FileMood

Download Complete Machine Learning & Data Science Bootcamp 2021

Complete Machine Learning Data Science Bootcamp 2021

Name

Complete Machine Learning & Data Science Bootcamp 2021

 DOWNLOAD Copy Link

Total Size

21.0 GB

Total Files

1163

Last Seen

2024-12-20 23:26

Hash

8415BF74D3A3147854E92873333B3D986FC0CD8D

/.../5. Data Science Environment Setup/

8. Windows Environment Setup 2.mp4

238.7 MB

10. Sharing your Conda Environment.html

2.5 KB

11.1 6-step-ml-framework.png

332.0 KB

3.2 conda-cheatsheet.pdf

216.4 KB

8. Windows Environment Setup 2.srt

32.4 KB

5. Mac Environment Setup.srt

24.5 KB

12. Jupyter Notebook Walkthrough 2.srt

23.0 KB

6. Mac Environment Setup 2.srt

21.2 KB

1. Section Overview.srt

2.2 KB

3.1 Getting started with Conda (documentation).html

0.1 KB

3.3 Getting your computer ready for machine learning How, what and why you should use Anaconda, Miniconda and Conda (blog post).html

0.2 KB

3.4 Conda documentation.html

0.1 KB

5.1 Miniconda download documentation.html

0.1 KB

7.1 Miniconda download documentation.html

0.1 KB

9. Linux Environment Setup.html

1.1 KB

10.1 Conda documentation on sharing an environment.html

0.2 KB

11.3 Dataquest Jupyter Notebook for Beginners Tutorial.html

0.1 KB

11.4 Jupyter Notebook documentation.html

0.1 KB

11. Jupyter Notebook Walkthrough.srt

15.5 KB

13. Jupyter Notebook Walkthrough 3.srt

11.8 KB

11.2 heart-disease.csv

11.3 KB

7. Windows Environment Setup.srt

7.8 KB

4. Conda Environments.srt

6.3 KB

2. Introducing Our Tools.srt

4.4 KB

3. What is Conda.srt

3.5 KB

5. Mac Environment Setup.mp4

151.4 MB

6. Mac Environment Setup 2.mp4

131.6 MB

12. Jupyter Notebook Walkthrough 2.mp4

108.9 MB

13. Jupyter Notebook Walkthrough 3.mp4

74.9 MB

11. Jupyter Notebook Walkthrough.mp4

70.6 MB

7. Windows Environment Setup.mp4

50.2 MB

4. Conda Environments.mp4

32.0 MB

2. Introducing Our Tools.mp4

20.2 MB

3. What is Conda.mp4

13.1 MB

1. Section Overview.mp4

6.3 MB

/

TutsNode.com.txt

0.1 KB

[TGx]Downloaded from torrentgalaxy.to .txt

0.6 KB

/.../8. Matplotlib Plotting and Data Visualization/

4.2 matplotlib-anatomy-of-a-plot.png

378.3 KB

4.1 matplotlib-anatomy-of-a-plot-with-code.png

670.5 KB

13. Plotting from Pandas DataFrames 4.srt

9.6 KB

3. Importing And Using Matplotlib.srt

16.4 KB

16. Plotting from Pandas DataFrames 7.srt

15.3 KB

5. Scatter Plot And Bar Plot.srt

15.0 KB

4. Anatomy Of A Matplotlib Figure.srt

14.5 KB

17. Customizing Your Plots.srt

14.3 KB

11. Plotting From Pandas DataFrames 2.srt

14.0 KB

18. Customizing Your Plots 2.srt

13.6 KB

6. Histograms And Subplots.srt

12.7 KB

14. Plotting from Pandas DataFrames 5.srt

11.9 KB

1. Section Overview.srt

2.8 KB

15. Plotting from Pandas DataFrames 6.srt

11.3 KB

2.2 Matplotlib Documentation.html

0.1 KB

12. Plotting from Pandas DataFrames 3.srt

11.7 KB

8. Quick Tip Data Visualizations.srt

2.4 KB

13.1 heart-disease.csv

11.3 KB

10. Quick Note Regular Expressions.html

0.6 KB

19.1 Introduction to Matplotlib Notebook (from the videos).html

0.2 KB

20. Assignment Matplotlib Practice.html

2.1 KB

9. Plotting From Pandas DataFrames.srt

9.2 KB

2. Matplotlib Introduction.srt

8.2 KB

7. Subplots Option 2.srt

6.6 KB

19. Saving And Sharing Your Plots.srt

6.0 KB

2.1 Introduction to Matplotlib Jupyter Notebook (from the upcoming videos).html

0.2 KB

18. Customizing Your Plots 2.mp4

129.6 MB

16. Plotting from Pandas DataFrames 7.mp4

125.6 MB

11. Plotting From Pandas DataFrames 2.mp4

103.6 MB

17. Customizing Your Plots.mp4

96.7 MB

3. Importing And Using Matplotlib.mp4

90.6 MB

4. Anatomy Of A Matplotlib Figure.mp4

86.1 MB

15. Plotting from Pandas DataFrames 6.mp4

86.0 MB

12. Plotting from Pandas DataFrames 3.mp4

78.3 MB

6. Histograms And Subplots.mp4

73.1 MB

5. Scatter Plot And Bar Plot.mp4

70.3 MB

9. Plotting From Pandas DataFrames.mp4

63.3 MB

14. Plotting from Pandas DataFrames 5.mp4

59.7 MB

19. Saving And Sharing Your Plots.mp4

51.9 MB

13. Plotting from Pandas DataFrames 4.mp4

51.4 MB

7. Subplots Option 2.mp4

39.9 MB

2. Matplotlib Introduction.mp4

33.0 MB

8. Quick Tip Data Visualizations.mp4

12.8 MB

1. Section Overview.mp4

9.0 MB

/.../9. Scikit-learn Creating Machine Learning Models/

7. Typical scikit-learn Workflow.srt

32.5 KB

7. Typical scikit-learn Workflow.mp4

199.4 MB

8. Optional Debugging Warnings In Jupyter.mp4

184.7 MB

41. Tuning Hyperparameters.srt

31.3 KB

48. Putting It All Together.srt

30.3 KB

8. Optional Debugging Warnings In Jupyter.srt

26.1 KB

15. Getting Your Data Ready Handling Missing Values With Scikit-learn.srt

23.7 KB

11. Getting Your Data Ready Convert Data To Numbers.srt

23.3 KB

16. Choosing The Right Model For Your Data.srt

21.9 KB

9.1 scikit-learn-data.zip

21.3 KB

43. Tuning Hyperparameters 3.srt

19.3 KB

38. Evaluating A Model With Cross Validation and Scoring Parameter.srt

18.4 KB

26. Evaluating A Machine Learning Model 2 (Cross Validation).srt

17.7 KB

20. Choosing The Right Model For Your Data 3 (Classification).srt

17.5 KB

42. Tuning Hyperparameters 2.srt

17.4 KB

12. Getting Your Data Ready Handling Missing Values With Pandas.srt

17.4 KB

39. Evaluating A Model With Scikit-learn Functions.srt

16.7 KB

49. Putting It All Together 2.srt

16.5 KB

31. Evaluating A Classification Model 4 (Confusion Matrix).srt

15.5 KB

40. Improving A Machine Learning Model.srt

15.2 KB

33. Evaluating A Classification Model 6 (Classification Report).srt

14.9 KB

25. Evaluating A Machine Learning Model (Score).srt

13.2 KB

28. Evaluating A Classification Model 2 (ROC Curve).srt

12.6 KB

