FileMood

Download Applied Text Mining and Sentiment Analysis with Python

Applied Text Mining and Sentiment Analysis with Python

Name

Applied Text Mining and Sentiment Analysis with Python

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

1.0 GB

Total Files

145

Hash

2470BAC3D740EBA4ECD833D965F28EC0B0CA1C17

/1. Course Preview/

1. Preview.mp4

73.4 MB

1. Preview.srt

5.3 KB

/

TutsNode.com.txt

0.1 KB

[TGx]Downloaded from torrentgalaxy.to .txt

0.6 KB

/3. Text Normalization/

4. (Python Practice) Cleaning Twitter Features.srt

8.2 KB

6. (Python Practice) Cleaning General Features.srt

6.7 KB

4. (Python Practice) Cleaning Twitter Features.mp4

39.9 MB

15.1 Colab_Notebook_Section_2_completed.ipynb

83.9 KB

7. Tokenization.srt

5.5 KB

3. Text Cleaning (12) - Twitter Features.srt

4.3 KB

14. (Python Practice) Applied Lemmatization.srt

4.0 KB

1. Section Overview.srt

1.2 KB

2. What is Text Normalization.srt

3.8 KB

5. Text Cleaning (22) - General Features.srt

3.6 KB

10. (Python Practice) Applied Tokenization (33).srt

3.5 KB

12. (Python Practice) Applied Stemming.srt

3.4 KB

8. (Python Practice) Applied Tokenization (13).srt

2.3 KB

11. Stemming.srt

3.2 KB

9. (Python Practice) Applied Tokenization (23).srt

2.4 KB

15. (Python Pratice) Tweet Pre-Processing.srt

1.1 KB

13. Lemmatization.srt

2.5 KB

6. (Python Practice) Cleaning General Features.mp4

32.3 MB

7. Tokenization.mp4

27.5 MB

3. Text Cleaning (12) - Twitter Features.mp4

23.3 MB

2. What is Text Normalization.mp4

20.5 MB

12. (Python Practice) Applied Stemming.mp4

19.7 MB

5. Text Cleaning (22) - General Features.mp4

19.6 MB

14. (Python Practice) Applied Lemmatization.mp4

19.6 MB

1. Section Overview.mp4

19.5 MB

10. (Python Practice) Applied Tokenization (33).mp4

19.2 MB

11. Stemming.mp4

19.0 MB

13. Lemmatization.mp4

15.5 MB

8. (Python Practice) Applied Tokenization (13).mp4

13.2 MB

9. (Python Practice) Applied Tokenization (23).mp4

12.5 MB

15. (Python Pratice) Tweet Pre-Processing.mp4

8.8 MB

2.1 Section 2 - Theory Deck.pdf

1.9 MB

/5. Sentiment Analysis/

3. Logistic Regression.srt

7.9 KB

7. Model Performance Measures.srt

7.2 KB

6. (Python Practice) ML Model Fitting.srt

6.1 KB

8.1 Colab_Notebook_Section_4_completed.ipynb

87.4 KB

4. ML Model Training.srt

5.8 KB

8. (Python Practice) Applied Performance Measures.srt

4.1 KB

3. Logistic Regression.mp4

39.3 MB

5. (Python Practice) TrainTest split.srt

2.9 KB

4. ML Model Training.mp4

35.5 MB

9. (Python Practice) Prediction Pipeline.srt

2.2 KB

2. Why a model.srt

1.7 KB

1. Section Overview.srt

1.1 KB

7. Model Performance Measures.mp4

35.1 MB

6. (Python Practice) ML Model Fitting.mp4

30.9 MB

8. (Python Practice) Applied Performance Measures.mp4

