FileMood

Download CBTNuggets - Introduction to Machine Learning 2024-3

CBTNuggets Introduction to Machine Learning 2024

Name

CBTNuggets - Introduction to Machine Learning 2024-3

 DOWNLOAD Copy Link

Total Size

31.0 GB

Total Files

423

Last Seen

2025-01-05 02:00

Hash

998AC336DD5AE4BD3A9E469B4F946F74D7F5AB24

/55. Design Effective Prompts for Large Language Models/

2. Iterative Prompt Engineering.mp4

216.9 MB

1. Introduction.mp4

50.7 MB

3. Build a Summarizer for Interesting Topics.mp4

140.3 MB

4. Implement Supervised Learning Through Inference.mp4

67.9 MB

5. Challenge Build The AutoBot ChatBot To Manage Orders.mp4

178.6 MB

/1. Explore How AI Agents Navigate Driving Directions/

1. Introduction.mp4

37.4 MB

2. What is Artificial Intelligence.mp4

171.0 MB

3. Grand Search Auto.mp4

147.3 MB

4. Explore the Frontier.mp4

64.6 MB

5. Depth-First Search.mp4

73.0 MB

6. Breadth-First Search.mp4

103.6 MB

7. Breadth-First Search.mp4

77.5 MB

/2. Apply Probability to Real-World AI Problems/

1. Introduction.mp4

31.3 MB

2. Probability of Rolling One 6-sided Die.mp4

109.0 MB

3. Probability of Rolling Two 6-sided Dice.mp4

73.8 MB

4. Conditional Probability.mp4

61.6 MB

5. Bayesian Networks.mp4

76.6 MB

6. Recapitulation.mp4

21.7 MB

/3. Define What is Machine Learning/

1. Introduction.mp4

194.3 MB

2. What is Machine Learning.mp4

168.4 MB

3. Supervised.mp4

162.5 MB

4. Unsupervised.mp4

62.5 MB

5. Build an Image Classifier.mp4

149.5 MB

6. Predicting Lumber Prices with Linear Regression.mp4

134.4 MB

lumber_prediction_line.ipynb.txt

0.1 KB

/4. Setup a Machine Learning Development Environment/

1. Introduction.mp4

108.9 MB

2. Anaconda, Conda and Jupyter - Locally.mp4

172.7 MB

3. Anaconda, Conda and Jupyter - Starting and Ending a Session .mp4

77.8 MB

4. Google Colab.mp4

150.9 MB

5. Cloud Services AWS, GCP, and Azure.mp4

153.3 MB

6. Vast.ai the market leader in low-cost cloud GPU rental.mp4

88.3 MB

conda-cheatsheet.pdf

299.1 KB

/5. Explore How AI Agents Navigate Driving Directions/

1. Introduction.mp4

37.4 MB

2. What is Artificial Intelligence.mp4

171.0 MB

3. Grand Search Auto.mp4

147.3 MB

4. Explore the Frontier.mp4

64.6 MB

5. Depth-First Search.mp4

73.0 MB

6. Breadth-First Search.mp4

103.6 MB

7. Greedy-Best First and A Search.mp4

77.5 MB

/6. Apply Probability to Real-World AI Problems/

1. Introduction.mp4

31.3 MB

2. Probability of Rolling One 6-sided Die.mp4

109.0 MB

3. Probability of Rolling Two 6-sided Dice.mp4

73.8 MB

4. Conditional Probability.mp4

61.6 MB

5. Bayesian Networks.mp4

76.6 MB

6. Recapitulation.mp4

21.7 MB

/7. Define What is Machine Learning/

1. Introduction.mp4

194.3 MB

2. What is Machine Learning.mp4

168.4 MB

3. Supervised.mp4

162.5 MB

4. Unsupervised.mp4

62.5 MB

5. Build an Image Classifier.mp4

149.5 MB

6. Predicting Lumber Prices with Linear Regression.mp4

134.4 MB

/8. Setup a Machine Learning Development Environment/

1. Introduction.mp4

108.9 MB

2. Locally.mp4

172.7 MB

3. Starting and Ending a Session.mp4

77.8 MB

4. Google Colab.mp4

150.9 MB

5. Cloud Services AWS, GCP, and Azure.mp4

153.3 MB

