FileMood

Download Cluster Analysis and Unsupervised Machine Learning in Python

Cluster Analysis and Unsupervised Machine Learning in Python

Name

Cluster Analysis and Unsupervised Machine Learning in Python

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

1.3 GB

Total Files

677

Last Seen

Hash

B1E34E8204AC2E9508988B4FA204387C80D37707

/z.9781836649373_Code/ann_class2/

__init__.py

0.0 KB

/.../ann_logistic_extra/

__init__.py

0.0 KB

ann_predict.py

0.9 KB

ann_train.py

2.2 KB

ecommerce_data.csv

12.4 KB

logistic_predict.py

0.7 KB

logistic_softmax_train.py

1.8 KB

logistic_train.py

1.5 KB

process.py

1.8 KB

/z.9781836649373_Code/hmm_class/

__init__.py

0.0 KB

coin_data.txt

1.6 KB

edgar_allan_poe.txt

26.6 KB

extra_reading.txt

0.4 KB

frost.py

3.1 KB

generate_c.py

2.3 KB

generate_ht.py

1.3 KB

helloworld.wav

36.9 KB

hmm_classifier.py

3.1 KB

hmmc.py

10.0 KB

hmmc_concat.py

8.8 KB

hmmc_scaled_concat.py

9.0 KB

hmmc_scaled_concat_diag.py

10.3 KB

hmmc_tf.py

7.8 KB

hmmc_theano.py

6.5 KB

hmmc_theano2.py

7.0 KB

hmmd.py

7.3 KB

hmmd_scaled.py

6.3 KB

hmmd_tf.py

4.8 KB

hmmd_theano.py

4.6 KB

hmmd_theano2.py

4.9 KB

robert_frost.txt

56.3 KB

scan1.py

0.7 KB

scan2.py

0.8 KB

scan3.py

1.0 KB

site_data.csv

419.9 KB

sites.py

1.0 KB

tf_scan1.py

0.9 KB

tf_scan2.py

0.9 KB

tf_scan3.py

1.2 KB

/z.9781836649373_Code/rnn_class/

__init__.py

0.0 KB

batch_gru.py

2.4 KB

batch_parity.py

5.9 KB

batch_units.py

6.8 KB

batch_wiki.py

7.0 KB

brown.py

2.9 KB

exercises.txt

0.6 KB

extra_reading.txt

0.1 KB

gru.py

2.0 KB

gru_nonorm_part1_wikipedia_word2idx.json

31.1 KB

gru_nonorm_part1_word_embeddings.npy

1.3 MB

lstm.py

2.9 KB

mlp_parity.py

4.1 KB

poetry_classifier.py

4.9 KB

rrnn_language.py

6.9 KB

srn_language.py

7.7 KB

srn_language_tf.py

7.8 KB

srn_parity.py

3.5 KB

srn_parity_tf.py

3.4 KB

tf_parity.py

4.5 KB

util.py

9.0 KB

visualize_embeddings.py

1.3 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

wiki.py

6.7 KB

/z.9781836649373_Code/unsupervised_class/

__init__.py

0.0 KB

books.py

8.0 KB

choose_k.py

0.8 KB

evolution.py

2.7 KB

gmm.py

3.2 KB

gmm_mnist.py

1.2 KB

hcluster.py

1.8 KB

kmeans.py

3.5 KB

kmeans_fail.py

1.6 KB

kmeans_mnist.py

4.5 KB

kmeans_visualize.py

2.5 KB

neural_kmeans.py

0.9 KB

tweets.py

5.2 KB

/z.9781836649373_Code/unsupervised_class2/

__init__.py

0.0 KB

autoencoder.py

8.6 KB

autoencoder_tf.py

7.9 KB

compare_pca_svd.py

0.8 KB

extra_reading.txt

1.3 KB

gaussian_nb.py

1.8 KB

pca.py

1.0 KB

pca_impl.py

1.1 KB

rbm.py

4.5 KB

rbm_tf.py

4.9 KB

sk_mlp.py

0.8 KB

tsne_books.py

3.0 KB

tsne_donut.py

1.3 KB

tsne_mnist.py

1.3 KB

tsne_visualization.py

1.4 KB

tsne_xor.py

1.0 KB

umap_transformer.py

1.2 KB

unsupervised.py

4.9 KB

util.py

1.0 KB

vanishing.py

3.9 KB

visualize_features.py

1.9 KB

xwing.py