22. Making Predictions With Our Model.srt

12.4 KB

9. Getting Your Data Ready Splitting Your Data.srt

12.4 KB

34. Evaluating A Regression Model 1 (R2 Score).srt

12.3 KB

17. Choosing The Right Model For Your Data 2 (Regression).srt

12.3 KB

23. predict() vs predict_proba().srt

11.8 KB

32. Evaluating A Classification Model 5 (Confusion Matrix).srt

11.4 KB

2. Scikit-learn Introduction.srt

10.9 KB

6. Scikit-learn Cheatsheet.srt

10.3 KB

29. Evaluating A Classification Model 3 (ROC Curve).srt

10.3 KB

46. Saving And Loading A Model.srt

10.1 KB

2.1 Introduction to Scikit-Learn Jupyter Notebook (from the upcoming videos).html

0.2 KB

2.2 Scikit-Learn Documentation.html

0.1 KB

2.3 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html

0.2 KB

3. Quick Note Upcoming Video.html

0.4 KB

5. Quick Note Upcoming Videos.html

1.0 KB

21. Fitting A Model To The Data.srt

9.6 KB

6.1 Scikit-Learn Reference Notebook.html

0.2 KB

36. Evaluating A Regression Model 3 (MSE).srt

9.5 KB

7.1 Example Scikit-Learn Workflow Notebook.html

0.2 KB

24. Making Predictions With Our Model (Regression).srt

9.3 KB

47. Saving And Loading A Model 2.srt

9.2 KB

13. Extension Feature Scaling.html

3.0 KB

14. Note Correction in the upcoming video (splitting data).html

2.2 KB

16.1 Scikit-Learn machine learning map (how to choose the right machine learning model).html

0.1 KB

18. Quick Note Decision Trees.html

0.2 KB

19. Quick Tip How ML Algorithms Work.srt

2.0 KB

30. Reading Extension ROC Curve + AUC.html

1.5 KB

37. Machine Learning Model Evaluation.html

7.3 KB

31.1 Notebook from video with updated confusion matrix labels.html

0.2 KB

10. Quick Tip Clean, Transform, Reduce.srt

6.6 KB

4. Refresher What Is Machine Learning.srt

6.5 KB

44. Note Metric Comparison Improvement.html

2.2 KB

27. Evaluating A Classification Model 1 (Accuracy).srt

6.0 KB

48.1 Reading extension Scikit-Learn's Pipeline class explained.html

0.1 KB

49.1 Introduction to Scikit-Learn Jupyter Notebook (from the videos).html

0.2 KB

49.2 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html

0.2 KB

50. Scikit-Learn Practice.html

2.1 KB

35. Evaluating A Regression Model 2 (MAE).srt

5.8 KB

1. Section Overview.srt

4.2 KB

45. Quick Tip Correlation Analysis.srt

3.2 KB

41. Tuning Hyperparameters.mp4

184.3 MB

48. Putting It All Together.mp4

157.9 MB

16. Choosing The Right Model For Your Data.mp4

150.2 MB

15. Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4

143.5 MB

11. Getting Your Data Ready Convert Data To Numbers.mp4

141.6 MB

43. Tuning Hyperparameters 3.mp4

127.7 MB

20. Choosing The Right Model For Your Data 3 (Classification).mp4

124.6 MB

49. Putting It All Together 2.mp4

122.5 MB

42. Tuning Hyperparameters 2.mp4

122.4 MB

12. Getting Your Data Ready Handling Missing Values With Pandas.mp4

109.9 MB

26. Evaluating A Machine Learning Model 2 (Cross Validation).mp4

100.6 MB

39. Evaluating A Model With Scikit-learn Functions.mp4

99.4 MB

38. Evaluating A Model With Cross Validation and Scoring Parameter.mp4

95.9 MB

40. Improving A Machine Learning Model.mp4

95.4 MB

4. Refresher What Is Machine Learning.mp4

92.6 MB

33. Evaluating A Classification Model 6 (Classification Report).mp4

91.5 MB

25. Evaluating A Machine Learning Model (Score).mp4

91.4 MB

17. Choosing The Right Model For Your Data 2 (Regression).mp4

91.1 MB

31. Evaluating A Classification Model 4 (Confusion Matrix).mp4

81.5 MB

6. Scikit-learn Cheatsheet.mp4

78.8 MB

34. Evaluating A Regression Model 1 (R2 Score).mp4

73.8 MB

22. Making Predictions With Our Model.mp4

69.7 MB

28. Evaluating A Classification Model 2 (ROC Curve).mp4

69.2 MB

32. Evaluating A Classification Model 5 (Confusion Matrix).mp4

66.9 MB

9. Getting Your Data Ready Splitting Your Data.mp4

66.8 MB

47. Saving And Loading A Model 2.mp4

59.5 MB

21. Fitting A Model To The Data.mp4

59.3 MB

36. Evaluating A Regression Model 3 (MSE).mp4

57.6 MB

23. predict() vs predict_proba().mp4

57.0 MB

46. Saving And Loading A Model.mp4

55.2 MB

29. Evaluating A Classification Model 3 (ROC Curve).mp4

53.1 MB

24. Making Predictions With Our Model (Regression).mp4

47.1 MB

2. Scikit-learn Introduction.mp4

42.6 MB

27. Evaluating A Classification Model 1 (Accuracy).mp4

32.9 MB

35. Evaluating A Regression Model 2 (MAE).mp4

29.9 MB

45. Quick Tip Correlation Analysis.mp4

17.7 MB

10. Quick Tip Clean, Transform, Reduce.mp4

17.3 MB

1. Section Overview.mp4

13.1 MB

19. Quick Tip How ML Algorithms Work.mp4

11.6 MB

/1. Introduction/

2. Join Our Online Classroom!.html

2.6 KB

3. Exercise Meet The Community.html

2.6 KB

1. Course Outline.srt

9.4 KB

4. Your First Day.srt

5.4 KB

1. Course Outline.mp4

81.0 MB

4. Your First Day.mp4

29.3 MB

/7. NumPy/

2.2 NumPy Documentation.html

0.1 KB

4. NumPy DataTypes and Attributes.srt

19.7 KB

13. Exercise Nut Butter Store Sales.srt

17.4 KB

8. Manipulating Arrays.srt

16.6 KB

12. Dot Product vs Element Wise.srt

15.7 KB

2.1 Introduction to NumPy Jupyter Notebook (with annotations).html

0.2 KB

2.3 Introduction to NumPy Jupyter Notebook (from the upcoming videos).html

0.2 KB

3. Quick Note Correction In Next Video.html

1.3 KB

7. Viewing Arrays and Matrices.srt

13.2 KB

8.1 Standard deviation and variance explained.html

0.1 KB

9.1 Standard deviation and variance explained.html

0.1 KB

10.1 Standard deviation and variance explained.html

0.1 KB

5. Creating NumPy Arrays.srt

12.7 KB

12.1 Matrix Multiplication Explained.html

0.1 KB

16.1 Introduction to NumPy Jupyter Notebook (from the videos).html

0.2 KB

16.2 Introduction to NumPy Jupyter Notebook (with annotations).html