6. Vast.ai the market leader in low-cost cloud GPU rental.mp4

88.3 MB

/9. Explore Data Pipelines and Linear Regression/

1. Introduction.mp4

88.9 MB

2. What is a Machine Learning Model.mp4

125.9 MB

3. Predicting Lumber Prices Data Collection.mp4

100.2 MB

4. Predicting Lumber Prices Data Cleaning & Preprocessing.mp4

56.1 MB

5. Predicting Lumber Prices Feature Extraction.mp4

177.9 MB

/10. Apply Regression Concepts for Supervised Learning/

1. Introduction.mp4

96.0 MB

2. A Brief and Bizarre History of Linear Regression.mp4

86.2 MB

3. Explore Linear Relationships Ordinary Least Squares.mp4

198.9 MB

4. Seaborn Line of Best Fit.mp4

69.6 MB

5. Ordinary Least Squares with Matlab's PolyFit.mp4

128.7 MB

6. Challenge.mp4

75.3 MB

/11. Examine Cost Functions and Parameter Tuning/

1. Introduction.mp4

75.8 MB

2. Mean Absolute Error.mp4

41.5 MB

3. Mean Squared Error.mp4

35.8 MB

4. Root Mean Squared Error.mp4

62.9 MB

5. Cost Functions.mp4

65.1 MB

6. Calculate Your Model's Performance.mp4

207.5 MB

/12. Implement Gradient Descent for Linear Regression/

1. Introduction.mp4

72.3 MB

2. Exploring Gradient Descent Concepts.mp4

76.3 MB

3. Exploring The Gradient Descent Algorithm.mp4

76.6 MB

4. Gradient Descent Behind the Scenes.mp4

89.6 MB

5. Implementing The Gradient Descent Algorithm.mp4

129.2 MB

/13. Vectorize Operations for Multiple Regression/

1. Introduction.mp4

99.5 MB

2. Multiple Linear Regression.mp4

74.4 MB

3. Vectorization.mp4

69.1 MB

4. Non-Vectorized Operations.mp4

92.4 MB

5. Interpreting the Weights.mp4

106.2 MB

6. Vectorized Operations.mp4

38.5 MB

/14. Explore Feature Engineering and Data Preparation/

1. Introduction.mp4

105.1 MB

2. What is Feature Engineering.mp4

82.8 MB

3. Handling Missing Data.mp4

109.9 MB

4. Handling Outliers.mp4

74.0 MB

5. One Hot Encoding.mp4

64.0 MB

6. Define, Split and Scale Features.mp4

92.4 MB

7. Measuring Survival Accuracy .mp4

34.0 MB

/15. Identify Key Classification Algorithms/

1. Introduction.mp4

110.8 MB

2. From Regression to Classification.mp4

89.7 MB

3. Logistic Regression.mp4

68.6 MB

4. Decision Trees.mp4

58.8 MB

5. Random Forests.mp4

71.8 MB

6. Support Vector Machines.mp4

45.8 MB

7. Perceptrons.mp4

53.7 MB

/16. Implement Logistic Regression with Python/

1. Introduction.mp4

158.1 MB

2. What is Logistic Regression.mp4

67.5 MB

3. The Sigmoid Formula and Function.mp4

51.8 MB

4. Logistic Regression in 4 lines of Code.mp4

85.9 MB

5. Implement Logistic Regression Part 1 Data Preprocessing, Cleaning, and Encoding .mp4

168.1 MB

6. Implement Logistic Regression Part 2 Implement Logistic Regression and Measure Performance.mp4

87.4 MB

/17. Build a Python Decision Tree Classification Model/

1. Introduction.mp4

90.0 MB

2. Introduction.mp4

138.6 MB

3. Introduction.mp4

66.3 MB

4. Introduction.mp4

163.3 MB

5. Introduction.mp4

127.0 MB

/18. Build a Python Random Forest Classification Model/

1. Introduction.mp4

72.3 MB

2. What is a Random Forest.mp4

61.1 MB

3. Random Forest Concepts.mp4

77.4 MB

4. Import Libraries, Feature Engineering and One-Hot Encoding.mp4

109.3 MB

5. Train, Test, Predict, and Measure Model Performance.mp4

