FileMood

Download 2023 Python for Deep Learning and Artificial Intelligence

2023 Python for Deep Learning and Artificial Intelligence

Name

2023 Python for Deep Learning and Artificial Intelligence

 DOWNLOAD Copy Link

Total Size

7.5 GB

Total Files

293

Last Seen

2024-12-21 23:30

Hash

4BCB56EE8F0BA19DA5774EF00191B47718B18A4B

/.../7. Introduction to Convolutional Neural Networks [Theory and Intuitions]/

14. MobileNet Architecture Explained.mp4

127.2 MB

3. Convolutional Filters.mp4

119.6 MB

15. EfficientNet Architecture Explained.mp4

109.4 MB

5. Padding and Strides.mp4

107.3 MB

11. AlexNet Architecture Explained.mp4

103.5 MB

6. Pooling Layers.mp4

90.7 MB

2. Working Principle of CNN.mp4

84.1 MB

7. Activation Function.mp4

76.2 MB

10. LeNet-5 Architecture Explained.mp4

74.6 MB

12. GoogLeNet (Inception V1) Architecture Explained.mp4

71.7 MB

4. Feature Maps.mp4

70.1 MB

1. What is Convolutional Neural Network.mp4

67.3 MB

13. RestNet Architecture Explained.mp4

59.6 MB

9. CNN Architectures Comparison.mp4

58.3 MB

8. Dropout.mp4

33.9 MB

/

TutsNode.net.txt

0.1 KB

[TGx]Downloaded from torrentgalaxy.to .txt

0.6 KB

/.pad/

0

704.9 KB

1

1.0 MB

2

785.6 KB

3

730.6 KB

4

962.2 KB

5

700.3 KB

6

294.5 KB

7

77.3 KB

8

816.0 KB

9

254.5 KB

10

515.2 KB

11

624.8 KB

12

63.7 KB

13

831.4 KB

14

627.8 KB

15

478.5 KB

16

1.0 MB

17

346.7 KB

18

371.1 KB

19

671.1 KB

20

690.7 KB

21

361.6 KB

22

921.6 KB

23

1.0 MB

24

948.7 KB

25

340.6 KB

26

641.2 KB

27

16.0 KB

28

128.5 KB

29

344.8 KB

30

32.2 KB

31

250.8 KB

32

495.4 KB

33

843.4 KB

34

965.2 KB

35

88.1 KB

36

196.2 KB

37

762.6 KB

38

842.0 KB

39

603.1 KB

40

711.9 KB

41

133.9 KB

42

340.7 KB

43

292.5 KB

44

892.7 KB

45

63.8 KB

46

595.5 KB

47

165.9 KB

48

762.2 KB

49

889.6 KB

50

186.5 KB

51

458.4 KB

52

935.4 KB

53

975.3 KB

54

1.0 MB

55

719.2 KB

56

972.7 KB

57

887.3 KB

58

1.0 MB

59

63.6 KB

60

822.7 KB

61

1.0 MB

62

464.0 KB

63

213.9 KB

64

324.1 KB

65

451.2 KB

66

671.2 KB

67

687.0 KB

68

63.4 KB

69

236.1 KB

70

213.1 KB

71

227.1 KB

72

330.3 KB

73

947.5 KB

74

986.7 KB

75

797.0 KB

76

889.3 KB

77

34.8 KB

78

250.5 KB

79

284.2 KB

80

577.9 KB

81

639.9 KB

82

66.3 KB

83

402.1 KB

84

735.7 KB

85

645.2 KB

86

706.2 KB

87

952.3 KB

88

97.7 KB

89

445.2 KB

90

575.3 KB

91

730.3 KB

92

20.1 KB

93

180.6 KB

94

353.5 KB

95

991.1 KB

96

488.9 KB

97

654.0 KB

98

730.5 KB

99

302.9 KB

100

362.2 KB

101

597.3 KB

102

673.6 KB

103

309.7 KB

104

468.9 KB

105

817.7 KB

106

357.0 KB

107

668.5 KB

108

964.2 KB

109

19.8 KB

110

233.1 KB

111

517.5 KB

112

435.3 KB

113

831.8 KB

114

407.6 KB

115

340.1 KB

116

721.3 KB

117

1.0 MB

118

28.9 KB

119

189.9 KB

120

390.3 KB

121

479.5 KB

122

481.3 KB

123

518.6 KB

124

57.0 KB

125

393.6 KB

126

684.0 KB

127

468.2 KB

128

771.1 KB

129

976.9 KB

130

376.3 KB

131

844.8 KB

132

153.2 KB

133

1.0 MB

134

748.8 KB

135

908.3 KB

136

272.3 KB

137

460.6 KB

138

519.4 KB

139

545.6 KB

140

765.6 KB

141

928.3 KB

142

722.4 KB

143

162.3 KB

144

567.9 KB

/.../5. End to End Deep Learning Project/

10. Data Visualization Part 2.mp4

112.5 MB

5. What is Back Propagation.mp4

