FileMood

Download Applied Data Science with Python

Applied Data Science with Python

Name

Applied Data Science with Python

 DOWNLOAD Copy Link

Total Size

2.1 GB

Total Files

665

Last Seen

2024-12-24 01:57

Hash

C9EF88CFE0137F6A4292823F0765A5D4B93FF313

/.../01_module-4-applications/

03_small-world-networks.mp4

55.6 MB

04_link-prediction.mp4

44.2 MB

01_preferential-attachment-model.mp4

30.7 MB

02_power-laws-and-rich-get-richer-phenomena-optional_networks-book-ch18.pdf

319.4 KB

01_preferential-attachment-model.en.srt

18.9 KB

02_power-laws-and-rich-get-richer-phenomena-optional_instructions.html

1.4 KB

03_small-world-networks.en.srt

30.8 KB

04_link-prediction.en.srt

28.4 KB

06_the-small-world-phenomenon-optional_instructions.html

1.6 KB

06_the-small-world-phenomenon-optional_networks-book-ch02.pdf

2.2 MB

06_the-small-world-phenomenon-optional_networks-book-ch20.pdf

1.6 MB

05_module-4-quiz_exam.html

686.0 KB

/

TutsNode.com.txt

0.1 KB

[TGx]Downloaded from torrentgalaxy.to .txt

0.6 KB

/.../03_course-slides/

01__Week2_Slides_Final.pdf

494.0 KB

01__Week3Slides.pptx

368.0 KB

01__Week2_Basic_Charting.pptx

244.4 KB

01__resources.html

1.8 KB

01__Week1Slides.pptx

16.3 MB

01__Week1_Slides_Final.pdf

4.4 MB

01__Week3_Slides_Final.pdf

538.2 KB

/.pad/

0

0.2 KB

1

0.1 KB

2

0.1 KB

3

0.0 KB

4

0.1 KB

5

0.0 KB

6

0.1 KB

7

0.4 KB

8

0.2 KB

9

0.0 KB

10

0.3 KB

11

0.0 KB

12

0.1 KB

13

0.5 KB

14

0.0 KB

15

0.1 KB

16

0.2 KB

17

0.4 KB

18

0.0 KB

19

0.0 KB

20

0.1 KB

21

0.0 KB

22

0.6 KB

23

0.0 KB

24

0.1 KB

25

0.1 KB

26

0.0 KB

27

0.2 KB

28

0.0 KB

29

0.3 KB

30

0.2 KB

31

0.1 KB

32

0.3 KB

33

0.0 KB

34

0.4 KB

35

8.9 KB

36

387.8 KB

37

191.2 KB

38

196.0 KB

39

255.2 KB

40

344.5 KB

41

372.0 KB

42

11.8 KB

43

111.7 KB

44

472.8 KB

45

218.0 KB

46

292.3 KB

47

52.3 KB

48

132.1 KB

49

132.4 KB

50

327.7 KB

51

218.9 KB

52

242.4 KB

53

348.5 KB

54

354.8 KB

55

452.1 KB

56

480.6 KB

57

482.2 KB

58

66.6 KB

59

138.9 KB

60

397.7 KB

61

428.5 KB

62

389.1 KB

63

505.4 KB

64

462.9 KB

65

80.9 KB

66

379.3 KB

67

82.5 KB

68

123.2 KB

69

4.4 KB

70

210.2 KB

71

271.2 KB

72

425.7 KB

73

334.8 KB

74

108.4 KB

75

249.0 KB

76

414.1 KB

77

437.3 KB

78

304.1 KB

79

310.0 KB

80

433.3 KB

81

79.4 KB

82

97.1 KB

83

366.6 KB

84

400.2 KB

85

224.2 KB

86

267.8 KB

87

471.8 KB

88

350.1 KB

89

30.2 KB

90

425.3 KB

91

267.0 KB

92

300.2 KB

93

367.4 KB

94

430.1 KB

95

237.4 KB

96

355.2 KB

97

369.4 KB

98

239.8 KB

99

255.2 KB

100

357.5 KB

101

358.7 KB

102

32.9 KB

103

184.8 KB

104

240.4 KB

105

15.1 KB

106

64.2 KB

107

80.9 KB

108

162.4 KB

109

315.7 KB

110

7.4 KB

111

126.4 KB

112

414.4 KB

113

444.2 KB

114

3.5 KB

115

156.4 KB

116

314.5 KB

117

510.4 KB

118

9.4 KB

119

76.6 KB

120

140.4 KB

121

263.7 KB

122

302.5 KB

123

330.1 KB

124

342.0 KB

125

405.0 KB

126

468.2 KB

127

121.3 KB

128

249.7 KB

129

25.6 KB

130

32.2 KB

131

66.0 KB

132

105.4 KB

133

126.6 KB

134

133.6 KB

135

206.8 KB

136

285.7 KB

137

287.1 KB

138

306.3 KB

139

387.7 KB

140

35.2 KB

141

268.9 KB

142

334.0 KB

143

334.2 KB

144

