Hyper-parameters.srt

16.5 KB

10. Visualizing the tree.srt

15.4 KB

4. The Decision Tree ID3 algorithm from scratch Part 1.srt

15.3 KB

9. Compare with Sklearn implementation.srt

12.6 KB

5. The Decision Tree ID3 algorithm from scratch Part 2.srt

10.9 KB

15. Decision Trees Pros and Cons.srt

10.9 KB

16. [Project] Predict whether income exceeds $50Kyr - Overview.srt

3.7 KB

11. Plot the features importance.srt

7.9 KB

6. The Decision Tree ID3 algorithm from scratch Part 3.srt

5.9 KB

1. Decision Trees Section Overview.srt

5.7 KB

14. [Optional] Gain Ration.srt

3.8 KB

2. EDA on Adult Dataset.mp4

129.2 MB

8. Evaluating our ID3 implementation.mp4

127.9 MB

13. Pruning.mp4

118.5 MB

4. The Decision Tree ID3 algorithm from scratch Part 1.mp4

89.4 MB

12. Decision Trees Hyper-parameters.mp4

85.2 MB

10. Visualizing the tree.mp4

71.5 MB

9. Compare with Sklearn implementation.mp4

68.8 MB

5. The Decision Tree ID3 algorithm from scratch Part 2.mp4

67.1 MB

15. Decision Trees Pros and Cons.mp4

50.1 MB

6. The Decision Tree ID3 algorithm from scratch Part 3.mp4

35.0 MB

11. Plot the features importance.mp4

33.2 MB

14. [Optional] Gain Ration.mp4

20.1 MB

1. Decision Trees Section Overview.mp4

17.3 MB

16. [Project] Predict whether income exceeds $50Kyr - Overview.mp4

15.8 MB

/.../7. Pandas Data Analysis/

1.1 Pandas.pdf

112.8 KB

1.2 Pandas Basics.pdf

78.9 KB

2. Introduction to Pandas Continued.srt

27.5 KB

1. Introduction to Pandas.srt

22.8 KB

2. Introduction to Pandas Continued.mp4

74.5 MB

1. Introduction to Pandas.mp4

49.1 MB

/.../13. Linear and Logistic Regression/

3. Linear Regression + Correlation Methods.srt

39.5 KB

1. Linear Regression Intro.srt

12.5 KB

2. Gradient Descent.srt

8.6 KB

4. Linear Regression Implementation.srt

7.0 KB

5. Logistic Regression.srt

5.1 KB

3. Linear Regression + Correlation Methods.mp4

115.7 MB

1. Linear Regression Intro.mp4

32.3 MB

4. Linear Regression Implementation.mp4

18.7 MB

2. Gradient Descent.mp4

16.7 MB

5. Logistic Regression.mp4

9.3 MB

/9. Machine Learning/

1. Introduction To Machine Learning.srt

37.9 KB

1.1 Supervised Learning.pdf

856.8 KB

1. Introduction To Machine Learning.mp4

103.5 MB

/.../8. Python Data Visualization/

1. Data Visualization Overview.srt

37.7 KB

2. Different Data Visualization Libraries in Python.srt

9.0 KB

3. Python Data Visualization Implementation.srt

12.7 KB

1. Data Visualization Overview.mp4

76.6 MB

3. Python Data Visualization Implementation.mp4

28.8 MB

2. Different Data Visualization Libraries in Python.mp4

16.7 MB

/.../14. K Nearest Neighbors/

3. EDA on Iris Dataset.srt

32.4 KB

3. EDA on Iris Dataset.mp4

169.7 MB

5. Implement the KNN algorithm from scratch.srt

17.6 KB

7. Hyperparameter tuning using the cross-validation.srt

15.0 KB

11. Curse of dimensionality.srt

9.8 KB

10. Feature scaling in KNN.srt

8.3 KB

9. Manhattan vs Euclidean Distance.srt

7.9 KB

13. KNN pros and cons.srt

7.9 KB

8. The decision boundary visualization.srt

7.2 KB

6. Compare the result with the sklearn library.srt

5.2 KB

12. KNN use cases.srt

5.0 KB

2. parametric vs non-parametric models.srt

4.8 KB

1. KNN Overview.srt

4.4 KB

4. The KNN Intuition.srt

3.1 KB

7. Hyperparameter tuning using the cross-validation.mp4

94.7 MB

5. Implement the KNN algorithm from scratch.mp4

91.2 MB

10. Feature scaling in KNN.mp4

51.8 MB

11. Curse of dimensionality.mp4

48.2 MB

9. Manhattan vs Euclidean Distance.mp4

32.0 MB

13. KNN pros and cons.mp4

31.9 MB

12. KNN use cases.mp4

30.3 MB

6. Compare the result with the sklearn library.mp4

25.8 MB

8. The decision boundary visualization.mp4

17.8 MB

2. parametric vs non-parametric models.mp4

16.4 MB

1. KNN Overview.mp4

13.5 MB

4. The KNN Intuition.mp4

8.5 MB

/1. Introduction/

6. How To Get a Data Science Job.srt

31.4 KB

5. What is a Data Scientist.srt

27.5 KB

7. Data Science Projects Overview.srt

19.5 KB

6. How To Get a Data Science Job.mp4

137.6 MB