83.3 MB

7. Steps to Build Neural Network.mp4

67.2 MB

14. Neural Network Model Building.mp4

63.8 MB

16. Model Training.mp4

59.0 MB

2. Multi-Layer Perceptron.mp4

57.8 MB

6. Optimizers in Deep Learning.mp4

54.6 MB

19. Prediction on Real-Life Data.mp4

53.4 MB

9. Data Visualization Part 1.mp4

52.7 MB

15. Model Summary Explanation.mp4

51.2 MB

4. Activation Function.mp4

42.3 MB

12. Import Neural Networks APIs.mp4

38.9 MB

11. Data Preprocessing.mp4

38.1 MB

8. Customer Churn Dataset Loading.mp4

27.3 MB

18. Model Save and Load.mp4

24.8 MB

13. How to Get Input Shape and Class Weights.mp4

22.2 MB

1. What is Neuron.mp4

21.9 MB

17. Model Evaluation.mp4

16.9 MB

3. Shallow vs Deep Neural Networks.mp4

14.5 MB

/1. Course Setup/

1. Jupyter Notebook Introduction.mp4

108.1 MB

1.1 python-for-deep-learning-and-ai.zip

78.3 MB

/.../10. Flowers Classification with Transfer Learning and CNN/

17. Online Prediction of Flowers Classes.mp4

101.6 MB

2. Load Flowers Dataset for Classification.mp4

71.3 MB

13. Make CNN Model with VGG16 Transfer Learning.mp4

67.0 MB

7. How to Calculate Number of Parameters in CNN.mp4

66.9 MB

15. Train Any Model for Transfer Learning.mp4

66.3 MB

1. Transfer Learning Introduction.mp4

60.2 MB

5. Preparing Data with Image Data Generator.mp4

53.6 MB

11. import VGG16 from Keras.mp4

53.5 MB

3. Download Flowers Data.mp4

52.4 MB

4. Flowers Data Visualization.mp4

51.1 MB

6. Baseline CNN Model Building.mp4

48.6 MB

8. Baseline CNN Model Training.mp4

48.6 MB

9. Train Model with TFDS Data Without Saving Locally Part 1.mp4

43.3 MB

16. Save and Load Model with Class Names.mp4

42.3 MB

10. Train Model with TFDS Data Without Saving Locally Part 2.mp4

40.3 MB

12. Data Augmentation for Training.mp4

26.9 MB

14. Model Training for Better Accuracy.mp4

24.5 MB

/.../8. Horses vs Humans Classification with Simple CNN/

6. Data Display in Subplots Matrix.mp4

93.6 MB

4. Download Humans or Horses Dataset Part 2.mp4

79.7 MB

2. Introduction to TensorFlow Datasets (TFDS).mp4

78.3 MB

5. Use of Image Data Generator.mp4

76.9 MB

11. CNN Parameter Calculations Part 3.mp4

64.4 MB

8. Building CNN Model.mp4

63.6 MB

12. Model Training.mp4

61.8 MB

3. Download Humans or Horses Dataset Part 1.mp4

58.9 MB

7. CNN Introduction.mp4

55.6 MB

14. Image Class Prediction.mp4

54.9 MB

9. CNN Parameter Calculation.mp4

47.0 MB

1. Overview of Image Classification using CNNs.mp4

46.2 MB

10. CNN Parameter Calculations Part 2.mp4

45.2 MB

13. Model Load and Save.mp4

33.6 MB

/.../6. Introduction to Computer Vision with Deep Learning/

4. Fashion MNIST Dataset Analysis.mp4

92.0 MB

8. Discovering Overfitting - Early Stopping.mp4

81.3 MB

7. Model Summary and Training.mp4

68.1 MB

3. Fashion MNIST Dataset Download.mp4

66.3 MB

9. Model Save and Load for Prediction.mp4

46.9 MB

1. Introduction to Computer Vision with Deep Learning.mp4

45.1 MB

6. Deep Neural Network Model Building.mp4

38.3 MB

2. 5 Steps of Computer Vision Model Building.mp4

29.0 MB

5. Train Test Split for Data.mp4

27.1 MB

/.../9. Building Cats and Dogs Classifier with Regularized CNN/

21. Load Model and Do the Prediction.mp4

87.5 MB

12. Load Dataset for Baseline Classifier.mp4

87.0 MB

8. Other Types of Data Augmentation.mp4

76.9 MB