20.0 MB

1. Section Overview.mp4

18.0 MB

5. (Python Practice) TrainTest split.mp4

17.7 MB

9. (Python Practice) Prediction Pipeline.mp4

13.2 MB

2. Why a model.mp4

12.3 MB

2.1 Section 4 - Theory Deck.pdf

1.6 MB

/.../2. Introduction to Text Mining/

1. Section Overview.srt

2.0 KB

4. Text Mining and NLP.srt

2.5 KB

5. Sentiment Analysis.srt

2.8 KB

6. Roadmap.srt

2.8 KB

10.1 Colab_Notebook_Section_1_completed.ipynb

80.4 KB

7.1 Colab_Notebook.ipynb

79.4 KB

9. (Python Practice) Dataset Overview.srt

3.1 KB

8. (Python Practice) Dataset Connection.srt

3.9 KB

10. (Python Practice) Dataset Visualization.srt

3.8 KB

2. What is Text.srt

3.6 KB

7. (Python Practice) Google Colab.srt

3.2 KB

3. What is Text Mining.srt

3.2 KB

1. Section Overview.mp4

30.5 MB

10. (Python Practice) Dataset Visualization.mp4

23.3 MB

8. (Python Practice) Dataset Connection.mp4

22.3 MB

2. What is Text.mp4

21.5 MB

3. What is Text Mining.mp4

20.0 MB

5. Sentiment Analysis.mp4

17.1 MB

9. (Python Practice) Dataset Overview.mp4

17.0 MB

6. Roadmap.mp4

17.0 MB

4. Text Mining and NLP.mp4

15.3 MB

7. (Python Practice) Google Colab.mp4

12.9 MB

2.1 Section 1 - Theory Deck.pdf

2.7 MB

8.1 tweet_data.csv

1.8 MB

/.pad/

0

0.6 KB

1

0.2 KB

2

0.1 KB

3

161.7 KB

4

35.2 KB

5

193.8 KB

6

14.7 KB

7

445.1 KB

8

477.2 KB

9

328.2 KB

10

48.2 KB

11

253.7 KB

12

498.5 KB

13

332.1 KB

14

335.1 KB

15

269.9 KB

16

39.7 KB

17

24.5 KB

18

419.6 KB

19

470.9 KB

20

406.6 KB

21

482.3 KB

22

227.1 KB

23

281.6 KB

24

369.7 KB

25

453.2 KB

26

212.3 KB

27

442.9 KB

28

336.2 KB

29

408.0 KB

30

313.9 KB

31

111.8 KB

32

222.1 KB

33

301.9 KB

34

329.6 KB

35

238.3 KB

36

409.2 KB

37

389.1 KB

38

427.7 KB

39

161.5 KB

40

82.2 KB

41

328.2 KB

42

135.3 KB

43

436.1 KB

44

206.8 KB

45

261.4 KB

46

447.3 KB

/4. Text Vectorization/

8.1 Colab_Notebook_Section_3_completed.ipynb

85.8 KB

6. (Python Practice) Applied Bag-of-Words.srt

5.9 KB

7. TF-IDF.srt

4.8 KB

3. PositiveNegative Word Frequencies.srt

4.7 KB

1. Section Overview.srt

1.4 KB

4. (Python Practice) Applied PositiveNegative Frequencies.srt

3.6 KB

5. Bag-of-Words.srt

3.5 KB

8. (Python Practice) Applied TF-IDF.srt

3.4 KB

2. Why Representing Text.srt

2.6 KB

6. (Python Practice) Applied Bag-of-Words.mp4

30.5 MB

7. TF-IDF.mp4

24.6 MB

3. PositiveNegative Word Frequencies.mp4

24.4 MB

1. Section Overview.mp4

23.6 MB

4. (Python Practice) Applied PositiveNegative Frequencies.mp4

22.0 MB

5. Bag-of-Words.mp4

20.6 MB

8. (Python Practice) Applied TF-IDF.mp4

18.5 MB

2. Why Representing Text.mp4

18.5 MB

2.1 Section 3 - Theory Deck.pdf

1.6 MB

 

Total files 145


Copyright © 2025 FileMood.com