432.8 KB

145

443.2 KB

146

473.0 KB

147

44.2 KB

148

81.2 KB

149

95.7 KB

150

219.9 KB

151

268.9 KB

152

336.4 KB

153

356.2 KB

154

447.6 KB

155

514.9 KB

156

140.9 KB

157

237.7 KB

158

269.7 KB

159

417.4 KB

160

423.8 KB

161

493.6 KB

162

510.8 KB

163

68.1 KB

164

228.8 KB

165

442.2 KB

166

180.7 KB

167

307.5 KB

168

330.6 KB

169

331.2 KB

170

331.2 KB

171

334.3 KB

172

362.1 KB

173

362.6 KB

174

441.9 KB

175

481.0 KB

176

510.3 KB

177

512.8 KB

/.../01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/

03_help-us-learn-more-about-you_instructions.html

1.7 KB

06_notice-for-auditing-learners-assignment-submission_instructions.html

1.6 KB

10_zachary-lipton-the-foundations-of-algorithmic-bias-optional_instructions.html

2.0 KB

09_k-nearest-neighbors-classification.mp4

28.2 MB

04_key-concepts-in-machine-learning.mp4

25.0 MB

11_module-1-quiz_exam.html

184.7 KB

01_course-syllabus_0636920030515.do

75.0 KB

09_k-nearest-neighbors-classification.en.srt

26.8 KB

07_an-example-machine-learning-problem.mp4

20.0 MB

04_key-concepts-in-machine-learning.en.srt

19.3 KB

02_introduction.en.srt

16.5 KB

07_an-example-machine-learning-problem.en.srt

15.2 KB

01_course-syllabus_instructions.html

12.8 KB

08_examining-the-data.en.srt

12.3 KB

05_python-tools-for-machine-learning.en.srt

6.3 KB

02_introduction.mp4

18.3 MB

08_examining-the-data.mp4

16.4 MB

05_python-tools-for-machine-learning.mp4

8.1 MB

/.../01_principles-of-information-visualization/

01_introduction.en.srt

6.8 KB

11_graphical-heuristics-lie-factor-and-spark-lines-edward-tufte.en.srt

5.5 KB

03_help-us-learn-more-about-you_instructions.html

1.7 KB

04_about-the-professor-christopher-brooks.en.srt

2.2 KB

06_notice-for-coursera-learners-assignment-submission_instructions.html

1.6 KB

08_dark-horse-analytics-optional_instructions.html

1.3 KB

12_the-truthful-art-alberto-cairo.mp4

20.5 MB

12_the-truthful-art-alberto-cairo.en.srt

12.9 KB

05_tools-for-thinking-about-design-alberto-cairo.mp4

20.2 MB

05_tools-for-thinking-about-design-alberto-cairo.en.srt

12.9 KB

02_syllabus_instructions.html

11.9 KB

10_useful-junk-the-effects-of-visual-embellishment-on-comprehension-and_instructions.html

1.4 KB

09_graphical-heuristics-chart-junk-edward-tufte.en.srt

7.8 KB

07_graphical-heuristics-data-ink-ratio-edward-tufte.en.srt

7.1 KB

09_graphical-heuristics-chart-junk-edward-tufte.mp4

13.8 MB

01_introduction.mp4

12.7 MB

07_graphical-heuristics-data-ink-ratio-edward-tufte.mp4

9.7 MB

11_graphical-heuristics-lie-factor-and-spark-lines-edward-tufte.mp4

9.1 MB

04_about-the-professor-christopher-brooks.mp4

5.8 MB

/.../01_module-3-evaluation/

01_model-evaluation-selection.mp4

33.3 MB

07_practical-guide-to-controlled-experiments-on-the-web-optional_2007GuideControlledExperiments.pdf

504.9 KB

07_practical-guide-to-controlled-experiments-on-the-web-optional_instructions.html

1.8 KB

06_regression-evaluation.en.srt

8.0 KB

09_module-3-quiz_exam.html

207.7 KB

08_model-selection-optimizing-classifiers-for-different-evaluation-metrics.mp4

21.0 MB

01_model-evaluation-selection.en.srt

30.8 KB

08_model-selection-optimizing-classifiers-for-different-evaluation-metrics.en.srt