3.9 KB

Chapter 7 Setting Up Your Environment (Appendix)/

002. Anaconda Environment Setup.mp4

69.7 MB

001. Pre-Installation Check.en.srt

7.1 KB

001. Pre-Installation Check.mp4

11.6 MB

002. Anaconda Environment Setup.en.srt

22.3 KB

003. How to install Numpy, Scipy, Matplotlib, Pandas, and Tensorflow.en.srt

16.3 KB

003. How to install Numpy, Scipy, Matplotlib, Pandas, and Tensorflow.mp4

51.5 MB

Chapter 2 Getting Set Up/

001. Where to get the code.mp4

10.4 MB

001. Where to get the code.en.srt

6.5 KB

Chapter 3 Unsupervised Learning/

001. What is unsupervised learning used for.en.srt

7.9 KB

001. What is unsupervised learning used for.mp4

13.1 MB

002. Why Use Clustering.en.srt

13.2 KB

002. Why Use Clustering.mp4

22.3 MB

Chapter 4 K-Means Clustering/

001. An Easy Introduction to K-Means Clustering.en.srt

10.3 KB

001. An Easy Introduction to K-Means Clustering.mp4

18.4 MB

002. Hard K-Means Exercise Prompt 1.en.srt

12.7 KB

002. Hard K-Means Exercise Prompt 1.mp4

25.9 MB

003. Hard K-Means Exercise 1 Solution.en.srt

15.2 KB

003. Hard K-Means Exercise 1 Solution.mp4

30.6 MB

004. Hard K-Means Exercise Prompt 2.en.srt

6.6 KB

004. Hard K-Means Exercise Prompt 2.mp4

12.2 MB

005. Hard K-Means Exercise 2 Solution.en.srt

9.2 KB

005. Hard K-Means Exercise 2 Solution.mp4

18.1 MB

006. Hard K-Means Exercise Prompt 3.en.srt

9.7 KB

006. Hard K-Means Exercise Prompt 3.mp4

20.0 MB

007. Hard K-Means Exercise 3 Solution.en.srt

22.6 KB

007. Hard K-Means Exercise 3 Solution.mp4

47.8 MB

008. Hard K-Means Objective Theory.en.srt

18.4 KB

008. Hard K-Means Objective Theory.mp4

29.9 MB

009. Hard K-Means Objective Code.en.srt

6.6 KB

009. Hard K-Means Objective Code.mp4

14.5 MB

010. Visual Walkthrough of the K-Means Clustering Algorithm (Legacy).en.srt

4.1 KB

010. Visual Walkthrough of the K-Means Clustering Algorithm (Legacy).mp4

4.3 MB

011. Soft K-Means.en.srt

7.8 KB

011. Soft K-Means.mp4

10.6 MB

012. The K-Means Objective Function.en.srt

2.3 KB

012. The K-Means Objective Function.mp4

3.2 MB

013. Soft K-Means in Python Code.en.srt

9.7 KB

013. Soft K-Means in Python Code.mp4

30.4 MB

014. How to Pace Yourself.en.srt

5.0 KB

014. How to Pace Yourself.mp4

8.1 MB

015. Visualizing Each Step of K-Means.en.srt

3.0 KB

015. Visualizing Each Step of K-Means.mp4

8.2 MB

016. Examples of where K-Means can fail.en.srt

6.8 KB

016. Examples of where K-Means can fail.mp4

21.1 MB

017. Disadvantages of K-Means Clustering.en.srt

3.5 KB

017. Disadvantages of K-Means Clustering.mp4

3.9 MB

018. How to Evaluate a Clustering (Purity, Davies-Bouldin Index).en.srt

9.6 KB

018. How to Evaluate a Clustering (Purity, Davies-Bouldin Index).mp4

13.4 MB

019. Using K-Means on Real Data MNIST.en.srt

7.4 KB

019. Using K-Means on Real Data MNIST.mp4

18.2 MB

020. One Way to Choose K.en.srt

5.8 KB

020. One Way to Choose K.mp4