0.2 KB

17. Assignment NumPy Practice.html

2.2 KB

18. Optional Extra NumPy resources.html

1.0 KB

9. Manipulating Arrays 2.srt

11.8 KB

16. Turn Images Into NumPy Arrays.srt

10.7 KB

6. NumPy Random Seed.srt

10.0 KB

11. Reshape and Transpose.srt

9.8 KB

10. Standard Deviation and Variance.srt

9.6 KB

15. Sorting Arrays.srt

9.0 KB

2. NumPy Introduction.srt

7.7 KB

14. Comparison Operators.srt

5.4 KB

1. Section Overview.srt

3.2 KB

13. Exercise Nut Butter Store Sales.mp4

95.8 MB

16. Turn Images Into NumPy Arrays.mp4

90.1 MB

12. Dot Product vs Element Wise.mp4

88.0 MB

8. Manipulating Arrays.mp4

84.6 MB

4. NumPy DataTypes and Attributes.mp4

82.8 MB

7. Viewing Arrays and Matrices.mp4

74.1 MB

9. Manipulating Arrays 2.mp4

71.2 MB

5. Creating NumPy Arrays.mp4

70.0 MB

11. Reshape and Transpose.mp4

56.1 MB

6. NumPy Random Seed.mp4

54.4 MB

10. Standard Deviation and Variance.mp4

53.6 MB

15. Sorting Arrays.mp4

34.4 MB

2. NumPy Introduction.mp4

28.1 MB

14. Comparison Operators.mp4

27.7 MB

1. Section Overview.mp4

14.0 MB

16.3 numpy-images.zip

7.6 MB

/.../6. Pandas Data Analysis/

4.1 pandas-anatomy-of-a-dataframe.png

341.2 KB

10.1 pandas-anatomy-of-a-dataframe.png

341.2 KB

9. Manipulating Data.srt

18.5 KB

8. Selecting and Viewing Data with Pandas Part 2.srt

18.4 KB

4. Series, Data Frames and CSVs.srt

17.2 KB

2. Downloading Workbooks and Assignments.html

1.0 KB

3.1 Introduction to Pandas Jupyter Notebook (from the upcoming videos).html

0.2 KB

3.2 10-minutes to pandas (from the pandas documentation).html

0.1 KB

3.3 Pandas Documentation.html

0.1 KB

3.4 Introduction to Pandas Jupyter Notebook (with annotations).html

0.2 KB

5. Data from URLs.html

1.1 KB

7.1 car-sales.csv

0.4 KB

9.1 Jake VanderPlas's Data Manipulation with Pandas.html

0.1 KB

9.2 car-sales-missing-data.csv

0.3 KB

7. Selecting and Viewing Data with Pandas.srt

14.9 KB

11.1 Introduction to Pandas Jupyter Notebook (with annotations).html

0.2 KB

11.2 Introduction to Pandas Jupyter Notebook (from the videos).html

0.2 KB

12. Assignment Pandas Practice.html

2.1 KB

10. Manipulating Data 2.srt

14.2 KB

13.1 Google Colab.html

0.1 KB

13.2 Course notebooks - Github.html

0.1 KB

11. Manipulating Data 3.srt

14.0 KB

6. Describing Data with Pandas.srt

13.9 KB

13. How To Download The Course Assignments.srt

11.3 KB

3. Pandas Introduction.srt

7.2 KB

1. Section Overview.srt

3.8 KB

8. Selecting and Viewing Data with Pandas Part 2.mp4

111.7 MB

9. Manipulating Data.mp4

110.1 MB

4. Series, Data Frames and CSVs.mp4

100.0 MB

11. Manipulating Data 3.mp4

95.4 MB

10. Manipulating Data 2.mp4

90.7 MB

6. Describing Data with Pandas.mp4

79.2 MB

7. Selecting and Viewing Data with Pandas.mp4

75.9 MB

13. How To Download The Course Assignments.mp4

70.0 MB

3. Pandas Introduction.mp4

28.8 MB

1. Section Overview.mp4

11.4 MB

/.../2. Machine Learning 101/

3.1 Teachable Machine.html

0.1 KB

5.1 Machine Learning Playground.html

0.1 KB

7. Are You Getting It Yet.html

0.2 KB

9. Section Review.srt

2.4 KB

1. What Is Machine Learning.srt

8.9 KB

3. Exercise Machine Learning Playground.srt

8.3 KB

4. How Did We Get Here.srt

7.2 KB

2. AIMachine LearningData Science.srt

6.5 KB

8. What Is Machine Learning Round 2.srt

6.2 KB

5. Exercise YouTube Recommendation Engine.srt

5.8 KB

6. Types of Machine Learning.srt

5.4 KB

3. Exercise Machine Learning Playground.mp4

44.7 MB

4. How Did We Get Here.mp4

32.0 MB

1. What Is Machine Learning.mp4

29.7 MB

8. What Is Machine Learning Round 2.mp4

26.7 MB

6. Types of Machine Learning.mp4

23.9 MB

2. AIMachine LearningData Science.mp4

20.6 MB

5. Exercise YouTube Recommendation Engine.mp4

20.4 MB

9. Section Review.mp4

5.8 MB

/.pad/

0

0.1 KB

1

0.0 KB

2

524.1 KB

3

267.8 KB

4

1.5 MB

5

1.1 MB

6

898.0 KB

7

1.1 MB

8

1.5 MB

9

646.6 KB

10

1.9 MB

11

1.7 MB

12

233.8 KB

13

778.3 KB

14

1.8 MB

15

1.2 MB

16

184.9 KB

17

736.9 KB

18

149.1 KB

19

203.1 KB

20

1.2 MB

21

1.0 MB

22

113.7 KB

23

1.8 MB

24

141.6 KB

25

534.0 KB

26

1.1 MB

27

567.1 KB

28

422.3 KB

29

9.5 KB

30

155.6 KB

31

233.0 KB

32

694.5 KB

33

259.9 KB

34

723.8 KB

35

800.6 KB

36

1.2 MB

37

1.7 MB

38

1.2 MB

39

1.3 MB

40

1.3 MB

41

1.2 MB

42

830.4 KB

43

992.8 KB

44

2.1 MB

45

565.6 KB

46

1.6 MB

47

1.7 MB

48

84.6 KB

49

108.0 KB

50

519.3 KB

51

972.6 KB

52

1.1 MB

53

1.2 MB

54

1.3 MB

55

2.0 MB

56

106.2 KB

57

678.6 KB

58

1.3 MB

59

2.1 MB

60

770.2 KB

61

1.3 MB

62

87.5 KB

63

1.3 MB

64

1.6 MB

65

26.5 KB

66

656.8 KB

67

1.2 MB

68

463.1 KB

69

544.5 KB

70

1.9 MB

71

532.8 KB

72

713.3 KB

73

1.0 MB

74

1.1 MB

75

2.0 MB

76

1.4 MB

77

1.8 MB

78

241.0 KB

79

795.1 KB

80

902.9 KB

81

1.1 MB

82

1.5 MB

83

1.6 MB

84

1.8 MB

85

2.0 MB

86

95.7 KB

87

176.0 KB

88

327.8 KB

89

68.7 KB

90

1.4 MB

91

1.9 MB

92

1.9 MB

93

2.1 MB

94

1.4 MB

95

1.5 MB

96

331.1 KB

97

668.4 KB

98

741.5 KB

99

747.4 KB

100

826.6 KB

101

1.1 MB

102

2.1 MB

103

286.6 KB

104

776.8 KB

105

456.6 KB

106

916.0 KB

107

1.4 MB

108

1.5 MB

109

1.8 MB

110

1.9 MB

111

1.4 MB

112

1.5 MB

113

1.7 MB

114

1.7 MB

115

416.4 KB

116

605.5 KB

117

1.4 MB

118

1.7 MB

119

264.4 KB

120

536.2 KB

121

639.1 KB

122

108.1 KB

123

674.0 KB

124

685.6 KB

125

1.0 MB

126

1.1 MB

127

1.2 MB

128

1.3 MB

129

1.3 MB

130

1.6 MB

131

1.6 MB

132

2.1 MB

133

1.2 MB

134

1.8 MB

135

236.3 KB

136

352.9 KB

137

693.0 KB

138

1.0 MB

139

1.0 MB

140

258.6 KB

141

