FileMood

Download /Pluralsight Path. Deep Learning Literacy. Practical Application (2022)/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/2. Demo - Fine Tuning Glove and FastText.vtt

Pluralsight Path Deep Learning Literacy Practical Application 2022

C1 Implement Natural Language Processing for Word Embedding Axel Sirota 2022 Fine tuning Word Representations Demo Fine Tuning Glove and FastText vtt

Name

Pluralsight Path. Deep Learning Literacy. Practical Application (2022)

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

1.9 GB

Total Files

486

Last Seen

2025-04-06 23:42

Hash

834B6201E4DFFFCAA866824648C67D3D42C40431

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/2. Demo - Fine Tuning Glove and FastText.vtt

13.3 KB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/2. Demo - Fine Tuning Glove and FastText.mp4

67.6 MB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/3. Demo - Making Word Clusters.vtt

7.8 KB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/3. Demo - Making Word Clusters.mp4

21.4 MB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/4. Demo - Debiase Word Embeddings.vtt

9.6 KB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/1. Why Would We Fine Tune Existing Models.vtt

2.5 KB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/5. Key Takeaways and Tips.vtt

1.1 KB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/6. Where to Go Next.vtt

1.8 KB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/4. Demo - Debiase Word Embeddings.mp4

40.3 MB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/3. Training Word Representations/4. Demo - Analyzing Sentiment with OHE.vtt

8.3 KB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/1. Why Would We Fine Tune Existing Models.mp4

3.8 MB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/5. Key Takeaways and Tips.mp4

1.7 MB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/4. Fine-tuning Word Representations/6. Where to Go Next.mp4

4.2 MB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/3. Training Word Representations/6. Demo - Training a CBOW Embedding.vtt

14.6 KB

/C1. Implement Natural Language Processing for Word Embedding (Axel Sirota, 2022)/3. Training Word Representations/3. Demo - Using OHE.vtt

11.5 KB

 

Showing first 15 files of 486 total files


Copyright © 2025 FileMood.com