18.6 KB

02_confusion-matrices-basic-evaluation-metrics.en.srt

16.2 KB

05_multi-class-evaluation.en.srt

15.6 KB

03_classifier-decision-functions.en.srt

9.3 KB

04_precision-recall-and-roc-curves.en.srt

7.7 KB

05_multi-class-evaluation.mp4

17.5 MB

02_confusion-matrices-basic-evaluation-metrics.mp4

17.0 MB

03_classifier-decision-functions.mp4

10.4 MB

06_regression-evaluation.mp4

10.1 MB

04_precision-recall-and-roc-curves.mp4

8.5 MB

/.../04_lecture-slides/

01__1.2_Handling_Text_in_Python.pdf

248.3 KB

01__3.4_Naive_Bayes_Variations.pdf

215.5 KB

01__2.3_Advanced_NLP_Tasks_with_NLTK.pdf

316.9 KB

01__4.2_Topic_Modeling.pdf

457.4 KB

01__4.1_Semantic_Text_Similarity.pdf

424.5 KB

01__3.1_Text_Classification.pdf

358.6 KB

01__3.6_Learning_Text_Classifiers_in_Python.pdf

357.4 KB

01__3.3_Naive_Bayes_Classifier.pdf

267.8 KB

01__1.3_Regular_Expressions.pdf

264.7 KB

01__2.2_Basic_NLP_Tasks_with_NLTK.pdf

236.1 KB

01__2.1_Basic_Natural_Language_Processing.pdf

228.6 KB

01__3.2_Identifying_Features_from_Text.pdf

220.9 KB

01__resources.html

3.1 KB

01__1.1_Introduction_to_Text_Mining.pdf

1.3 MB

01__4.3_Generative_Models_and_LDA.pdf

714.3 KB

01__1.4_Internationalization_and_Issues_with_Non-ASCII_Characters.pdf

686.5 KB

01__3.5_Support_Vector_Machines.pdf

606.7 KB

01__4.4_Information_Extraction.pdf

530.9 KB

/.../01_recurrent-neural-networks-for-time-series/

01_week-3-a-conversation-with-andrew-ng.en.srt

5.2 KB

14_lstm-notebook_SP_Week_3_Lesson_4_-_LSTM.ipynb

68.5 KB

06_adjusting-the-learning-rate-dynamically.en.srt

4.4 KB

09_rnn-notebook_SP_Week_3_Lesson_2_-_RNN.ipynb

68.5 KB

15_week-3-quiz_exam.html

8.6 KB

02_conceptual-overview.en.srt

5.3 KB

12_coding-lstms.en.srt

3.9 KB

03_shape-of-the-inputs-to-the-rnn.en.srt

3.6 KB

05_lambda-layers.en.srt

2.9 KB

10_lstm.en.srt

2.9 KB

13_more-on-lstm.en.srt

2.9 KB

08_rnn.en.srt

2.8 KB

04_outputting-a-sequence.en.srt

2.2 KB

14_lstm-notebook_instructions.html

1.2 KB

16_week-3-wrap-up_instructions.html

1.2 KB

09_rnn-notebook_instructions.html

1.2 KB

11_link-to-the-lstm-lesson_instructions.html

1.1 KB

07_more-info-on-huber-loss_instructions.html

1.1 KB

01_week-3-a-conversation-with-andrew-ng.mp4

11.1 MB

02_conceptual-overview.mp4

4.5 MB

06_adjusting-the-learning-rate-dynamically.mp4

3.9 MB

13_more-on-lstm.mp4

3.5 MB

12_coding-lstms.mp4

3.5 MB

08_rnn.mp4

3.4 MB

03_shape-of-the-inputs-to-the-rnn.mp4

2.8 MB

10_lstm.mp4

2.5 MB

05_lambda-layers.mp4

2.3 MB

04_outputting-a-sequence.mp4

1.8 MB

/.../01_module-3-classification-of-text/

05_support-vector-machines.mp4

32.9 MB

03_naive-bayes-classifiers.mp4

27.7 MB

06_learning-text-classifiers-in-python.mp4

21.3 MB

03_naive-bayes-classifiers.en.srt

23.1 KB

05_support-vector-machines.en.srt

32.8 KB

06_learning-text-classifiers-in-python.en.srt

20.4 KB

01_text-classification.en.srt

15.5 KB

02_identifying-features-from-text.en.srt

9.9 KB

07_demonstration-case-study-sentiment-analysis.en.srt

12.5 KB

08_module-3-quiz_exam.html

6.7 KB

04_naive-bayes-variations.en.srt

6.2 KB

01_text-classification.mp4

19.5 MB

07_demonstration-case-study-sentiment-analysis.mp4

17.2 MB

02_identifying-features-from-text.mp4

16.4 MB

04_naive-bayes-variations.mp4

10.1 MB

/.../01_additional-resources/

01__classes.html

92.4 KB

01__resources.html

2.1 KB

01__Scikit_Learn_Cheat_Sheet_Python.pdf

149.2 KB