1.6 MB

142

1.7 MB

143

307.0 KB

144

1.1 MB

145

1.3 MB

146

1.5 MB

147

501.8 KB

148

684.1 KB

149

1.2 MB

150

1.7 MB

151

494.3 KB

152

688.9 KB

153

987.2 KB

154

1.2 MB

155

1.5 MB

156

1.8 MB

157

2.1 MB

158

24.2 KB

159

81.9 KB

160

884.9 KB

161

945.3 KB

162

1.5 MB

163

1.7 MB

164

1.9 MB

165

2.0 MB

166

145.6 KB

167

387.6 KB

168

503.3 KB

169

784.6 KB

170

887.7 KB

171

1.0 MB

172

1.5 MB

173

37.5 KB

174

88.0 KB

175

841.0 KB

176

1.4 MB

177

124.2 KB

178

589.9 KB

179

1.1 MB

180

1.2 MB

181

825.3 KB

182

1.0 MB

183

1.2 MB

184

1.5 MB

185

1.7 MB

186

1.8 MB

187

1.9 MB

188

193.8 KB

189

489.3 KB

190

1.4 MB

191

1.6 MB

192

383.9 KB

193

1.5 MB

194

1.7 MB

195

1.9 MB

196

2.0 MB

197

334.8 KB

198

1.1 MB

199

1.3 MB

200

1.6 MB

201

1.6 MB

202

174.3 KB

203

647.3 KB

204

1.6 MB

205

1.8 MB

206

454.6 KB

207

1.1 MB

208

1.2 MB

209

1.4 MB

210

1.5 MB

211

514.7 KB

212

615.2 KB

213

1.1 MB

214

1.4 MB

215

1.5 MB

216

1.6 MB

217

701.6 KB

218

788.3 KB

219

1.2 MB

220

1.5 MB

221

1.7 MB

222

1.8 MB

223

1.8 MB

224

1.8 MB

225

2.0 MB

226

2.1 MB

227

79.0 KB

228

344.8 KB

229

500.1 KB

230

586.5 KB

231

633.4 KB

232

698.5 KB

233

879.7 KB

234

1.2 MB

235

1.4 MB

236

1.7 MB

237

47.2 KB

238

73.7 KB

239

370.9 KB

240

518.2 KB

241

1.3 MB

242

1.8 MB

243

1.8 MB

244

438.7 KB

245

460.8 KB

246

568.1 KB

247

794.3 KB

248

880.6 KB

249

898.4 KB

250

1.3 MB

251

1.9 MB

252

38.2 KB

253

39.3 KB

254

108.1 KB

255

161.4 KB

256

705.6 KB

257

769.6 KB

258

1.2 MB

259

1.3 MB

260

1.7 MB

261

1.7 MB

262

1.8 MB

263

1.9 MB

264

2.0 MB

265

311.2 KB

266

348.6 KB

267

360.2 KB

268

599.3 KB

269

631.7 KB

270

742.4 KB

271

796.8 KB

272

867.0 KB

273

894.7 KB

274

1.1 MB

275

1.1 MB

276

1.7 MB

277

1.8 MB

278

257.2 KB

279

694.2 KB

280

1.1 MB

281

1.1 MB

282

1.5 MB

283

1.5 MB

284

1.7 MB

285

18.3 KB

286

602.5 KB

287

716.3 KB

288

885.9 KB

289

1.1 MB

290

1.5 MB

291

1.6 MB

292

143.0 KB

293

524.9 KB

294

685.2 KB

295

713.1 KB

296

1.6 MB

297

1.6 MB

298

1.8 MB

299

1.9 MB

300

2.1 MB

301

651.6 KB

302

904.1 KB

303

930.7 KB

304

980.4 KB

305

1.1 MB

306

1.1 MB

307

1.2 MB

308

1.4 MB

309

1.9 MB

310

2.0 MB

311

266.0 KB

312

1.1 MB

313

1.5 MB

314

78.6 KB

315

687.1 KB

316

766.1 KB

317

2.1 MB

318

256.1 KB

319

465.3 KB

/.../14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/

32. Training Your Deep Neural Network.srt

23.6 KB

41. Making Predictions On Test Images.srt

20.8 KB

2. Deep Learning and Unstructured Data.srt

20.7 KB

21. Turning Data Into Batches 2.srt

20.6 KB

34. Make And Transform Predictions.srt

19.6 KB

40. Training Model On Full Dataset.srt

19.6 KB

43. Making Predictions On Our Images.srt

19.0 KB

37. Visualizing And Evaluate Model Predictions 2.srt

18.1 KB

35. Transform Predictions To Text.srt

18.0 KB

36. Visualizing Model Predictions.srt

17.4 KB

39. Saving And Loading A Trained Model.srt

17.3 KB

9. Importing TensorFlow 2.srt

17.2 KB

42. Submitting Model to Kaggle.srt

17.0 KB

14. Loading Our Data Labels.srt

16.5 KB

25. Building A Deep Learning Model.srt

16.3 KB

22. Visualizing Our Data.srt

16.0 KB

15. Preparing The Images.srt

15.5 KB

38. Visualizing And Evaluate Model Predictions 3.srt

14.1 KB

16. Turning Data Labels Into Numbers.srt

14.1 KB

18. Preprocess Images.srt

13.2 KB

19. Preprocess Images 2.srt

13.2 KB

26. Building A Deep Learning Model 2.srt

12.8 KB

11. Using A GPU.srt

12.4 KB

28. Building A Deep Learning Model 4.srt

12.3 KB

20. Turning Data Into Batches.srt

11.9 KB

17. Creating Our Own Validation Set.srt

11.6 KB

27. Building A Deep Learning Model 3.srt

11.5 KB

30. Evaluating Our Model.srt

10.7 KB

4. Setting Up Google Colab.srt

9.9 KB

33. Evaluating Performance With TensorBoard.srt

9.8 KB

6. Uploading Project Data.srt

8.8 KB

23. Preparing Our Inputs and Outputs.srt

8.0 KB

13. Optional Reloading Colab Notebook.srt

8.0 KB

7. Setting Up Our Data.srt

6.5 KB

5. Google Colab Workspace.srt

6.5 KB

12. Optional GPU and Google Colab.srt

6.1 KB

29. Summarizing Our Model.srt

6.1 KB

31. Preventing Overfitting.srt

5.7 KB

10. Optional TensorFlow 2.0 Default Issue.srt

4.6 KB

44. Finishing Dog Vision Where to next.html

4.0 KB

1. Section Overview.srt

2.8 KB

24. Optional How machines learn and what's going on behind the scenes.html

2.8 KB

8. Setting Up Our Data 2.srt

2.2 KB

3. Setting Up With Google.html

0.6 KB

43.2 End-to-end Dog Vision Notebook (from the videos).html

0.2 KB

43.1 End-to-end Dog Vision Notebook (with annotations).html

0.2 KB

4.5 End-to-end Dog Vision Notebook (the project we'll be working through).html

0.2 KB

42.1 Dog Vision Predictions with MobileNetV2 Ready for Kaggle Submission.html

0.2 KB

4.1 Kaggle Dog Breed Identification Competition (the basis of our upcoming project).html

0.1 KB

4.2 Google Colab (our workspace for the upcoming project).html

0.1 KB

4.3 Google Colab IO example (how to get data in and out of your Colab notebook).html

0.1 KB

4.4 Introduction to Google Colab example notebook.html

0.1 KB

27.2 Step by step breakdown of a convolutional neural network (what MobileNetV2 is made of).html

0.2 KB

41.1 Dog Vision Prediction Probabilities Array.html

0.2 KB

5.1 Google Colab FAQ (things you should know about Google Colab).html

0.1 KB

5.2 Google Colab (our workspace for the upcoming project).html

0.1 KB

28.1 [Article] How to choose loss & activation functions when building a deep learning model.html