83.1 MB

6. Bonus Hyperparameter Tuning Video.mp4

31.4 MB

/19. Apply Regularization to Overcome Overfitting/

1. Introduction.mp4

94.6 MB

2. What is Overfitting.mp4

82.7 MB

3. Three Options for Handling Overfitting.mp4

78.7 MB

4. Overfitting for Classification.mp4

63.3 MB

5. Comparing Cost Functions.mp4

71.7 MB

6. Perform Logistic Regression with Regularization.mp4

74.2 MB

/20. Build a Support Vector Machine Classifier/

1. Introduction.mp4

82.3 MB

2. What is a Support Vector Machine.mp4

76.8 MB

3. Optimal Hyperplanes and the Margin.mp4

70.5 MB

4. Data Loading and PreProcessing.mp4

158.7 MB

5. Build and Evaluate the Model.mp4

77.0 MB

6. Breast Cancer Wisconsin (Diagnostic) Dataset.mp4

44.7 MB

/21. Build a K-Nearest Neighbors Classifier/

1. Introduction.mp4

187.1 MB

2. What is K-Nearest Neighbors.mp4

75.1 MB

3. KNN vs. Other Classifiers.mp4

71.5 MB

4. What is Imbalanced Data.mp4

54.5 MB

5. Data Loading and EDA.mp4

53.4 MB

6. Data PreProcessing.mp4

85.0 MB

7. Build and Evaluate the Model.mp4

84.3 MB

/22. Explore Neural Network Basics With The Perceptron/

1. Introduction.mp4

85.7 MB

2. Neurons as the building blocks of neural networks.mp4

35.6 MB

3. Perceptrons As Artificial Neurons.mp4

70.6 MB

4. How Activation Functions Work.mp4

55.6 MB

5. Why Linearly Separable Data Is Key.mp4

79.1 MB

6. Build A Simple Binary Perceptron Classifier.mp4

117.4 MB

7. Challenge Complete The Perceptron Function 🍩.mp4

66.5 MB

8. Solution Video.mp4

79.1 MB

/23. Implement a Perceptron for Classification/

1. Introduction.mp4

88.1 MB

2. What is a Perceptron.mp4

36.8 MB

3. The Perceptron Rule and Neurons.mp4

117.3 MB

4. Implement a Perceptron from Scratch.mp4

148.8 MB

5. The Perceptron Challenge.mp4

41.8 MB

6. Solution Video.mp4

75.0 MB

7. Bonus Resources.mp4

95.6 MB

/24. Explore PyTorch Fundamentals for Machine Learning/

1. Introduction.mp4

69.7 MB

2. What Is PyTorch and Why It Is Useful.mp4

66.7 MB

3. Set up a PyTorch Development Environment.mp4

46.5 MB

4. Leverage Tensors Concepts.mp4

54.5 MB

5. Leverage Tensors Programmatically.mp4

61.4 MB

6. Challenge.mp4

48.6 MB

/25. Leverage PyTorch Tensor Attributes and Operators/

1. Introduction.mp4

70.0 MB

2. Tensor attributes.mp4

72.9 MB

3. Tensor Math Operators.mp4

52.6 MB

4. Matrix Multiplication.mp4

67.2 MB

5. The PyTorch Double Challenge.mp4

75.3 MB

/26. Explore Fundamental PyTorch Tensor Operations/

1. Introduction.mp4

40.7 MB

2. Review Matrix Multiplication Errors.mp4

101.9 MB

3. Min, Max, Mean, and Sum (Tensor Aggregation).mp4

57.2 MB

4. Navigating Positional Min Max Values.mp4

43.3 MB

5. The Challenge.mp4

77.6 MB

6. Solution Video.mp4

53.5 MB

7. Bonus Resources.mp4

38.6 MB

/27. Apply PyTorch Tensor Manipulation and Indexing/

1, Introduction.mp4

38.7 MB

2. Reshape, View, and Stack Tensors.mp4

111.0 MB

3. Squeeze and Unsqueeze Tensors.mp4

72.0 MB

4. Permute Tensors.mp4

49.3 MB

5. Index Tensors.mp4

62.1 MB

6. Challenge Tensor Transformer.mp4

61.6 MB

7. Solution Video.mp4

42.0 MB

/28. Explore Gradient Descent & Back Propagation/

1. Introduction.mp4

116.2 MB