01__documentation.html

0.6 KB

/.../01_module-2-supervised-machine-learning/

01_introduction-to-supervised-machine-learning.en.srt

22.7 KB

06_linear-regression-ridge-lasso-and-polynomial-regression.mp4

30.7 MB

12_decision-trees.mp4

28.8 MB

10_kernelized-support-vector-machines.mp4

28.0 MB

13_a-few-useful-things-to-know-about-machine-learning_instructions.html

1.6 KB

14_ed-yong-genetic-test-for-autism-refuted-optional_instructions.html

1.7 KB

01_introduction-to-supervised-machine-learning.mp4

26.2 MB

08_linear-classifiers-support-vector-machines.en.srt

15.9 KB

05_linear-regression-least-squares.mp4

25.1 MB

07_logistic-regression.en.srt

17.5 KB

04_k-nearest-neighbors-classification-and-regression.en.srt

17.5 KB

11_cross-validation.en.srt

13.3 KB

12_decision-trees.en.srt

29.0 KB

06_linear-regression-ridge-lasso-and-polynomial-regression.en.srt

27.8 KB

10_kernelized-support-vector-machines.en.srt

26.2 KB

05_linear-regression-least-squares.en.srt

21.8 KB

02_overfitting-and-underfitting.en.srt

16.2 KB

09_multi-class-classification.en.srt

8.5 KB

03_supervised-learning-datasets.en.srt

6.9 KB

08_linear-classifiers-support-vector-machines.mp4

19.2 MB

04_k-nearest-neighbors-classification-and-regression.mp4

18.7 MB

07_logistic-regression.mp4

17.2 MB

02_overfitting-and-underfitting.mp4

16.3 MB

13_a-few-useful-things-to-know-about-machine-learning_cacm12.pdf

15.9 MB

11_cross-validation.mp4

13.5 MB

09_multi-class-classification.mp4

10.4 MB

03_supervised-learning-datasets.mp4

7.6 MB

15_module-2-quiz_exam.html

567.6 KB

/.../01_module-1-working-with-text-in-python/

10_resources-common-issues-with-free-text_re.html

201.0 KB

02_help-us-learn-more-about-you_instructions.html

1.9 KB

04_handling-text-in-python.mp4

24.5 MB

04_handling-text-in-python.en.srt

23.2 KB

06_regular-expressions.en.srt

20.7 KB

06_regular-expressions.mp4

23.6 MB

09_internationalization-and-issues-with-non-ascii-characters.en.srt

13.9 KB

10_resources-common-issues-with-free-text_instructions.html

1.9 KB

01_course-syllabus_instructions.html

11.7 KB

11_module-1-quiz_exam.html

11.2 KB

08_practice-quiz_quiz.html

7.9 KB

05_notice-for-auditing-learners-assignment-submission_instructions.html

1.6 KB

07_demonstration-regex-with-pandas-and-named-groups.en.srt

6.3 KB

03_introduction-to-text-mining.en.srt

4.2 KB

09_internationalization-and-issues-with-non-ascii-characters.mp4

16.6 MB

07_demonstration-regex-with-pandas-and-named-groups.mp4

7.5 MB

03_introduction-to-text-mining.mp4

5.1 MB

/.../01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/02_assignment-1/

01_assignment-1-submission_instructions.html

1.1 KB

/.../01_module-1-why-study-networks-and-basics-on-networkx/

06_bipartite-graphs.en.srt

19.0 KB

09_module-1-quiz_exam.html

500.6 KB

01_course-syllabus_instructions.html

11.7 KB

05_node-and-edge-attributes.en.srt

13.0 KB

06_bipartite-graphs.mp4

23.5 MB

02_help-us-learn-more-about-you_instructions.html

1.9 KB

07_notice-for-auditing-learners-assignment-submission_instructions.html

1.6 KB

04_network-definition-and-vocabulary.en.srt

14.6 KB

03_networks-definition-and-why-we-study-them.en.srt

11.0 KB

08_ta-demonstration-loading-graphs-in-networkx.en.srt

10.7 KB

04_network-definition-and-vocabulary.mp4

18.6 MB

03_networks-definition-and-why-we-study-them.mp4

16.1 MB

05_node-and-edge-attributes.mp4

15.8 MB