0.2 KB

6.1 Kaggle Dog Breed Identification Competition Data.html

0.1 KB

6.2 Google Colab IO example (how to get data in and out of your Colab notebook).html

0.1 KB

27.3 MobileNetV2 (the model we're using) architecture explanation by Sik-Ho Tsang.html

0.2 KB

31.1 Early Stopping Callback (a way to stop your model from training when it stops improving) Documentation.html

0.1 KB

30.1 TensorBoard Callback Documentation.html

0.1 KB

25.3 MobileNetV2 (the model we're using) on TensorFlow Hub.html

0.1 KB

10.1 Loading TensorFlow 2.0 into a Colab Notebook (if it isn't the default).html

0.1 KB

14.1 Documentation on how many images Google recommends for image problems.html

0.1 KB

35.1 TensorFlow documentation for the unbatch() function.html

0.1 KB

11.1 Google Colab example GPU usage.html

0.1 KB

21.1 Yann LeCun's (OG of deep learning) Tweet on Batch Sizes.html

0.1 KB

12.1 Introduction to Google Colab example notebook.html

0.1 KB

12.2 Google Colab Example of GPU speed up versus CPU.html

0.1 KB

18.1 Documentation for loading images in TensorFlow.html

0.1 KB

17.1 Blog post by Rachel Thomas (of fast.ai) on how and why you should create a validation set.html

0.1 KB

26.1 Keras in TensorFlow Overview Documentation.html

0.1 KB

27.1 The Softmax Function (activation function we use in our model).html

0.1 KB

18.2 TensorFlow guidelines for loading all kinds of data (turning your data into Tensors).html

0.1 KB

23.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html

0.1 KB

25.1 Andrei Karpathy's talk on AI at Tesla.html

0.1 KB

25.2 Papers with Code (a great resource for some of the best machine learning papers with code examples).html

0.1 KB

25.4 PyTorch Hub (PyTorch version of TensorFlow Hub).html

0.1 KB

25.5 TensorFlow Hub (resource for pre-trained deep learning models and more).html

0.1 KB

32. Training Your Deep Neural Network.mp4

174.7 MB

34. Make And Transform Predictions.mp4

162.5 MB

21. Turning Data Into Batches 2.mp4

156.6 MB

37. Visualizing And Evaluate Model Predictions 2.mp4

150.8 MB

41. Making Predictions On Test Images.mp4

147.7 MB

40. Training Model On Full Dataset.mp4

146.6 MB

15. Preparing The Images.mp4

140.4 MB

35. Transform Predictions To Text.mp4

136.2 MB

39. Saving And Loading A Trained Model.mp4

133.2 MB

22. Visualizing Our Data.mp4

127.9 MB

25. Building A Deep Learning Model.mp4

127.8 MB

42. Submitting Model to Kaggle.mp4

127.2 MB

36. Visualizing Model Predictions.mp4

125.1 MB

43. Making Predictions On Our Images.mp4

125.0 MB

9. Importing TensorFlow 2.mp4

122.4 MB

14. Loading Our Data Labels.mp4

120.4 MB

38. Visualizing And Evaluate Model Predictions 3.mp4

118.7 MB

16. Turning Data Labels Into Numbers.mp4

112.7 MB

27. Building A Deep Learning Model 3.mp4

111.1 MB

26. Building A Deep Learning Model 2.mp4

111.0 MB

19. Preprocess Images 2.mp4

110.2 MB

2. Deep Learning and Unstructured Data.mp4

107.0 MB

18. Preprocess Images.mp4

94.5 MB

13. Optional Reloading Colab Notebook.mp4

93.0 MB

20. Turning Data Into Batches.mp4

92.0 MB

28. Building A Deep Learning Model 4.mp4

90.5 MB

11. Using A GPU.mp4

84.5 MB

30. Evaluating Our Model.mp4

83.1 MB

4. Setting Up Google Colab.mp4

77.8 MB

33. Evaluating Performance With TensorBoard.mp4

77.8 MB

17. Creating Our Own Validation Set.mp4

69.7 MB

6. Uploading Project Data.mp4

54.5 MB

23. Preparing Our Inputs and Outputs.mp4

52.5 MB

12. Optional GPU and Google Colab.mp4

48.1 MB

29. Summarizing Our Model.mp4

47.6 MB

7. Setting Up Our Data.mp4

44.3 MB

5. Google Colab Workspace.mp4

41.6 MB

31. Preventing Overfitting.mp4

38.3 MB

10. Optional TensorFlow 2.0 Default Issue.mp4

29.5 MB

8. Setting Up Our Data 2.mp4

21.9 MB

1. Section Overview.mp4

12.8 MB

/.../11. Milestone Project 1 Supervised Learning (Classification)/

22. Finding The Most Important Features.srt

22.9 KB

9. Finding Patterns 2.srt

22.9 KB

10. Finding Patterns 3.srt

19.3 KB

14. TuningImproving Our Model.srt

18.1 KB

5. Step 1~4 Framework Setup.srt

17.0 KB

15. Tuning Hyperparameters.srt

16.0 KB

19. Evaluating Our Model.srt

15.5 KB

16. Tuning Hyperparameters 2.srt

15.5 KB

3. Project Environment Setup.srt

14.7 KB

23. Reviewing The Project.srt

14.1 KB

8. Finding Patterns.srt

13.7 KB

12. Choosing The Right Models.srt

13.3 KB

6. Getting Our Tools Ready.srt

13.1 KB

11. Preparing Our Data For Machine Learning.srt

12.3 KB

21. Evaluating Our Model 3.srt

11.8 KB

7. Exploring Our Data.srt

11.7 KB

7.1 heart-disease.csv

11.3 KB

2. Project Overview.srt

10.3 KB

17. Tuning Hyperparameters 3.srt

10.2 KB

13. Experimenting With Machine Learning Models.srt

9.9 KB

20. Evaluating Our Model 2.srt

7.6 KB

2.1 End-to-end Heart Disease Classification Notebook (with annotations).html

0.2 KB

2.2 Structured Data Projects on GitHub.html

0.2 KB

2.3 End-to-end Heart Disease Classification Notebook (same as in videos).html

0.2 KB

4. Optional Windows Project Environment Setup.srt

5.7 KB

18. Quick Note Confusion Matrix Labels.html

1.1 KB

23.1 End-to-end Heart Disease Classification Notebook (with annotations).html

0.2 KB

23.2 End-to-end Heart Disease Classification Notebook (same as in videos).html

0.2 KB

1. Section Overview.srt

3.2 KB

10. Finding Patterns 3.mp4

144.6 MB

22. Finding The Most Important Features.mp4

133.7 MB