2. Gradient Descent.mp4

17.2 MB

3. Forward Propagation.mp4

56.6 MB

4. Back Propagation.mp4

78.3 MB

5. Training, Validation, and Test Datasets.mp4

43.5 MB

6. Split The Train Test Datasets.mp4

170.2 MB

7. Build a Linear Regression Model.mp4

111.9 MB

/29. Predict Ice Cream Sales with PyTorch Regression/

1. Introduction.mp4

49.0 MB

2. Device Agnostic Conditions & Load Data.mp4

43.8 MB

3. Pre-Processing.mp4

37.9 MB

4. Model Building.mp4

42.7 MB

5. Mini-Challenge Model Training & Model Evaluation.mp4

69.7 MB

6. Saving and Loading PyTorch Models.mp4

66.8 MB

7. Challenge.mp4

56.0 MB

/30. Implement a Logistic Regression Model with PyTorch/

1. Introduction.mp4

62.8 MB

2. Review Sklearn Titanic Classification.mp4

38.3 MB

3. Part1 Import Libraries, Define Model. and Load the data.mp4

47.9 MB

4. Part2 Build model.mp4

48.7 MB

5. Part 3 Fit model.mp4

37.3 MB

6. Challenge Part 1 Evaluate the Model .mp4

37.6 MB

7. Challenge Part 3 Bonus Self-Graded Take-Home Challenge.mp4

89.4 MB

/31. Explore Neural Network Classification with PyTorch/

1. Introduction.mp4

61.5 MB

2. Review Logistic Regression PyTorch Workflow.mp4

61.6 MB

3. Load Make Moons Dataset & Pre-processing.mp4

68.0 MB

4. Define Neural Network Architecture.mp4

68.6 MB

5. Train and Evaluate Model.mp4

80.7 MB

6. Visualize Decision Boundary with Probability.mp4

13.8 MB

7. Challenge PyTorch Workflow.mp4

42.7 MB

/32. Build a PyTorch Classifier with Non-Linearity/

1. Introduction.mp4

23.1 MB

2. Review Neural Network Classification Without Non-Linearity.mp4

84.3 MB

3. Build a Neural Network Classification With Non-Linearity Step 1 Load Dataset, Pre-processing, and Make Circles.mp4

62.8 MB

4. Build a Neural Network Classification With Non-Linearity Step 2 Define Neural Network Architecture.mp4

56.6 MB

5. Build a Neural Network Classification With Non-Linearity Step 3 Add Non-Linear Activation Function ReLu.mp4

56.4 MB

6. Build a Neural Network Classification With Non-Linearity Step 4 Train Model .mp4

80.7 MB

7. Build a Neural Network Classification With Non-Linearity Step 5 Evaluate Model.mp4

33.7 MB

8. Challenge PyTorch Workflows.mp4

59.1 MB

/33. Explore Multi-class Classification with PyTorch/

1. Introduction.mp4

15.9 MB

2. Review of Binary Classification with PyTorch.mp4

111.0 MB

3. Step 1 Setup and Prepare Data.mp4

55.6 MB

4. Step 2 Visualize Data (EDA).mp4

40.2 MB

5. Step 3 Define Neural Network Architecture.mp4

41.9 MB

6. Challenge .mp4

45.5 MB

7. Solution Videos Training Loop.mp4

46.2 MB

8. Solution Videos Evaluation and Decision Boundary.mp4

39.8 MB

/34. Tune Hyperparameters and Analyze Fit with PyTorch/

1. Introduction.mp4

11.8 MB

2. Review Explore Multi-class Classification with PyTorch.mp4

57.4 MB

3. Create, Preprocess, and Visualize the Spiral Dataset.mp4

57.0 MB

4. Define Neural Network Architecture.mp4

26.9 MB

5. Explore Hyperparameter Tuning.mp4

78.1 MB

6. Explore Underfitting and Overfitting.mp4

46.1 MB

7. Challenge .mp4

40.5 MB

8. Solution Video.mp4

56.6 MB

/35. Discover What's New with PyTorch 2.0/

1. Introduction.mp4

82.7 MB

2. Universal Device Setup in PyTorch 2.0.mp4

37.7 MB