10.9 MB

021. K-Means Application Finding Clusters of Related Words.en.srt

9.4 KB

021. K-Means Application Finding Clusters of Related Words.mp4

37.2 MB

022. Clustering for NLP and Computer Vision Real-World Applications.en.srt

9.7 KB

022. Clustering for NLP and Computer Vision Real-World Applications.mp4

20.4 MB

023. Suggestion Box.en.srt

4.7 KB

023. Suggestion Box.mp4

11.7 MB

Chapter 5 Hierarchical Clustering/

001. Visual Walkthrough of Agglomerative Hierarchical Clustering.en.srt

4.0 KB

001. Visual Walkthrough of Agglomerative Hierarchical Clustering.mp4

4.0 MB

002. Agglomerative Clustering Options.en.srt

5.7 KB

002. Agglomerative Clustering Options.mp4

5.8 MB

003. Using Hierarchical Clustering in Python and Interpreting the Dendrogram.en.srt

5.1 KB

003. Using Hierarchical Clustering in Python and Interpreting the Dendrogram.mp4

11.5 MB

004. Application Evolution.en.srt

18.5 KB

004. Application Evolution.mp4

39.5 MB

005. Application Donald Trump vs. Hillary Clinton Tweets.en.srt

21.0 KB

005. Application Donald Trump vs. Hillary Clinton Tweets.mp4

52.8 MB

Chapter 6 Gaussian Mixture Models (GMMs)/

001. Gaussian Mixture Model (GMM) Algorithm.en.srt

22.2 KB

001. Gaussian Mixture Model (GMM) Algorithm.mp4

31.9 MB

002. Write a Gaussian Mixture Model in Python Code.en.srt

27.0 KB

002. Write a Gaussian Mixture Model in Python Code.mp4

65.8 MB

003. Practical Issues with GMM.en.srt

13.9 KB

003. Practical Issues with GMM.mp4

20.2 MB

004. Comparison between GMM and K-Means.en.srt

5.5 KB

004. Comparison between GMM and K-Means.mp4

9.4 MB

005. Kernel Density Estimation.en.srt

9.3 KB

005. Kernel Density Estimation.mp4

14.3 MB

006. GMM vs Bayes Classifier (pt 1).en.srt

13.6 KB

006. GMM vs Bayes Classifier (pt 1).mp4

20.5 MB

007. GMM vs Bayes Classifier (pt 2).en.srt

16.3 KB

007. GMM vs Bayes Classifier (pt 2).mp4

23.2 MB

008. Expectation-Maximization (pt 1).en.srt

16.3 KB

008. Expectation-Maximization (pt 1).mp4

24.5 MB

009. Expectation-Maximization (pt 2).en.srt

3.0 KB

009. Expectation-Maximization (pt 2).mp4

5.2 MB

010. Expectation-Maximization (pt 3).en.srt

11.1 KB

010. Expectation-Maximization (pt 3).mp4

16.2 MB

Chapter 8 Extra Help With Python Coding for Beginners (Appendix)/

001. How to Code Yourself (part 1).en.srt

23.5 KB

001. How to Code Yourself (part 1).mp4

31.0 MB

002. How to Code Yourself (part 2).en.srt

14.2 KB

002. How to Code Yourself (part 2).mp4

20.0 MB

003. Proof that using Jupyter Notebook is the same as not using it.en.srt

16.3 KB

003. Proof that using Jupyter Notebook is the same as not using it.mp4

36.2 MB

004. How to use Github & Extra Coding Tips (Optional).en.srt

17.0 KB

004. How to use Github & Extra Coding Tips (Optional).mp4

30.6 MB

Chapter 9 Effective Learning Strategies for Machine Learning (Appendix)/

001. How to Succeed in this Course (Long Version).en.srt