15. Tuning Hyperparameters.mp4

113.2 MB

5. Step 1~4 Framework Setup.mp4

110.6 MB

16. Tuning Hyperparameters 2.mp4

109.2 MB

14. TuningImproving Our Model.mp4

107.8 MB

3. Project Environment Setup.mp4

105.7 MB

9. Finding Patterns 2.mp4

104.8 MB

12. Choosing The Right Models.mp4

101.1 MB

23. Reviewing The Project.mp4

90.3 MB

6. Getting Our Tools Ready.mp4

83.2 MB

11. Preparing Our Data For Machine Learning.mp4

76.1 MB

19. Evaluating Our Model.mp4

75.1 MB

7. Exploring Our Data.mp4

70.1 MB

21. Evaluating Our Model 3.mp4

68.0 MB

8. Finding Patterns.mp4

66.4 MB

17. Tuning Hyperparameters 3.mp4

66.1 MB

13. Experimenting With Machine Learning Models.mp4

58.0 MB

20. Evaluating Our Model 2.mp4

43.6 MB

4. Optional Windows Project Environment Setup.mp4

37.6 MB

2. Project Overview.mp4

36.1 MB

1. Section Overview.mp4

10.7 MB

/.../12. Milestone Project 2 Supervised Learning (Time Series Data)/

9. Turning Data Into Numbers.srt

22.9 KB

8. Feature Engineering.srt

22.7 KB

6. Exploring Our Data.srt

20.5 KB

19. Preproccessing Our Data.srt

18.2 KB

21. Feature Importance.srt

17.7 KB

10. Filling Missing Numerical Values.srt

17.3 KB

15. Custom Evaluation Function.srt

16.5 KB

3. Project Environment Setup.srt

16.3 KB

16. Reducing Data.srt

15.0 KB

13. Splitting Data.srt

13.8 KB

17. RandomizedSearchCV.srt

13.0 KB

4. Step 1~4 Framework Setup.srt

12.7 KB

20. Making Predictions.srt

11.6 KB

11. Filling Missing Categorical Values.srt

11.5 KB

18. Improving Hyperparameters.srt

11.3 KB

12. Fitting A Machine Learning Model.srt

10.7 KB

7. Exploring Our Data 2.srt

8.8 KB

2. Project Overview.srt

6.8 KB

1. Section Overview.srt

1.9 KB

2.1 Structured Data Projects on GitHub.html

0.2 KB

2.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html

0.2 KB

2.3 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html

0.2 KB

2.4 Kaggle Bluebook for Bulldozers Competition.html

0.1 KB

5. Downloading the data for the next two projects.html

1.7 KB

10.1 Pandas Categorical Datatype Documentation.html

0.1 KB

14. Challenge What's wrong with splitting data after filling it.html

1.8 KB

21.1 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html

0.2 KB

21.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html

0.2 KB

8. Feature Engineering.mp4

166.9 MB

9. Turning Data Into Numbers.mp4

153.3 MB

21. Feature Importance.mp4

149.2 MB

19. Preproccessing Our Data.mp4

146.1 MB

6. Exploring Our Data.mp4

144.5 MB

10. Filling Missing Numerical Values.mp4

111.5 MB

15. Custom Evaluation Function.mp4

108.4 MB

3. Project Environment Setup.mp4

106.2 MB

16. Reducing Data.mp4

98.0 MB

17. RandomizedSearchCV.mp4

90.0 MB

4. Step 1~4 Framework Setup.mp4

89.8 MB

13. Splitting Data.mp4

86.7 MB

18. Improving Hyperparameters.mp4

83.1 MB

20. Making Predictions.mp4

83.1 MB

11. Filling Missing Categorical Values.mp4

70.2 MB

12. Fitting A Machine Learning Model.mp4

58.2 MB

7. Exploring Our Data 2.mp4

54.6 MB

2. Project Overview.mp4

34.5 MB

1. Section Overview.mp4

9.4 MB

/.../3. Machine Learning and Data Science Framework/

3.1 A 6 Step Field Guide for Machine Learning Modelling (blog post).html

0.1 KB

12. Overfitting and Underfitting Definitions.html

2.0 KB

15. Optional Elements of AI.html

1.0 KB

4. Types of Machine Learning Problems.srt

14.3 KB

11. Modelling - Comparison.srt

13.4 KB

8. Modelling - Splitting Data.srt

7.9 KB

7. Features In Data.srt

6.9 KB

3. 6 Step Machine Learning Framework.srt

6.8 KB

5. Types of Data.srt

6.7 KB

9. Modelling - Picking the Model.srt

6.4 KB

14. Tools We Will Use.srt

6.1 KB

13. Experimentation.srt

5.1 KB

10. Modelling - Tuning.srt

5.0 KB

1. Section Overview.srt

4.8 KB

6. Types of Evaluation.srt

4.4 KB

2. Introducing Our Framework.srt

3.8 KB

4. Types of Machine Learning Problems.mp4

63.4 MB

11. Modelling - Comparison.mp4

47.1 MB

7. Features In Data.mp4

38.6 MB

5. Types of Data.mp4

30.8 MB

8. Modelling - Splitting Data.mp4

28.9 MB

14. Tools We Will Use.mp4

28.7 MB

3. 6 Step Machine Learning Framework.mp4

24.6 MB

9. Modelling - Picking the Model.mp4

24.4 MB

13. Experimentation.mp4

22.4 MB

6. Types of Evaluation.mp4

18.6 MB

10. Modelling - Tuning.mp4

16.8 MB

1. Section Overview.mp4

14.0 MB

2. Introducing Our Framework.mp4

11.9 MB

/.../16. Career Advice + Extra Bits/

9. CWD Git + Github.srt

21.7 KB

3. What If I Don't Have Enough Experience.srt

20.5 KB

10. CWD Git + Github 2.srt

18.7 KB

11. Contributing To Open Source.srt

17.5 KB

9. CWD Git + Github.mp4

184.7 MB

12. Contributing To Open Source 2.srt

10.4 KB

7. JTS Start With Why.srt

3.0 KB

6. JTS Learn to Learn.srt

2.6 KB

1. Endorsements On LinkedIn.html

2.1 KB

14. Exercise Contribute To Open Source.html

1.5 KB

13. Coding Challenges.html

0.9 KB

2. Quick Note Upcoming Video.html

0.6 KB

5. Quick Note Upcoming Videos.html

0.6 KB

8. Quick Note Upcoming Videos.html

0.4 KB

4. Learning Guideline.html

0.3 KB

3. What If I Don't Have Enough Experience.mp4

168.8 MB

11. Contributing To Open Source.mp4

136.6 MB

10. CWD Git + Github 2.mp4

124.1 MB

12. Contributing To Open Source 2.mp4

118.5 MB

7. JTS Start With Why.mp4

16.2 MB

6. JTS Learn to Learn.mp4

11.7 MB

/4. The 2 Paths/

2. Python + Machine Learning Monthly.html

0.9 KB

3. Endorsements On LinkedIN.html