3. Key Features of PyTorch 2.0.mp4

71.3 MB

4. Traditional PyTorch 1.0 Vs PyTorch 2.0 torch.compile( ).mp4

74.8 MB

5. Challenge .mp4

46.5 MB

6. Challenge 2.mp4

23.7 MB

/36. Explore TensorFlow Machine Learning Foundations/

1. Introduction.mp4

51.0 MB

2. Introduction to TensorFlow Tensors.mp4

50.2 MB

3. Introduction to TensorFlow Tensors Part 2.mp4

22.4 MB

4. Create Tensors with TensorFlow.mp4

20.9 MB

5. Create Random Tensors with Numpy.mp4

58.2 MB

6. Challenge.mp4

65.5 MB

/37. Explore TensorFlow Aggregation and Manipulation/

1. Introduction.mp4

46.2 MB

2. Why Shuffle Tensors.mp4

28.1 MB

3. TensorFlow Seeds.mp4

23.7 MB

4. Tensor Attributes.mp4

24.5 MB

5. Tensor Indexing.mp4

15.2 MB

6. Changing Tensor Data Types & Tensor Aggregation.mp4

34.2 MB

7. Tensor Positional Methods.mp4

35.0 MB

8. Challenge .mp4

25.0 MB

9. Challenge 2.mp4

30.1 MB

/38. Implement Matrix Multiplication with TensorFlow/

1. Introduction.mp4

18.3 MB

2. Basic Tensor Operation.mp4

17.7 MB

3. TensorFlow Math Functions.mp4

28.1 MB

4. Matrix Multiplication Foundations.mp4

61.1 MB

5. Perform Matrix Multiplication.mp4

67.9 MB

6. Challenge.mp4

61.6 MB

/39. Reshape, Transpose, and Alter TensorFlow Tensors/

1. Introduction.mp4

11.9 MB

2. Review Matrix Multiplication.mp4

52.8 MB

3. Altering Tensors.mp4

39.0 MB

4. Transpose & Reshape Tensors.mp4

29.4 MB

5. Tensor Expansion.mp4

50.2 MB

6. Challenge.mp4

79.7 MB

7. Solution Part 1.mp4

66.8 MB

8. Solution Part 2.mp4

24.1 MB

/40. Squeeze, Encode, and Optimize TensorFlow Tensors/

1. Introduction.mp4

28.0 MB

2. Squeezing Tensors.mp4

77.7 MB

3. One-Hot Encoding.mp4

40.7 MB

4. Numpy = Friend ❀️.mp4

55.4 MB

5. GPU & TPU Tensor Optimization.mp4

55.0 MB

6. Challenge.mp4

23.6 MB

7. Challenge Part 2.mp4

66.9 MB

/41. Explore Neural Network Regression with TensorFlow/

1. Introduction.mp4

10.8 MB

2. What is Regression Analysis.mp4

67.0 MB

3. Neural Network Architecture.mp4

113.5 MB

4. Build a Model.mp4

109.1 MB

5. Challenge.mp4

61.1 MB

6. Solution Video.mp4

99.4 MB

/42. Build a Simple Regression Model with TensorFlow/

1. Introduction.mp4

80.8 MB

2. Build a Small Regression Model from Memory .mp4

62.0 MB

3. Build Model From Scratch.mp4

113.9 MB

4. Challenge Improve Model.mp4

70.0 MB

5. Solution Part 1.mp4

62.0 MB

6. Solution Part 1.mp4

113.2 MB

/43. Evaluate Regression Models with TensorFlow/

1. Introduction.mp4

67.2 MB

2. Regression Challenge.mp4

58.5 MB

3. Preprocess Data.mp4

73.8 MB

4. Challenge Build Model.mp4

52.1 MB

5. Challenge Solution.mp4

120.1 MB

/44. Visualize and Evaluate Performance with TensorFlow/

1. Introduction.mp4

35.9 MB

2. Generate Linear Transformation Data.mp4

75.3 MB

3. Common Evaluation Metrics MAE, MSE, & Huber.mp4

81.9 MB

4. Split Data for Train and Test Datasets.mp4

108.4 MB

5. Define Basic Model Architecture.mp4

35.3 MB

6. Make Predictions and Evaluate Model.mp4

59.1 MB

7. Challenge.mp4

47.4 MB

8. Solution Video.mp4

67.1 MB

/45. Normalize and Feature Scale Data with TensorFlow/

1. Introduction.mp4

77.0 MB

2. Handle Imports & Load Dataset.mp4

37.7 MB