16.4 KB

001. How to Succeed in this Course (Long Version).mp4

18.1 MB

002. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.en.srt

34.6 KB

002. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4

43.6 MB

003. What order should I take your courses in (part 1).en.srt

18.4 KB

003. What order should I take your courses in (part 1).mp4

29.5 MB

004. What order should I take your courses in (part 2).en.srt

26.0 KB

004. What order should I take your courses in (part 2).mp4

39.3 MB

z.9781836649373_Code/

.gitignore

0.1 KB

best_fit_line.py

1.1 KB

README.md

6.9 KB

/z.9781836649373_Code/ab_testing/

advertisement_clicks.csv

8.0 KB

bayesian_bandit.py

1.9 KB

bayesian_normal.py

2.1 KB

bayesian_starter.py

1.9 KB

cdfs_and_percentiles.py

0.6 KB

chisquare.py

2.0 KB

ci_comparison.py

1.2 KB

client.py

1.3 KB

comparing_epsilons.py

2.2 KB

convergence.py

1.1 KB

demo.py

1.0 KB

epsilon_greedy.py

2.5 KB

epsilon_greedy_starter.py

2.2 KB

ex_chisq.py

1.2 KB

ex_ttest.py

1.2 KB

extra_reading.txt

0.8 KB

optimistic.py

1.9 KB

optimistic_starter.py

1.8 KB

server_solution.py

1.7 KB

server_starter.py

1.3 KB

ttest.py

1.0 KB

ucb1.py

2.2 KB

ucb1_starter.py

2.1 KB

/z.9781836649373_Code/airline/

ann.py

5.6 KB

international-airline-passengers.csv

2.3 KB

lr.py

1.8 KB

rnn.py

5.1 KB

/z.9781836649373_Code/ann_class/

backprop.py

4.2 KB

extra_reading.txt

0.5 KB

forwardprop.py

1.8 KB

regression.py

3.0 KB

sklearn_ann.py

1.0 KB

tf_example.py

2.5 KB

xor_donut.py

4.5 KB

Chapter 1 Welcome/

001. Introduction.en.srt

7.6 KB

001. Introduction.mp4

14.3 MB

002. Course Outline.en.srt

6.7 KB

002. Course Outline.mp4

9.9 MB

003. Special Offer.en.srt

1.7 KB

003. Special Offer.mp4

3.3 MB

/z.9781836649373_Code/ann_class2/

adam.py

6.1 KB

batch_norm_tf.py

5.7 KB

batch_norm_theano.py

5.9 KB

cntk_example.py

3.3 KB

dropout_tensorflow.py

5.0 KB

dropout_theano.py

5.1 KB

extra_reading.txt

1.2 KB

grid_search.py

2.6 KB

keras_example.py

2.3 KB

keras_functional.py

2.2 KB

mlp.py

1.2 KB

momentum.py

6.3 KB

mxnet_example.py

2.6 KB

pytorch_batchnorm.py

5.0 KB

pytorch_dropout.py

5.1 KB

pytorch_example.py

3.7 KB

pytorch_example2.py

4.6 KB

random_search.py

2.3 KB

rmsprop.py

4.7 KB

rmsprop_test.py

3.0 KB

sgd.py

5.4 KB

tensorflow1.py

3.1 KB

tensorflow2.py

3.8 KB

tf_with_save.py

4.3 KB

theano_ann.py

3.9 KB

theano1.py

1.8 KB

theano2.py

3.5 KB

util.py

8.1 KB

/z.9781836649373_Code/bayesian_ml/1/

nb.py

4.4 KB

Q.csv

122.0 KB

README

0.8 KB

Xtest.csv

241.0 KB

Xtrain.csv

1.4 MB

ytest.csv

4.0 KB

ytrain.csv

23.6 KB

/z.9781836649373_Code/bayesian_ml/2/

em.py

1.6 KB

probit.py

3.7 KB

Q.csv

122.0 KB

README

0.8 KB

Xtest.csv

241.0 KB

Xtrain.csv

1.4 MB

ytest.csv

4.0 KB

ytrain.csv

23.6 KB

/z.9781836649373_Code/bayesian_ml/3/

run.py

4.0 KB