2.1 KB

1. The 2 Paths.srt

4.8 KB

1. The 2 Paths.mp4

10.2 MB

/.../17. Learn Python/

17. Variables.srt

16.4 KB

11. Numbers.srt

11.4 KB

35. List Methods.srt

11.0 KB

27. Built-In Functions + Methods.srt

10.5 KB

49. Sets 2.srt

9.5 KB

25. String Indexes.srt

9.4 KB

4. Our First Python Program.srt

9.2 KB

24. Formatted Strings.srt

9.0 KB

29. Exercise Type Conversion.srt

8.8 KB

33. List Slicing.srt

8.7 KB

2. Python Interpreter.srt

8.7 KB

6. Python 2 vs Python 3.srt

8.6 KB

48. Sets.srt

8.6 KB

31. Exercise Password Checker.srt

8.1 KB

45. Dictionary Methods 2.srt

7.3 KB

41. Dictionaries.srt

7.3 KB

1. What Is A Programming Language.srt

7.2 KB

3. How To Run Python Code.srt

6.7 KB

20. Strings.srt

6.4 KB

38. Common List Patterns.srt

6.0 KB

46. Tuples.srt

5.8 KB

32. Lists.srt

5.7 KB

12. Math Functions.srt

5.6 KB

30. DEVELOPER FUNDAMENTALS II.srt

5.4 KB

44. Dictionary Methods.srt

5.4 KB

13. DEVELOPER FUNDAMENTALS I.srt

5.3 KB

9. Python Data Types.srt

5.3 KB

37. List Methods 3.srt

5.1 KB

23. Escape Sequences.srt

5.1 KB

16. Optional bin() and complex.srt

4.9 KB

36. List Methods 2.srt

4.6 KB

43. Dictionary Keys.srt

4.3 KB

34. Matrix.srt

4.2 KB

28. Booleans.srt

4.0 KB

42. DEVELOPER FUNDAMENTALS III.srt

3.7 KB

14. Operator Precedence.srt

3.6 KB

26. Immutability.srt

3.6 KB

22. Type Conversion.srt

3.2 KB

47. Tuples 2.srt

3.1 KB

19. Augmented Assignment Operator.srt

3.0 KB

39. List Unpacking.srt

3.0 KB

7. Exercise How Does Python Work.srt

2.9 KB

5. Latest Version Of Python.srt

2.8 KB

8. Learning Python.srt

2.6 KB

40. None.srt

2.2 KB

18. Expressions vs Statements.srt

1.8 KB

21. String Concatenation.srt

1.5 KB

15. Exercise Operator Precedence.html

0.7 KB

10. How To Succeed.html

0.3 KB

6.3 Python 2 vs Python 3 - another one.html

0.2 KB

6.1 Python 2 vs Python 3.html

0.1 KB

44.1 Dictionary Methods.html

0.1 KB

17.1 Python Keywords.html

0.1 KB

36.1 Python Keywords.html

0.1 KB

19.1 Exercise Repl.html

0.1 KB

27.1 String Methods.html

0.1 KB

47.1 Tuple Methods.html

0.1 KB

35.1 List Methods.html

0.1 KB

49.2 Sets Methods.html

0.1 KB

16.1 Base Numbers.html

0.1 KB

27.2 Built in Functions.html

0.1 KB

14.1 Exercise Repl.html

0.1 KB

15.1 Exercise Repl.html

0.1 KB

30.1 Python Comments Best Practices.html

0.1 KB

6.2 The Story of Python.html

0.1 KB

11.1 Floating point numbers.html

0.1 KB

24.1 Exercise Repl.html

0.1 KB

25.1 Exercise Repl.html

0.1 KB

45.1 Exercise Repl.html

0.1 KB

36.2 Exercise Repl.html

0.1 KB

38.1 Exercise Repl.html

0.1 KB

34.1 Exercise Repl.html

0.1 KB

33.1 Exercise Repl.html

0.1 KB

49.1 Exercise Repl.html

0.1 KB

2.1 python.org.html

0.1 KB

3.1 Glot.io.html

0.1 KB

3.2 Repl.it.html

0.1 KB

1. What Is A Programming Language.mp4

109.9 MB

17. Variables.mp4

98.1 MB

2. Python Interpreter.mp4

81.8 MB

11. Numbers.mp4

76.2 MB

6. Python 2 vs Python 3.mp4

72.9 MB

27. Built-In Functions + Methods.mp4

72.8 MB

49. Sets 2.mp4

67.4 MB

35. List Methods.mp4

64.8 MB

13. DEVELOPER FUNDAMENTALS I.mp4

62.6 MB

3. How To Run Python Code.mp4

55.4 MB

31. Exercise Password Checker.mp4

53.6 MB

29. Exercise Type Conversion.mp4

52.8 MB

33. List Slicing.mp4

52.3 MB

24. Formatted Strings.mp4

51.6 MB

25. String Indexes.mp4

51.5 MB

4. Our First Python Program.mp4

49.5 MB

45. Dictionary Methods 2.mp4

44.4 MB

12. Math Functions.mp4

43.8 MB

38. Common List Patterns.mp4

42.4 MB

8. Learning Python.mp4

40.4 MB

48. Sets.mp4

38.8 MB

41. Dictionaries.mp4

34.3 MB

20. Strings.mp4

32.5 MB

30. DEVELOPER FUNDAMENTALS II.mp4

30.7 MB

9. Python Data Types.mp4

30.3 MB

37. List Methods 3.mp4

29.0 MB

36. List Methods 2.mp4

28.7 MB

44. Dictionary Methods.mp4

28.5 MB

42. DEVELOPER FUNDAMENTALS III.mp4

27.9 MB

7. Exercise How Does Python Work.mp4

27.2 MB

46. Tuples.mp4

26.9 MB

23. Escape Sequences.mp4

24.3 MB

32. Lists.mp4

23.0 MB

16. Optional bin() and complex.mp4

23.0 MB

26. Immutability.mp4

21.8 MB

43. Dictionary Keys.mp4

21.4 MB

34. Matrix.mp4

20.1 MB

22. Type Conversion.mp4

19.9 MB

47. Tuples 2.mp4

17.8 MB

28. Booleans.mp4

17.4 MB

19. Augmented Assignment Operator.mp4

16.1 MB

14. Operator Precedence.mp4

15.1 MB

39. List Unpacking.mp4

14.5 MB

18. Expressions vs Statements.mp4

11.5 MB

5. Latest Version Of Python.mp4

11.2 MB

40. None.mp4

8.3 MB

21. String Concatenation.mp4

7.7 MB

/.../18. Learn Python Part 2/

2. Conditional Logic.srt

16.0 KB

24. return.srt

15.3 KB

45. Modules in Python.srt

13.0 KB

48. Packages in Python.srt

12.8 KB

47. Optional PyCharm.srt

10.8 KB

18. Our First GUI.srt

10.6 KB

36. Pure Functions.srt

10.3 KB

41. List Comprehensions.srt

9.6 KB

21. Functions.srt

9.4 KB

32. Scope Rules.srt

8.7 KB

8. Exercise Logical Operators.srt

8.6 KB

40. reduce().srt

8.6 KB

9. is vs ==.srt

8.3 KB

7. Logical Operators.srt

8.3 KB

29. args and kwargs.srt

8.3 KB

19. DEVELOPER FUNDAMENTALS IV.srt

8.0 KB

10. For Loops.srt

7.7 KB

49. Different Ways To Import.srt

7.7 KB

15. While Loops.srt

7.5 KB

11. Iterables.srt

7.0 KB

33. global Keyword.srt

6.8 KB

42. Set Comprehensions.srt

6.7 KB

16. While Loops 2.srt

6.6 KB

37. map().srt

6.4 KB

4. Truthy vs Falsey.srt

6.1 KB

23. Default Parameters and Keyword Arguments.srt

6.1 KB

13. range().srt

6.0 KB