08_ta-demonstration-loading-graphs-in-networkx.mp4

12.2 MB

/.../01_real-world-time-series-data/

06_lstm.en.srt

2.5 KB

07_lstm-notebook_instructions.html

1.2 KB

11_sunspots.en.srt

2.4 KB

12_sunspots-notebook_SP_Week_4_Lesson_5.ipynb

68.5 KB

07_lstm-notebook_SP_Week_4_Lesson_1.ipynb

68.4 KB

12_sunspots-notebook_SP_Week_4_Lesson_3.ipynb

68.4 KB

14_week-4-quiz_exam.html

8.7 KB

13_combining-our-tools-for-analysis.en.srt

6.7 KB

08_real-data-sunspots.en.srt

6.6 KB

04_bi-directional-lstms.en.srt

6.2 KB

09_train-and-tune-the-model.en.srt

4.3 KB

01_week-4-a-conversation-with-andrew-ng.en.srt

2.6 KB

10_prediction.en.srt

2.3 KB

12_sunspots-notebook_instructions.html

1.5 KB

02_convolutions.en.srt

1.5 KB

03_convolutional-neural-networks-course_instructions.html

1.3 KB

05_more-on-batch-sizing_instructions.html

1.1 KB

13_combining-our-tools-for-analysis.mp4

6.0 MB

08_real-data-sunspots.mp4

5.3 MB

04_bi-directional-lstms.mp4

4.9 MB

01_week-4-a-conversation-with-andrew-ng.mp4

4.3 MB

06_lstm.mp4

4.1 MB

09_train-and-tune-the-model.mp4

3.6 MB

11_sunspots.mp4

3.6 MB

10_prediction.mp4

2.7 MB

02_convolutions.mp4

2.0 MB

/.../01_module-2-basic-charting/

08_bar-charts.en.srt

5.6 KB

03_matplotlib_matplotlib.html

43.3 KB

04_ten-simple-rules-for-better-figures_instructions.html

1.5 KB

05_basic-plotting-with-matplotlib.en.srt

12.2 KB

07_line-plots.en.srt

12.1 KB

06_scatterplots.en.srt

11.8 KB

02_matplotlib-architecture.en.srt

10.5 KB

03_matplotlib_instructions.html

1.4 KB

09_dejunkifying-a-plot.en.srt

6.0 KB

01_introduction.en.srt

2.7 KB

06_scatterplots.mp4

18.5 MB

02_matplotlib-architecture.mp4

17.2 MB

07_line-plots.mp4

16.5 MB

05_basic-plotting-with-matplotlib.mp4

14.7 MB

09_dejunkifying-a-plot.mp4

12.8 MB

08_bar-charts.mp4

9.7 MB

01_introduction.mp4

4.4 MB

/.../01_module-4-supervised-machine-learning-part-2/

04_neural-networks.mp4

28.4 MB

05_neural-networks-made-easy-optional_instructions.html

1.6 KB

06_play-with-neural-networks-tensorflow-playground-optional_instructions.html

2.0 KB

08_deep-learning-in-a-nutshell-core-concepts-optional_instructions.html

1.6 KB

14_rules-of-machine-learning-best-practices-for-ml-engineering-optional_rules_of_ml.pdf

460.2 KB

09_assisting-pathologists-in-detecting-cancer-with-deep-learning-optional_instructions.html

1.3 KB

11_the-treachery-of-leakage-optional_instructions.html

1.4 KB

12_leakage-in-data-mining-formulation-detection-and-avoidance-optional_instructions.html

1.8 KB

13_data-leakage-example-the-icml-2013-whale-challenge-optional_instructions.html

1.6 KB

14_rules-of-machine-learning-best-practices-for-ml-engineering-optional_instructions.html

1.6 KB

09_assisting-pathologists-in-detecting-cancer-with-deep-learning-optional_assisting-pathologists-in-detecting.html

145.4 KB

10_data-leakage.mp4

20.1 MB

04_neural-networks.en.srt

28.6 KB

02_random-forests.en.srt

17.5 KB

10_data-leakage.en.srt

17.1 KB

01_naive-bayes-classifiers.en.srt

11.5 KB

07_deep-learning-optional.en.srt

10.6 KB

03_gradient-boosted-decision-trees.en.srt

8.6 KB

02_random-forests.mp4

18.2 MB

01_naive-bayes-classifiers.mp4

12.9 MB

07_deep-learning-optional.mp4

11.3 MB

03_gradient-boosted-decision-trees.mp4

8.9 MB

15_module-4-quiz_exam.html

1.7 MB

12_leakage-in-data-mining-formulation-detection-and-avoidance-optional_cs670_Tran_PreferredPaper_LeakingInDataMining.pdf