5. What is a Data Scientist.mp4

133.7 MB

4. Data Science Job Roles.srt

16.1 KB

2. Data Science + Machine Learning Marketplace.srt

10.7 KB

3. Data Science Job Opportunities.srt

7.0 KB

1. Who is This Course For.srt

4.0 KB

4. Data Science Job Roles.mp4

83.7 MB

7. Data Science Projects Overview.mp4

83.3 MB

2. Data Science + Machine Learning Marketplace.mp4

49.2 MB

3. Data Science Job Opportunities.mp4

30.9 MB

1. Who is This Course For.mp4

18.0 MB

/.../4. Statistics for Data Science/

2. Descriptive Statistics.srt

10.3 KB

6. Inferential Statistics.srt

22.6 KB

3. Measure of Variability.srt

18.6 KB

7. Measure of Asymmetry.srt

2.8 KB

4. Measure of Variability Continued.srt

13.6 KB

1. Intro To Statistics.srt

11.4 KB

5. Measures of Variable Relationship.srt

11.0 KB

8. Sampling Distribution.srt

10.5 KB

6. Inferential Statistics.mp4

47.2 MB

3. Measure of Variability.mp4

40.1 MB

4. Measure of Variability Continued.mp4

36.3 MB

8. Sampling Distribution.mp4

27.7 MB

5. Measures of Variable Relationship.mp4

24.7 MB

2. Descriptive Statistics.mp4

22.5 MB

1. Intro To Statistics.mp4

22.3 MB

7. Measure of Asymmetry.mp4

7.1 MB

/.../17. Support Vector Machines/

6. SVM - Kernel Types.srt

27.4 KB

7. SVM with Linear Dataset (Iris).srt

20.3 KB

3. Hard vs Soft Margins.srt

19.4 KB

8. SVM with Non-linear Dataset.srt

18.8 KB

5. Kernel Trick.srt

18.6 KB

2. SVM intuition.srt

16.4 KB

9. SVM with Regression.srt

8.2 KB

6. SVM - Kernel Types.mp4

132.5 MB

1. SVM Outline.srt

7.6 KB

10. SMV - Project Overview.srt

6.4 KB

4. C hyper-parameter.srt

5.8 KB

8. SVM with Non-linear Dataset.mp4

117.0 MB

7. SVM with Linear Dataset (Iris).mp4

106.5 MB

5. Kernel Trick.mp4

80.8 MB

3. Hard vs Soft Margins.mp4

68.8 MB

2. SVM intuition.mp4

51.2 MB

10. SMV - Project Overview.mp4

41.5 MB

1. SVM Outline.mp4

37.0 MB

9. SVM with Regression.mp4

26.2 MB

4. C hyper-parameter.mp4

22.1 MB

/.../2. Data Science & Machine Learning Concepts/

4. Machine Learning Concepts & Algorithms.srt

24.1 KB

3. What is Machine Learning.srt

23.5 KB

2. What is Data Science.srt

21.7 KB

6. Machine Learning vs Deep Learning.srt

18.3 KB

5. What is Deep Learning.srt

16.2 KB

1. Why We Use Python.srt

5.0 KB

2. What is Data Science.mp4

92.3 MB

3. What is Machine Learning.mp4

87.5 MB

4. Machine Learning Concepts & Algorithms.mp4

81.8 MB

5. What is Deep Learning.mp4

81.6 MB

6. Machine Learning vs Deep Learning.mp4

79.6 MB

1. Why We Use Python.mp4

14.2 MB

/.../10. Data Loading & Exploration/

1. Exploratory Data Analysis.srt

19.5 KB

1. Exploratory Data Analysis.mp4

53.0 MB

/.../5. Probability & Hypothesis Testing/

4. Hypothesis Testing Overview.srt

14.9 KB

3. Relative Frequency.srt

8.9 KB

1. What is Exactly is Probability.srt

6.9 KB

2. Expected Values.srt

4.2 KB

4. Hypothesis Testing Overview.mp4

63.5 MB

3. Relative Frequency.mp4

34.3 MB

1. What is Exactly is Probability.mp4

28.5 MB

2. Expected Values.mp4

15.4 MB

/.../11. Data Cleaning/

1. Feature Scaling.srt

11.9 KB

2. Data Cleaning.srt

11.8 KB

2. Data Cleaning.mp4

31.7 MB

1. Feature Scaling.mp4

20.3 MB

/.../20. Data Science Career/

1. Creating A Data Science Resume.srt

10.8 KB

5. Top Freelance Websites.srt

8.6 KB

3. How to Contact Recruiters.srt

7.5 KB

4. Getting Started with Freelancing.srt

7.2 KB

6. Personal Branding.srt

6.6 KB

7. Networking Do's and Don'ts.srt

6.4 KB

2. Data Science Cover Letter.srt

6.1 KB

8. Importance of a Website.srt

4.9 KB

1. Creating A Data Science Resume.mp4

38.9 MB

6. Personal Branding.mp4

32.0 MB

4. Getting Started with Freelancing.mp4

31.7 MB

5. Top Freelance Websites.mp4

31.0 MB

3. How to Contact Recruiters.mp4

25.8 MB

7. Networking Do's and Don'ts.mp4

24.8 MB

2. Data Science Cover Letter.mp4

24.1 MB

8. Importance of a Website.mp4

16.1 MB

/.../12. Feature Selecting and Engineering/

1. Feature Engineering.srt

9.7 KB

1. Feature Engineering.mp4

19.3 MB

 

Total files 429


Copyright © 2025 FileMood.com