X_set1.csv

97.3 KB

X_set2.csv

610.1 KB

X_set3.csv

2.4 MB

y_set1.csv

0.8 KB

y_set2.csv

2.0 KB

y_set3.csv

3.9 KB

z_set1.csv

0.8 KB

z_set2.csv

1.9 KB

z_set3.csv

3.8 KB

/z.9781836649373_Code/bayesian_ml/4/

data.txt

3.8 KB

emgmm.py

1.9 KB

npbgmm.py

6.5 KB

vigmm.py

6.4 KB

/z.9781836649373_Code/calculus/

extra_reading.txt

0.1 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

/z.9781836649373_Code/chatgpt_trading/

extra_reading.txt

0.1 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

/z.9781836649373_Code/cnn_class/

benchmark.py

4.6 KB

blur.py

1.6 KB

cifar.py

7.1 KB

cnn_tf.py

7.2 KB

cnn_tf_plot_filters.py

6.8 KB

cnn_theano.py

5.7 KB

cnn_theano_plot_filters.py

6.9 KB

custom_blur.py

2.7 KB

echo.py

1.7 KB

edge.py

1.1 KB

edge_benchmark.py

4.1 KB

exercises.txt

0.8 KB

extra_reading.txt

0.7 KB

helloworld.wav

36.9 KB

keras_example.py

2.9 KB

lena.png

473.8 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

/z.9781836649373_Code/cnn_class2/

class_activation_maps.py

2.4 KB

extra_reading.txt

0.5 KB

fashion.py

2.7 KB

fashion2.py

2.5 KB

make_limited_datasets.py

0.9 KB

siamese.py

11.8 KB

ssd.py

4.7 KB

style_transfer1.py

4.8 KB

style_transfer2.py

4.1 KB

style_transfer3.py

3.9 KB

test_softmax.py

0.8 KB

tf_resnet.py

7.7 KB

tf_resnet_convblock.py

6.2 KB

tf_resnet_convblock_starter.py

0.8 KB

tf_resnet_first_layers.py

4.6 KB

tf_resnet_first_layers_starter.py

2.3 KB

tf_resnet_identity_block.py

3.7 KB

tf_resnet_identity_block_starter.py

0.9 KB

use_pretrained_weights_resnet.py

4.8 KB

use_pretrained_weights_vgg.py

4.8 KB

util.py

1.6 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

/z.9781836649373_Code/cnn_class2/content/

elephant.jpg

22.1 KB

sydney.jpg

81.2 KB

/z.9781836649373_Code/cnn_class2/styles/

flowercarrier.jpg

95.5 KB

lesdemoisellesdavignon.jpg

181.3 KB

monalisa.jpg

231.4 KB

starrynight.jpg

34.3 KB

/z.9781836649373_Code/data_csv/

legend.txt

6.7 KB

readme.txt

0.6 KB

X.txt

20.1 KB

X_orig.txt

9.2 KB

y.txt

1.4 KB

/z.9781836649373_Code/financial_engineering/

go_here_instead.txt

0.1 KB

/z.9781836649373_Code/keras_examples/

ann.py

1.8 KB

basic_mlp.py

1.1 KB

batchnorm.py

1.9 KB

cnn.py

2.0 KB

cnn_cifar.py

2.3 KB

cnn_dropout_batchnorm.py

2.1 KB

dropout.py

1.9 KB

sentiment_analysis.py

2.7 KB

sine.py

1.4 KB

sine2.py

1.5 KB

translation.py

4.1 KB

util.py

2.2 KB

/z.9781836649373_Code/kerascv/

extra_reading.txt

0.2 KB

imagenet_label_names.json

14.2 KB

makelist.py

0.2 KB

pascal2coco.py

5.5 KB

/z.9781836649373_Code/linear_algebra/

extra_reading.txt

0.3 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

/.../linear_regression_class/

data_1d.csv

2.8 KB

data_2d.csv

4.2 KB

data_poly.csv

2.8 KB

gd.py

0.3 KB

generate_1d.py

0.6 KB

generate_2d.py

0.7 KB

generate_poly.py

0.7 KB

gradient_descent.py