867.9 KB

/.../01_module-4-topic-modeling/

06_additional-resources-readings_blei03a.pdf

418.0 KB

05_information-extraction.mp4

28.0 MB

06_additional-resources-readings_instructions.html

2.2 KB

04_practice-quiz_quiz.html

2.4 KB

01_semantic-text-similarity.en.srt

21.8 KB

03_generative-models-and-lda.mp4

24.3 MB

01_semantic-text-similarity.mp4

23.6 MB

07_module-4-quiz_exam.html

5.0 KB

06_additional-resources-readings_wordnet.html

31.8 KB

05_information-extraction.en.srt

23.0 KB

03_generative-models-and-lda.en.srt

18.7 KB

02_topic-modeling.en.srt

10.3 KB

02_topic-modeling.mp4

14.1 MB

/.../02_additional-python-resources/

01__classes.html

92.4 KB

01__resources.html

1.8 KB

/.../01_deep-neural-networks-for-time-series/

15_week-2-quiz_exam.html

11.3 KB

01_a-conversation-with-andrew-ng.en.srt

2.5 KB

08_machine-learning-on-time-windows.en.srt

1.0 KB

11_single-layer-neural-network-notebook_SP_Week_2_Lesson_2.ipynb

68.5 KB

04_preparing-features-and-labels-notebook_SP_Week_2_Lesson_1.ipynb

68.4 KB

14_deep-neural-network-notebook_SP_Week_2_Lesson_3.ipynb

68.4 KB

12_deep-neural-network-training-tuning-and-prediction.en.srt

6.6 KB

02_preparing-features-and-labels.en.srt

6.4 KB

03_preparing-features-and-labels.en.srt

6.3 KB

07_single-layer-neural-network.en.srt

5.4 KB

13_deep-neural-network.en.srt

4.6 KB

09_prediction.en.srt

4.3 KB

10_more-on-single-layer-neural-network.en.srt

3.9 KB

06_feeding-windowed-dataset-into-neural-network.en.srt

3.4 KB

05_sequence-bias_instructions.html

1.5 KB

16_week-2-wrap-up_instructions.html

1.2 KB

04_preparing-features-and-labels-notebook_instructions.html

1.2 KB

11_single-layer-neural-network-notebook_instructions.html

1.2 KB

14_deep-neural-network-notebook_instructions.html

1.2 KB

12_deep-neural-network-training-tuning-and-prediction.mp4

7.1 MB

02_preparing-features-and-labels.mp4

6.3 MB

13_deep-neural-network.mp4

6.2 MB

03_preparing-features-and-labels.mp4

6.1 MB

10_more-on-single-layer-neural-network.mp4

4.6 MB

01_a-conversation-with-andrew-ng.mp4

4.3 MB

07_single-layer-neural-network.mp4

3.6 MB

09_prediction.mp4

3.4 MB

06_feeding-windowed-dataset-into-neural-network.mp4

3.1 MB

08_machine-learning-on-time-windows.mp4

741.1 KB

/.../02_module-2-supervised-machine-learning-part-1/02_assignment-2/

01_assignment-2-submission_instructions.html

1.1 KB

/.../01_module-3-influence-measures-and-network-centralization/

02_betweenness-centrality.mp4

27.7 MB

05_hubs-and-authorities.mp4

27.5 MB

07_module-3-quiz_exam.html

289.8 KB

06_centrality-examples.en.srt

14.1 KB

02_betweenness-centrality.en.srt

25.2 KB

01_degree-and-closeness-centrality.mp4

22.5 MB

05_hubs-and-authorities.en.srt

19.4 KB

01_degree-and-closeness-centrality.en.srt

18.8 KB

03_basic-page-rank.en.srt

14.4 KB

04_scaled-page-rank.en.srt

13.9 KB

04_scaled-page-rank.mp4

19.6 MB

03_basic-page-rank.mp4

18.5 MB

06_centrality-examples.mp4

17.6 MB

/.../02_additional-resources/

01__classes.html

92.4 KB

01__Scikit_Learn_Cheat_Sheet_Python.pdf

149.2 KB

01__documentation.html

0.6 KB

01__resources.html

2.2 KB

/.../02_sequences-and-prediction/

01_time-series-examples.en.srt

7.4 KB

11_forecasting-notebook_SP_Week_1_-_Lesson_3_-_Notebook.ipynb

68.5 KB

05_introduction-to-time-series-notebook_SP_Week_1_Lesson_2.ipynb

68.4 KB

12_week-1-quiz_exam.html

9.1 KB

03_common-patterns-in-time-series.en.srt

9.0 KB

10_forecasting.en.srt

8.0 KB

04_introduction-to-time-series.en.srt

7.1 KB

06_train-validation-and-test-sets.en.srt

5.3 KB

08_moving-average-and-differencing.en.srt

4.6 KB

07_metrics-for-evaluating-performance.en.srt

3.4 KB

02_machine-learning-applied-to-time-series.en.srt

2.8 KB

09_trailing-versus-centered-windows.en.srt

1.7 KB

13_week-1-wrap-up_instructions.html

1.4 KB

11_forecasting-notebook_instructions.html

1.2 KB

05_introduction-to-time-series-notebook_instructions.html

1.2 KB

10_forecasting.mp4

10.7 MB

04_introduction-to-time-series.mp4

8.0 MB

01_time-series-examples.mp4

6.8 MB

03_common-patterns-in-time-series.mp4

6.6 MB

06_train-validation-and-test-sets.mp4

4.4 MB

08_moving-average-and-differencing.mp4

3.4 MB

07_metrics-for-evaluating-performance.mp4

2.7 MB

02_machine-learning-applied-to-time-series.mp4

2.6 MB

09_trailing-versus-centered-windows.mp4

1.7 MB

/.../01_module-3-charting-fundamentals/

03_selecting-the-number-of-bins-in-a-histogram-a-decision-theoretic-approach_hist.pdf

119.2 KB

03_selecting-the-number-of-bins-in-a-histogram-a-decision-theoretic-approach_instructions.html