5. Sample Data Load with ImageDataGenerator for Augmentation.mp4

74.5 MB

15. How to Calculate Number of Parameters in CNN and FCN.mp4

72.0 MB

14. How to Calculate Size of Output Layers of CNN and MaxPool.mp4

64.3 MB

6. Random Rotation Augmentation.mp4

58.5 MB

11. Store Data in Local Directory.mp4

55.6 MB

4. What is Data Augmentation [Theory].mp4

50.9 MB

7. Random Shift Augmentation.mp4

48.2 MB

2. L1, L2 and Early Stopping Regularization.mp4

47.0 MB

1. What is Overfitting.mp4

44.8 MB

3. How Dropout and Batch Normalization Prevents Overfitting.mp4

44.8 MB

19. Regularized CNN Model Building and Training.mp4

44.5 MB

10. TensorFlow TFDS and Cats vs Dogs Data Download.mp4

44.4 MB

13. Building Baseline CNN Classifier.mp4

43.6 MB

16. Model Training and Layers Analysis.mp4

41.8 MB

9. All Types of Augmentation at Once.mp4

34.2 MB

17. Model Training and Validation Accuracy Plot.mp4

27.2 MB

20. Training Log Analysis.mp4

26.8 MB

18. Building Dataset for Regularized CNN.mp4

18.4 MB

22. CNN Model Visualization.mp4

15.0 MB

/.../2. Python for Deep Learning/

8. Matplotlib Introduction Part 2.mp4

73.5 MB

7. Matplotlib Introduction Part 1.mp4

67.9 MB

10. Seaborn Introduction Part 2.mp4

62.6 MB

6. Pandas Introduction.mp4

52.0 MB

4. Numpy Introduction Part 1.mp4

42.0 MB

2. Python Introduction Part 2.mp4

39.7 MB

5. Numpy Introduction Part 2.mp4

38.1 MB

3. Python Introduction Part 3.mp4

36.3 MB

1. Python Introduction Part 1.mp4

35.2 MB

9. Seaborn Introduction Part 1.mp4

32.1 MB

/.../3. Introduction to Machine Learning/

13. Code Along in Python Part 4.mp4

69.9 MB

11. Code Along in Python Part 2.mp4

62.0 MB

12. Code Along in Python Part 3.mp4

46.2 MB

6. L2 Regularization.mp4

40.2 MB

3. Support Vector Machine - SVM.mp4

39.5 MB

2. Logistic Regression.mp4

36.1 MB

10. Code Along in Python Part 1.mp4

36.0 MB

1. Classical Machine Learning Introduction.mp4

33.5 MB

8. Model Evaluation.mp4

33.0 MB

4. Decision Tree.mp4

26.7 MB

7. L1 Regularization.mp4

19.7 MB

5. Random Forest.mp4

18.3 MB

9. ROC-AUC Curve.mp4

14.1 MB

/.../11. Introduction to NLP/

3. Overview of NLP Tools.mp4

67.7 MB

8. Text Preprocessing.mp4

48.0 MB

10. Pair Plot.mp4

44.0 MB

2. What are Key NLP Techniques.mp4

41.5 MB

12. TF-IDF Vectorization.mp4

36.4 MB

9. Feature Engineering.mp4

35.3 MB

5. Bag of Words - The Simples Word Embedding Technique.mp4

28.6 MB

1. Introduction to NLP.mp4

23.6 MB

13. Model Evaluation and Prediction on Real Data.mp4

23.3 MB

14. Model Load and Store.mp4

23.1 MB

6. Term Frequency - Inverse Document Frequency (TF-IDF).mp4

21.0 MB

4. Common Challenges in NLP.mp4

20.1 MB

7. Load Spam Dataset.mp4

19.5 MB

11. Train Test Split.mp4

9.2 MB

/.../4. Introduction to Deep Learning and TensorFlow/

4. Unsupervised Learning.mp4

45.3 MB

1. Machine Learning Process Introduction.mp4

39.8 MB

7. What is Neural Network.mp4

34.8 MB

10. Deep Learning Tools.mp4

33.3 MB

6. What is Deep Learning and ML.mp4

31.7 MB

9. Application of Deep Learning.mp4

30.0 MB

3. Supervised Learning.mp4

26.8 MB

8. How Deep Learning Process Works.mp4

25.1 MB

11. MLops with AWS.mp4

22.7 MB

2. Types of Machine Learning.mp4

20.2 MB

5. Reinforcement Learning.mp4

17.1 MB

 

Total files 293


Copyright © 2024 FileMood.com