1.2 KB

l1_regularization.py

1.3 KB

l2_regularization.py

1.2 KB

lr_1d.py

1.4 KB

lr_2d.py

1.5 KB

lr_poly.py

1.8 KB

mlr02.xls

0.8 KB

moore.csv

5.8 KB

moore.py

1.8 KB

overfitting.py

2.4 KB

systolic.py

1.4 KB

/.../logistic_regression_class/

bad_xor.py

1.6 KB

l1_regularization.py

1.7 KB

logistic_donut.py

2.1 KB

logistic_visualize.py

1.1 KB

logistic_xor.py

1.6 KB

logistic1.py

0.8 KB

logistic2.py

1.4 KB

logistic3.py

1.8 KB

logistic4.py

1.6 KB

/z.9781836649373_Code/matrix_calculus/

extra_reading.txt

0.1 KB

/z.9781836649373_Code/mnist_csv/

label_test.txt

1.0 KB

label_train.txt

10.0 KB

Q.txt

161.3 KB

Xtest.txt

82.5 KB

Xtrain.txt

825.8 KB

/z.9781836649373_Code/naive_bayes/

extra_reading.txt

0.3 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

/z.9781836649373_Code/nlp_class/

all_book_titles.txt

128.0 KB

article_spinner.py

2.6 KB

cipher_placeholder.py

1.0 KB

extra_reading.txt

0.7 KB

lsa.py

3.4 KB

nb.py

1.4 KB

sentiment.py

5.8 KB

spam2.py

2.6 KB

spambase.data

702.9 KB

stopwords.txt

2.5 KB

/z.9781836649373_Code/nlp_class/electronics/

negative.review

1.1 MB

positive.review

1.1 MB

unlabeled.review

14.6 MB

/z.9781836649373_Code/nlp_class2/

bow_classifier.py

4.0 KB

extra_reading.txt

0.7 KB

glove.py

12.0 KB

glove_svd.py

6.8 KB

glove_tf.py

8.2 KB

glove_theano.py

8.6 KB

logistic.py

3.9 KB

markov.py

4.2 KB

ner.txt

356.6 KB

ner_baseline.py

3.7 KB

ner_rnn.py

0.9 KB

ner_tf.py

5.9 KB

neural_network.py

4.1 KB

neural_network2.py

4.9 KB

pmi.py

9.2 KB

pos_baseline.py

7.0 KB

pos_hmm.py

2.4 KB

pos_ner_keras.py

5.7 KB

pos_rnn.py

5.1 KB

pos_tf.py

6.8 KB

pretrained_glove.py

4.1 KB

pretrained_w2v.py

2.8 KB

recursive_tensorflow.py

7.2 KB

recursive_theano.py

9.9 KB

rntn_tensorflow.py

8.0 KB

rntn_tensorflow_rnn.py

11.0 KB

rntn_theano.py

11.7 KB

tfidf_tsne.py

3.1 KB

util.py

6.5 KB

visualize_countries.py

1.1 KB

w2v_model.npz

160.5 KB

w2v_word2idx.json

31.5 KB

word2vec.py

10.6 KB

word2vec_tf.py

13.3 KB

word2vec_theano.py

11.9 KB

/z.9781836649373_Code/nlp_class3/

attention.py

13.4 KB

bilstm_mnist.py

2.7 KB

bilstm_test.py

1.0 KB

cnn_toxic.py

4.4 KB

convert_twitter.py

0.7 KB

extra_reading.txt

1.5 KB

lstm_toxic.py

4.2 KB

memory_network.py

12.5 KB

poetry.py

6.1 KB

simple_rnn_test.py

1.6 KB

wseq2seq.py

10.7 KB

/z.9781836649373_Code/nlp_v2/

extra_reading.txt

1.6 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

/z.9781836649373_Code/numpy_class/

classification_example.py

2.5 KB

dot_for.py

0.6 KB

manual_data_loading.py

0.5 KB

regression_example.py

2.6 KB

table1.csv

0.1 KB

table2.csv

0.1 KB

/z.9781836649373_Code/numpy_class/exercises/

ex1.py

0.7 KB

ex2.py

0.7 KB

ex3.py

0.8 KB

ex4.py

1.2 KB

ex5.py

1.1 KB

ex6.py

0.7 KB

ex7.py

1.1 KB

ex8.py

1.5 KB

ex9.py

0.8 KB