1.2 KB

07_interactivity.en.srt

7.6 KB

02_histograms.en.srt

12.4 KB

01_subplots.en.srt

10.8 KB

04_box-plots.en.srt

10.6 KB

06_animation.en.srt

7.2 KB

05_heatmaps.en.srt

5.5 KB

02_histograms.mp4

17.9 MB

01_subplots.mp4

16.2 MB

04_box-plots.mp4

15.2 MB

07_interactivity.mp4

10.7 MB

06_animation.mp4

9.5 MB

05_heatmaps.mp4

8.0 MB

/.../01_module-2-network-connectivity/

03_connected-components.en.srt

14.9 KB

02_distance-measures.mp4

27.3 MB

02_distance-measures.en.srt

26.7 KB

01_clustering-coefficient.en.srt

19.8 KB

04_network-robustness.en.srt

15.3 KB

04_network-robustness.mp4

19.8 MB

01_clustering-coefficient.mp4

19.6 MB

05_ta-demonstration-simple-network-visualizations-in-networkx.en.srt

7.5 KB

03_connected-components.mp4

16.3 MB

05_ta-demonstration-simple-network-visualizations-in-networkx.mp4

10.6 MB

06_module-2-quiz_exam.html

1.1 MB

/.../03_module-3-evaluation/02_assignment-3/

01_assignment-3-submission_instructions.html

1.1 KB

/.../02_additional-resources/

01__intro.html

43.8 KB

01__classes.html

92.4 KB

01__Scikit_Learn_Cheat_Sheet_Python.pdf

149.2 KB

01__documentation.html

0.6 KB

01__resources.html

2.4 KB

/.../02_module-2-basic-charting/02_assignment-2/

01_plotting-weather-patterns_assignment2_rubric.pdf

77.1 KB

01_plotting-weather-patterns_peer_assignment_instructions.html

1.8 KB

/.../03_post-course-survey/

01_post-course-survey_instructions.html

1.7 KB

02_keep-learning-with-michigan-online_instructions.html

35.0 KB

/.../02_course-4-wrap-up/

02_congratulations.en.srt

1.3 KB

01_wrap-up_instructions.html

1.2 KB

02_congratulations.mp4

1.5 MB

/.../04_module-4-supervised-machine-learning-part-2/02_assignment-4/

01_assignment-4-submission_instructions.html

1.1 KB

/.../04_acknowledgements-credits/

01__Diamonds-Were-a-Girls-Best-Friend.jpg

150.3 KB

01__hist.pdf

119.2 KB

01__matplotlib.html

43.3 KB

01__resources.html

6.2 KB

/.../03_optional-unsupervised-machine-learning/

04_how-to-use-t-sne-effectively_instructions.html

1.2 KB

05_how-machines-make-sense-of-big-data-an-introduction-to-clustering-algorithms_instructions.html