3. One-hot Encode & Separate Features and Target.mp4

32.9 MB

4. Perform TrainTest Split.mp4

25.2 MB

5. Define Model Architecture.mp4

36.3 MB

6. Evaluate Model and Visualize Loss.mp4

32.8 MB

7. What is Normalization and Standardization.mp4

12.0 MB

8. Challenge.mp4

66.6 MB

9. Solution Video.mp4

49.9 MB

/46. Explore TensorFlow Neural Network Classification/

1. Introduction.mp4

89.6 MB

2. What is Classification.mp4

101.2 MB

3. What is Binary Classification.mp4

56.8 MB

4. What is Multi-Class Classification.mp4

40.2 MB

5. What is Multi-Label Classification.mp4

63.5 MB

6. Classification Code Example.mp4

65.7 MB

7. Challenge.mp4

91.0 MB

8. Solution.mp4

38.8 MB

/47. Build a Neural Network Classifier with TensorFlow/

1. Introduction.mp4

43.9 MB

2. Pseudocode Image Classification.mp4

26.8 MB

3. Create Circles Dataset & EDA.mp4

64.1 MB

4. Build, Compile, and Train Model.mp4

36.2 MB

5. Visualize and Evaluate Model.mp4

68.9 MB

6. Challenge.mp4

37.3 MB

7. Solution Video.mp4

49.8 MB

8. Bonus Video.mp4

41.4 MB

/48. Build a TensorFlow Classifier with Non-Linearity/

1. Review Non-Linearly Separable Data.mp4

77.8 MB

2. Create Circles DataSet.mp4

43.2 MB

3. Create Second Model.mp4

74.2 MB

4. Create Third Model.mp4

48.1 MB

5. Create Fourth Model.mp4

94.5 MB

6. Challenge.mp4

13.3 MB

7. Solution.mp4

66.6 MB

/49. Evaluate TensorFlow Classification Models/

1. Review Learning Rates.mp4

67.5 MB

2. Adaptive Learning Rates part 1.mp4

42.2 MB

3. Adaptive Learning Rates part 2.mp4

29.5 MB

4. Adaptive Learning Rates part 3.mp4

102.7 MB

5. Big Five Evaluation Metrics.mp4

29.7 MB

6. Solution Video.mp4

32.2 MB

/50. Explore Multi-Class Classification with TensorFlow/

1. Compare Binary and Multi-Class Classification.mp4

65.2 MB

2. Create a Teachable Machine Multi-Class Classifier.mp4

131.1 MB

3. Review Model Building Steps.mp4

21.5 MB

4. Load and Explore MNIST Fashion Dataset.mp4

104.6 MB

5. Challenge.mp4

32.4 MB

6. Solution Video.mp4

73.0 MB

/51. Tune Multi-Class Classification TensorFlow Models/

1. Introduction.mp4

58.2 MB

2. Review MNIST Fashion Multi-Class Classifier.mp4

83.3 MB

3. Load and Visualize Dataset.mp4

57.9 MB

4. One-Hot Encode Features and Build Model.mp4

114.8 MB

5. Softmax and Validation Exploration.mp4

52.8 MB

6. Challenge.mp4

73.5 MB

7. Solution Video.mp4

52.4 MB

/52. Explore Multi-Label Classification with TensorFlow/

1. Introduction.mp4

31.4 MB

2. Binary, Multi-Class, and Multi-Label Classification.mp4

205.3 MB

3. Start Building a Multi-Label Classifier.mp4

56.9 MB

4. Build a Sequential Multi-Label Model.mp4

48.7 MB

5. Evaluate Model.mp4

54.1 MB

6. Challenge.mp4

41.1 MB

7. Solution Video.mp4

36.4 MB

/53. Explore The Fundamentals of Large Language Models/

1. Introduction.mp4

62.0 MB

2. What is a Large Language Model (LLM).mp4

103.4 MB

3. How do LLMs work.mp4

36.4 MB

4. Two Kinds of LLMs Base and Instruction Tuned.mp4

54.4 MB

5. System Messages and Tokens.mp4

39.6 MB

6. System Messages and Tokens Part 2.mp4

32.8 MB

7. Challenge Connect Google Colab to ChatGPT via OpenAI's API.mp4

76.8 MB

/54. Build LLM Apps with ChatGPT and the OpenAI API/