/z.9781836649373_Code/numpy_class/python3/

dot_for.py

0.8 KB

manual_data_loading.py

0.6 KB

/z.9781836649373_Code/openai/

extra_reading.txt

1.0 KB

fight.mp4

616.7 KB

finance.png

75.0 KB

handwriting.jpg

53.4 KB

physics_problem.jpeg

25.4 KB

replies.json

26.8 KB

robots_playing_soccer.jpeg

140.3 KB

webdesign.jpg

50.5 KB

/z.9781836649373_Code/prophet/

extra_reading.txt

0.1 KB

/z.9781836649373_Code/pytorch/

.gitignore

0.0 KB

aapl_msi_sbux.csv

24.1 KB

ann_regression.py

2.6 KB

exercises.txt

1.1 KB

extra_reading.txt

1.1 KB

plot_rl_rewards.py

0.5 KB

rl_trader.py

11.9 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

/z.9781836649373_Code/recommenders/

autorec.py

3.1 KB

extra_reading.txt

2.1 KB

itembased.py

5.1 KB

mf.py

3.7 KB

mf_keras.py

2.7 KB

mf_keras_deep.py

2.3 KB

mf_keras_res.py

2.4 KB

mf2.py

4.3 KB

preprocess.py

1.1 KB

preprocess_shrink.py

1.9 KB

preprocess2dict.py

2.3 KB

preprocess2sparse.py

1.7 KB

rbm_tf_k.py

8.5 KB

rbm_tf_k_faster.py

7.4 KB

spark.py

1.6 KB

spark2.py

1.8 KB

tfidf.py

2.1 KB

userbased.py

5.1 KB

/z.9781836649373_Code/rl/

approx_control.py

4.3 KB

approx_prediction.py

3.4 KB

bayesian_bandit.py

1.9 KB

bayesian_normal.py

2.1 KB

bayesian_starter.py

1.9 KB

cartpole.py

4.0 KB

cartpole_gym0.19.py

3.7 KB

comparing_epsilons.py

1.8 KB

comparing_explore_exploit_methods.py

3.0 KB

epsilon_greedy.py

2.3 KB

epsilon_greedy_starter.py

2.2 KB

extra_reading.txt

1.8 KB

grid_world.py

9.8 KB

iterative_policy_evaluation_deterministic.py

3.1 KB

iterative_policy_evaluation_probabilistic.py

3.2 KB

linear_rl_trader.py

9.8 KB

monte_carlo.py

2.8 KB

monte_carlo_es.py

4.2 KB

monte_carlo_no_es.py

4.4 KB

optimistic.py

1.9 KB

optimistic_initial_values.py

1.8 KB

optimistic_starter.py

1.8 KB

plot_rl_rewards.py

0.6 KB

policy_iteration_deterministic.py

4.2 KB

policy_iteration_probabilistic.py

4.1 KB

q_learning.py

2.6 KB

sarsa.py

2.6 KB

td0_prediction.py

2.1 KB

tic_tac_toe.py

13.0 KB

ucb1.py

2.2 KB

ucb1_starter.py

2.1 KB

value_iteration.py

3.1 KB

/z.9781836649373_Code/rl2/

extra_reading.txt

1.2 KB

gym_tutorial.py

1.5 KB

/z.9781836649373_Code/rl2/a3c/

main.py

2.5 KB

nets.py

4.4 KB

thread_example.py

1.0 KB

worker.py

9.0 KB

/z.9781836649373_Code/rl2/atari/

dqn_tf.py

13.6 KB

dqn_theano.py

14.4 KB

/z.9781836649373_Code/rl2/cartpole/

dqn_tf.py

7.0 KB

dqn_theano.py

7.0 KB

pg_tf.py

7.9 KB

pg_theano.py

7.3 KB

q_learning.py

4.7 KB

q_learning_bins.py

4.1 KB

random_search.py

1.7 KB

save_a_video.py

1.8 KB

td_lambda.py

4.4 KB

tf_warmup.py

1.5 KB

theano_warmup.py

1.0 KB

/z.9781836649373_Code/rl2/mountaincar/

n_step.py

4.8 KB

pg_tf.py

6.7 KB

pg_tf_random.py

7.3 KB

pg_theano.py

7.2 KB

pg_theano_random.py

6.2 KB

q_learning.py

6.6 KB

td_lambda.py

3.9 KB

/z.9781836649373_Code/rl3/

ddpg.py

11.0 KB

es_flappy.py

6.1 KB