28. Clean Code.srt

5.5 KB

3. Indentation In Python.srt

5.4 KB

17. break, continue, pass.srt

5.4 KB

26. Methods vs Functions.srt

5.4 KB

38. filter().srt

5.2 KB

43. Exercise Comprehensions.srt

5.1 KB

22. Parameters and Arguments.srt

5.0 KB

5. Ternary Operator.srt

4.9 KB

35. Why Do We Need Scope.srt

4.9 KB

30. Exercise Functions.srt

4.8 KB

14. enumerate().srt

4.7 KB

6. Short Circuiting.srt

4.6 KB

20. Exercise Find Duplicates.srt

4.5 KB

27. Docstrings.srt

4.4 KB

34. nonlocal Keyword.srt

4.2 KB

31. Scope.srt

3.9 KB

12. Exercise Tricky Counter.srt

3.7 KB

39. zip().srt

3.3 KB

1. Breaking The Flow.srt

3.1 KB

44. Python Exam Testing Your Understanding.html

1.1 KB

50. Next Steps.html

1.0 KB

51. Bonus Resource Python Cheatsheet.html

0.5 KB

46. Quick Note Upcoming Videos.html

0.4 KB

25. Exercise Tesla.html

0.4 KB

4.1 Truthy vs Falsey Stackoverflow.html

0.2 KB

30.1 Solution Repl.html

0.1 KB

20.1 Solution Repl.html

0.1 KB

43.2 Solution Repl.html

0.1 KB

43.1 Exercise Repl.html

0.1 KB

18.1 Exercise Repl.html

0.1 KB

18.2 Solution Repl.html

0.1 KB

34.1 Solution Repl.html

0.1 KB

12.1 Solution Repl.html

0.1 KB

45. Modules in Python.mp4

86.2 MB

2. Conditional Logic.mp4

78.2 MB

48. Packages in Python.mp4

75.9 MB

36. Pure Functions.mp4

70.6 MB

24. return.mp4

66.1 MB

41. List Comprehensions.mp4

55.9 MB

47. Optional PyCharm.mp4

55.6 MB

40. reduce().mp4

54.8 MB

19. DEVELOPER FUNDAMENTALS IV.mp4

52.7 MB

18. Our First GUI.mp4

52.0 MB

21. Functions.mp4

51.0 MB

49. Different Ways To Import.mp4

50.3 MB

8. Exercise Logical Operators.mp4

48.9 MB

11. Iterables.mp4

45.3 MB

29. args and kwargs.mp4

45.1 MB

4. Truthy vs Falsey.mp4

44.9 MB

37. map().mp4

40.2 MB

23. Default Parameters and Keyword Arguments.mp4

40.0 MB

32. Scope Rules.mp4

39.5 MB

33. global Keyword.mp4

38.3 MB

42. Set Comprehensions.mp4

37.1 MB

10. For Loops.mp4

36.0 MB

9. is vs ==.mp4

35.2 MB

26. Methods vs Functions.mp4

32.2 MB

13. range().mp4

29.7 MB

7. Logical Operators.mp4

29.7 MB

15. While Loops.mp4

29.7 MB

3. Indentation In Python.mp4

29.4 MB

16. While Loops 2.mp4

27.2 MB

14. enumerate().mp4

26.0 MB

38. filter().mp4

24.7 MB

22. Parameters and Arguments.mp4

24.3 MB

17. break, continue, pass.mp4

23.3 MB

43. Exercise Comprehensions.mp4

23.0 MB

30. Exercise Functions.mp4

22.9 MB

39. zip().mp4

22.3 MB

1. Breaking The Flow.mp4

21.3 MB

20. Exercise Find Duplicates.mp4

21.2 MB

31. Scope.mp4

21.1 MB

5. Ternary Operator.mp4

20.7 MB

28. Clean Code.mp4

20.6 MB

6. Short Circuiting.mp4

20.3 MB

35. Why Do We Need Scope.mp4

20.1 MB

34. nonlocal Keyword.mp4

19.1 MB

27. Docstrings.mp4

18.2 MB

12. Exercise Tricky Counter.mp4

17.2 MB

/.../13. Data Engineering/

9. Optional OLTP Databases.srt

12.4 KB

7. Types Of Databases.srt

8.6 KB

2. What Is Data.srt

7.8 KB

4. What Is A Data Engineer 2.srt

6.5 KB

5. What Is A Data Engineer 3.srt

5.5 KB

13. Kafka and Stream Processing.srt

5.2 KB

3. What Is A Data Engineer.srt

5.0 KB

11. Hadoop, HDFS and MapReduce.srt

4.8 KB

1. Data Engineering Introduction.srt

4.4 KB

6. What Is A Data Engineer 4.srt

4.0 KB

12. Apache Spark and Apache Flink.srt

2.4 KB

2.1 Kaggle.html

0.1 KB

7.1 OLTP vs OLAP.html

0.1 KB

7.2 A Primer on ACID Transactions.html

0.1 KB

8. Quick Note Upcoming Video.html

0.5 KB

10. Optional Learn SQL.html

0.4 KB

9. Optional OLTP Databases.mp4

83.6 MB

2. What Is Data.mp4

44.3 MB

7. Types Of Databases.mp4

34.1 MB

5. What Is A Data Engineer 3.mp4

25.5 MB

4. What Is A Data Engineer 2.mp4

25.4 MB

13. Kafka and Stream Processing.mp4

20.2 MB

3. What Is A Data Engineer.mp4

15.9 MB

6. What Is A Data Engineer 4.mp4

15.7 MB

1. Data Engineering Introduction.mp4

14.2 MB

11. Hadoop, HDFS and MapReduce.mp4

10.6 MB

12. Apache Spark and Apache Flink.mp4

6.0 MB

/.../15. Storytelling + Communication How To Present Your Work/

5. Weekend Project Principle.srt

9.2 KB

4. Communicating With Co-Workers.srt

5.7 KB

2. Communicating Your Work.srt

5.0 KB

3. Communicating With Managers.srt

4.6 KB

6. Communicating With Outside World.srt

4.6 KB

7. Storytelling.srt

4.2 KB

8. Communicating and sharing your work Further reading.html

3.2 KB

2.1 How to Think About Communicating and Sharing Your Work (blog post).html

0.1 KB

6.1 fast_template by fast.ai (a template you can use for your blog on GitHub Pages).html

0.1 KB

6.2 Devblog by Hashnode (an easy and free way to create a blog you own).html

0.1 KB

5. Weekend Project Principle.mp4

24.7 MB

2. Communicating Your Work.mp4

21.2 MB

4. Communicating With Co-Workers.mp4

19.9 MB

3. Communicating With Managers.mp4

19.3 MB

6. Communicating With Outside World.mp4

15.2 MB

7. Storytelling.mp4

12.6 MB

1. Section Overview.mp4

11.4 MB

1. Section Overview.srt

5.1 MB

/.../10. Supervised Learning Classification + Regression/

1. Milestone Projects!.html

0.7 KB

/.../20. Where To Go From Here/

2. Thank You.srt

3.7 KB

1. Become An Alumni.html

0.9 KB

3. Course Review.html

0.2 KB

4. The Final Challenge.html

0.2 KB

2. Thank You.mp4

11.7 MB

/.../21. BONUS SECTION/

1. Bonus Lecture.html

3.4 KB

/.../19. Bonus Learn Advanced Statistics and Mathematics for FREE!/

1. Statistics and Mathematics.html

0.7 KB

 

Total files 1163


Copyright © 2024 FileMood.com