1. Introduction.mp4

47.4 MB

2. Web Chat Interfaces Vs. Programmatic Notebooks.mp4

85.4 MB

3. Route Queries Using Classification for Different Cases.mp4

137.5 MB

4. Evaluate Inputs to Prevent Prompt Injections.mp4

22.6 MB

5. Implement The OpenAI Moderation API.mp4

123.2 MB

6. Sanitize and Validate Inputs Injection Attacks.mp4

100.6 MB

7. Challenge Filter Inputs with a Chain of Thought Prompt Filter.mp4

136.4 MB

/

Readme.txt

0.1 KB

/56. Implement LangChain in Language Model Workflows/

1. Introduction.mp4

62.6 MB

2. Compare Direct API Calls Vs. API Calls Through LangChain - LangChain API Call.mp4

101.3 MB

3. Leverage LangChain Templating for Complex Prompts.mp4

186.7 MB

4. Leverage Power of Templating for DRY Code.mp4

80.3 MB

5. Challenge.mp4

27.4 MB

6. Video Solution.mp4

93.5 MB

/57. Implement LangChain Memory for Autonomous Tasks/

1. Introduction.mp4

55.3 MB

2. ConversationBufferMemory.mp4

132.3 MB

3. ConversationBufferWindowMemory.mp4

63.3 MB

4. ConversationTokenBufferMemory.mp4

36.0 MB

5. ConversationSummaryBufferMemory.mp4

80.6 MB

6. The Power of Chaining LangChain Components.mp4

138.9 MB

7. Challenge Implement LangChain Memory.mp4

150.4 MB

/58. Combine LangChain Components for Coherent Apps/

1. Introduction.mp4

89.5 MB

2. Chaining in LangChain.mp4

44.7 MB

3. LLMChain.mp4

74.0 MB

4. SimpleSequentialChain.mp4

55.9 MB

5. SequentialChain.mp4

68.5 MB

6. RouterChain.mp4

137.2 MB

7. Challenge.mp4

83.1 MB

/59. Build Task-Driven Autonomous Agents with LangChain/

1. Introduction.mp4

89.5 MB

2. Leverage LangChain Agents.mp4

54.5 MB

3. Perform math calculation using an Math LLM.mp4

68.5 MB

4. Use Wikipedia to Find General Information.mp4

64.6 MB

5. Program using a Python REPL tool.mp4

22.3 MB

6. Create new custom agents and tooling (BabyAGI).mp4

33.1 MB

7. Debugging with LangChain.mp4

102.6 MB

8. Challenge.mp4

77.2 MB

/60. Use LangChain to Interact with PDFs and Documents/

1. Introduction.mp4

72.9 MB

2. Retrieval Augmented Generation (RAG) over 2 Skills.mp4

49.0 MB

3. Document Loaders.mp4

48.5 MB

4. Document Separation.mp4

75.1 MB

5. Embeddings.mp4

74.2 MB

6. Vector Stores.mp4

102.4 MB

/61. Use LangChain to Chat with PDFs and Documents/

1. Introduction.mp4

43.3 MB

2. Similarity Search.mp4

54.4 MB

3. Maximum Margin Relevance.mp4

80.9 MB

4. ContextualCompressionRetriever + MMR.mp4

59.7 MB

5. Chat Q&A Part 1.mp4

63.7 MB

6. Chat Q&A Part 2.mp4

73.5 MB

7. Challenge.mp4

136.6 MB

/62. Explore Transformer Encoders and Decoders/

1. Introduction.mp4

86.2 MB

2. What are Transformers.mp4

41.3 MB

3. Attention Is All You Need (Optional).mp4

165.4 MB

4. Encoders.mp4

25.2 MB

5. Decoders.mp4

31.0 MB

6. Encoder-Decoders.mp4

17.2 MB

7. What is HuggingFace Again.mp4

56.1 MB

8. Solution Video.mp4

39.5 MB

/63. Examine the Fundamentals of HuggingFace/

1. Introduction.mp4

113.8 MB

2. What is HuggingFace πŸ€—.mp4

46.9 MB

3. Models.mp4

140.3 MB

4. Datasets.mp4

74.5 MB

5. Spaces.mp4

154.2 MB

6. ChatGPT Competitor HuggingChat πŸ¦ΎπŸ€—.mp4

17.0 MB

7. Challenge.mp4

118.4 MB

 

Total files 423


Copyright © 2025 FileMood.com