es_mnist.py

3.7 KB

es_mujoco.py

4.8 KB

es_simple.py

1.3 KB

extra_reading.txt

0.9 KB

flappy2envs.py

4.3 KB

gym_review.py

1.5 KB

plot_ddpg_result.py

0.7 KB

plot_es_flappy_results.py

0.5 KB

plot_es_mujoco_results.py

0.5 KB

sample_test.py

0.4 KB

/z.9781836649373_Code/rl3/a2c/

a2c.py

8.7 KB

atari_wrappers.py

10.1 KB

main.py

1.7 KB

neural_network.py

1.8 KB

play.py

1.8 KB

subproc_vec_env.py

3.4 KB

/z.9781836649373_Code/stats/

extra_reading.txt

0.1 KB

/z.9781836649373_Code/supervised_class/

app.py

1.4 KB

app_caller.py

1.0 KB

app_trainer.py

0.8 KB

bayes.py

2.3 KB

dt.py

6.9 KB

dt_without_recursion.py

10.6 KB

knn.py

3.2 KB

knn_donut.py

0.7 KB

knn_fail.py

1.1 KB

knn_vectorized.py

3.1 KB

knn_xor.py

0.7 KB

multinomialnb.py

2.0 KB

nb.py

2.1 KB

perceptron.py

3.1 KB

regression.py

0.9 KB

util.py

1.7 KB

/z.9781836649373_Code/supervised_class2/

adaboost.py

2.6 KB

bagging_classification.py

2.2 KB

bagging_regression.py

1.9 KB

bias_variance_demo.py

4.0 KB

bootstrap.py

1.4 KB

extra_reading.txt

0.5 KB

knn_dt_demo.py

4.3 KB

rf_classification.py

3.6 KB

rf_regression.py

4.3 KB

rf_vs_bag.py

1.8 KB

rf_vs_bag2.py

2.9 KB

util.py

2.5 KB

/z.9781836649373_Code/svm_class/

crossval.py

0.9 KB

extra_reading.txt

2.8 KB

fake_neural_net.py

4.2 KB

kernel_svm_gradient_primal.py

6.0 KB

linear_svm_gradient.py

4.5 KB

rbfnetwork.py

2.4 KB

real_neural_net.py

1.2 KB

regression.py

1.4 KB

svm_gradient.py

4.8 KB

svm_medical.py

1.0 KB

svm_mnist.py

0.8 KB

svm_smo.py

9.5 KB

svm_spam.py

2.5 KB

util.py

4.5 KB

/z.9781836649373_Code/tensorflow/

input_data.py

5.9 KB

/z.9781836649373_Code/tensorflow/MNIST_data/

t10k-images-idx3-ubyte.gz

1.6 MB

t10k-labels-idx1-ubyte.gz

4.5 KB

train-images-idx3-ubyte.gz

9.9 MB

train-labels-idx1-ubyte.gz

28.9 KB

/z.9781836649373_Code/tf2.0/

.gitignore

0.1 KB

aapl_msi_sbux.csv

24.1 KB

auto-mpg.data

30.3 KB

daily-minimum-temperatures-in-me.csv

68.1 KB

exercises.txt

1.1 KB

extra_reading.txt

1.4 KB

fake_util.py

0.1 KB

moore.csv

2.3 KB

plot_rl_rewards.py

0.5 KB

rl_trader.py

11.0 KB

sbux.csv

61.9 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

xor3d.py

0.6 KB

/z.9781836649373_Code/timeseries/

extra_reading.txt

1.1 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

/z.9781836649373_Code/transformers/

extra_reading.txt

1.2 KB

WHERE ARE THE NOTEBOOKS.txt

0.3 KB

/z.9781836649373_Code/unsupervised_class3/

autoencoder_tf.py

2.7 KB

autoencoder_theano.py

2.9 KB

bayes_classifier_gaussian.py

1.8 KB

bayes_classifier_gmm.py

2.2 KB

dcgan_tf.py

16.4 KB

dcgan_theano.py

18.5 KB

extra_reading.txt

0.5 KB

parameterize_guassian.py

1.3 KB

test_stochastic_tensor.py

1.1 KB

util.py

5.0 KB

vae_tf.py

8.9 KB

vae_theano.py

7.7 KB

visualize_latent_space.py

1.9 KB

 

Total files 677


Copyright © 2026 FileMood.com