1.4 KB

03_clustering.mp4

20.8 MB

03_clustering.en.srt

20.4 KB

02_dimensionality-reduction-and-manifold-learning.en.srt

13.8 KB

01_introduction.en.srt

6.6 KB

02_dimensionality-reduction-and-manifold-learning.mp4

13.5 MB

01_introduction.mp4

7.0 MB

/.../01_module-2-basic-natural-language-processing/

02_basic-nlp-tasks-with-nltk.mp4

24.6 MB

03_advanced-nlp-tasks-with-nltk.mp4

22.8 MB

02_basic-nlp-tasks-with-nltk.en.srt

21.4 KB

03_advanced-nlp-tasks-with-nltk.en.srt

20.5 KB

04_practice-quiz_quiz.html

2.2 KB

05_module-2-quiz_exam.html

4.8 KB

01_basic-natural-language-processing.en.srt

4.3 KB

01_basic-natural-language-processing.mp4

5.6 MB

/.../01_module-1-principles-of-information-visualization/02_assignment-1/

01_graphics-lies-misleading-visuals_BookChapterLIES.pdf

341.4 KB

02_graphics-lies-misleading-visuals_assignment1_rubric.pdf

74.5 KB

01_graphics-lies-misleading-visuals_instructions.html

1.4 KB

02_graphics-lies-misleading-visuals_peer_assignment_instructions.html

3.2 KB

/.../03_course-slides/

01__resources.html

1.9 KB

01__02-adspy-module2-supervised1.pdf

5.4 MB

01__01-adspy-module1-basics.pdf

3.3 MB

01__05-adspy-unsupervised.pdf

2.5 MB

01__04-adspy-module4-supervised2.pdf

2.4 MB

01__03-adspy-module3-evaluation.pdf

1.9 MB

/.../04_code-sharing-policy/

01__resources.html

1.8 KB

/.../05_attributions-credits/

01__resources.html

1.0 KB

/.../05_attributions-credits/

01__resources.html

1.0 KB

/.../04_module-4-applied-visualizations/02_project/

02_becoming-an-independent-data-scientist_assignment4_rubric.pdf

87.7 KB

01_becoming-an-independent-data-scientist.en.srt

2.7 KB

02_becoming-an-independent-data-scientist_peer_assignment_instructions.html

1.9 KB

03_post-course-survey_instructions.html

1.5 KB

01_becoming-an-independent-data-scientist.mp4

4.7 MB

/.../06_accessible-html-slides/

01__Week_1_Principles_of_Information_Visualization.html

86.9 KB

01__Week_2_Basic_Charting.html

75.2 KB

01__Week_3_Charting_Fundamentals.html

74.8 KB

01__resources.html

1.4 KB

/.../03_module-3-charting-fundamentals/02_assignment-3/

02_building-a-custom-visualization_assignment3_rubric.pdf

75.4 KB

02_building-a-custom-visualization_peer_assignment_instructions.html

1.8 KB

01_assignment-reading_instructions.html

1.5 KB

/.../01_module-4-applied-visualizations/

03_spurious-correlations_instructions.html

1.7 KB

02_seaborn.en.srt

11.6 KB

01_plotting-with-pandas.en.srt

9.8 KB

02_seaborn.mp4

13.1 MB

01_plotting-with-pandas.mp4

11.1 MB

/.../04_module-4-supervised-machine-learning-part-2/04_conclusion/

03_keep-learning-with-michigan-online_instructions.html

35.0 KB

02_post-course-survey_instructions.html

1.5 KB

01_conclusion.en.srt

4.0 KB

01_conclusion.mp4

4.7 MB

/.../03_post-course-survey/

02_keep-learning-with-michigan-online_instructions.html

35.0 KB

01_post-course-survey_instructions.html

1.7 KB

/.../05_code-sharing-policy/

01__resources.html

1.8 KB

/.../02_module-1-assignment/

01_assignment-1-submission_instructions.html

1.1 KB

/.../02_module-2-assignment/

01_assignment-2-submission_instructions.html

1.1 KB

/.../02_module-3-assignment/

01_assignment-3-submission_instructions.html

1.1 KB

/.../02_module-4-assignment/

01_assignment-4-submission_instructions.html

1.1 KB

/.../03_code-sharing-policy/

01__resources.html

1.8 KB

/.../04_lecture-slides/

01__resources.html

3.0 KB

01__3.5_Hubs_and_Authorities.pdf

15.3 MB

01__1.1_Networks_Everywhere.pdf

8.1 MB

01__3.3_Basic_Page_Rank.pdf

7.1 MB

01__2.4_Network_Robustness.pdf

7.0 MB

01__3.6_Centrality_Examples.pdf

6.6 MB

01__4.3_Link_Prediction.pdf

6.2 MB

01__4.2_Small_World_Networks.pdf

5.2 MB

01__4.1_Preferential_Attachment_Model.pdf

4.6 MB

01__2.3_Connected_Components.pdf

3.6 MB

01__3.4_Scaled_Page_Rank.pdf

3.5 MB

01__3.2_Betweenness_Centrality.pdf

2.9 MB

01__1.2_Network_Definition_and_Vocabulary.pdf

2.8 MB

01__2.1_Clustering_Coefficient.pdf

2.7 MB

01__2.2_Distance_Measures.pdf

2.4 MB

01__3.1_Degree_and_Closeness_Centrality.pdf

2.3 MB

01__1.4_Bipartite_Graphs.pdf

2.1 MB

01__1.3_Node_and_Edge_Attributes.pdf

1.6 MB

/.../01_sequences-and-prediction/01_introduction/

01_introduction-a-conversation-with-andrew-ng.en.srt

6.9 KB

01_introduction-a-conversation-with-andrew-ng.mp4

11.4 MB

/.../01_module-1-working-with-text-in-python/02_assignment-1/

01_assignment-1-submission_instructions.html

1.1 KB

/.../02_module-2-basic-natural-language-processing/02_assignment-2/

01_assignment-2-submission_instructions.html

1.1 KB

/.../03_tensorflow-in-practice-has-come-to-an-end/

01_specialization-wrap-up-a-conversation-with-andrew-ng.en.srt

4.6 KB

02_what-next_instructions.html

1.6 KB

01_specialization-wrap-up-a-conversation-with-andrew-ng.mp4

7.5 MB

/.../03_module-3-classification-of-text/02_assignment-3/

01_assignment-3-submission_instructions.html

1.1 KB

/.../04_module-4-topic-modeling/02_assignment-4/

01_assignment-4-submission_instructions.html

1.1 KB

/.../03_code-sharing-policy/

01__resources.html

1.8 KB

/.../05_attributions-credits/

01__resources.html

1.0 KB

/.../02_jupyter-notebook-faq/

01__resources.html

718.0 KB

/.../01_jupyter-notebook-faq/

01__resources.html

717.4 KB

/.../01_jupyter-notebook-faq/

01__resources.html

717.4 KB

/.../01_jupyter-notebook-faq/

01__resources.html

535.7 KB

 

Total files 665


Copyright © 2024 FileMood.com