CourseClub ME AppliedAICourse Applied Machine Learning Course |
||
Name |
[CourseClub.ME] AppliedAICourse - Applied Machine Learning Course |
DOWNLOAD
Copy Link
Trouble downloading? see How To |
Total Size |
27.2 GB |
|
Total Files |
4809 |
|
Last Seen |
2025-05-08 23:41 |
|
Hash |
470B1FF5490A3567307A728DB3FDC0360F484FD8 |
/1.1 - How to Learn from Appliedaicourse/ |
|
|
465.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
36.7 KB |
/1.2 - How the Job Guarantee program works/ |
|
|
255.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/10.1 - Why learn it/ |
|
|
6.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/10.10 - Hyper Cube,Hyper Cuboid/ |
|
|
6.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/10.11 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
24.6 KB |
/10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/ |
|
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector.mp4 |
18.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/10.3 - Dot Product and Angle between 2 Vectors/ |
|
|
19.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/10.4 - Projection and Unit Vector/ |
|
|
8.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/ |
|
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces.mp4 |
21.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/ |
|
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D).mp4 |
14.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/ |
|
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D).mp4 |
11.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/10.9 - Square ,Rectangle/ |
|
|
11.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.1 - Introduction to Probability and Statistics/ |
|
|
22.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.10 - How distributions are used/ |
|
|
42.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.11 - Chebyshev’s inequality/ |
|
|
55.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
17.3 KB |
/11.12 - Discrete and Continuous Uniform distributions/ |
|
|
24.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.13 - How to randomly sample data points (Uniform Distribution)/ |
|
11.13 - How to randomly sample data points (Uniform Distribution).mp4 |
27.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/11.14 - Bernoulli and Binomial Distribution/ |
|
|
49.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.15 - Log Normal Distribution/ |
|
|
51.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.16 - Power law distribution/ |
|
|
60.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.17 - Box cox transform/ |
|
|
32.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.4 KB |
/11.18 - Applications of non-gaussian distributions/ |
|
|
82.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.19 - Co-variance/ |
|
|
30.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.2 - Population and Sample/ |
|
|
18.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.20 - Pearson Correlation Coefficient/ |
|
|
54.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.21 - Spearman Rank Correlation Coefficient/ |
|
|
24.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.22 - Correlation vs Causation/ |
|
|
13.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.23 - How to use correlations/ |
|
|
30.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.24 - Confidence interval (C.I) Introduction/ |
|
|
19.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
18.0 KB |
/11.25 - Computing confidence interval given the underlying distribution/ |
|
11.25 - Computing confidence interval given the underlying distribution.mp4 |
27.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.26 - C.I for mean of a normal random variable/ |
|
|
37.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.27 - Confidence interval using bootstrapping/ |
|
|
47.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/ |
|
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value.mp4 |
22.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
12.1 KB |
/11.29 - Hypothesis Testing Intution with coin toss example/ |
|
11.29 - Hypothesis Testing Intution with coin toss example.mp4 |
67.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/ |
|
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function).mp4.mkv |
59.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
24.1 KB |
/11.30 - Resampling and permutation test/ |
|
|
33.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
12.1 KB |
/11.31 - K-S Test for similarity of two distributions/ |
|
|
62.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
13.1 KB |
/11.32 - Code Snippet K-S Test/ |
|
|
14.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/11.33 - Hypothesis testing another example/ |
|
|
46.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.34 - Resampling and Permutation test another example/ |
|
|
48.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
14.6 KB |
/11.35 - How to use hypothesis testing/ |
|
|
62.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.36 - Proportional Sampling/ |
|
|
46.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.37 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
29.8 KB |
/11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/ |
|
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution.mp4 |
22.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.5 - Symmetric distribution, Skewness and Kurtosis/ |
|
|
16.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
18.2 KB |
/11.6 - Standard normal variate (Z) and standardization/ |
|
|
11.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.7 - Kernel density estimation/ |
|
|
24.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.8 - Sampling distribution & Central Limit theorem/ |
|
|
26.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/ |
|
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not.mp4 |
106.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/12.1 - Questions & Answers/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.1 KB |
/13.1 - What is Dimensionality reduction/ |
|
|
4.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/13.10 - Code to Load MNIST Data Set/ |
|
|
35.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/13.2 - Row Vector and Column Vector/ |
|
|
8.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/13.3 - How to represent a data set/ |
|
|
5.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/13.4 - How to represent a dataset as a Matrix/ |
|
|
17.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/13.5 - Data Preprocessing Feature Normalisation/ |
|
|
25.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/13.6 - Mean of a data matrix/ |
|
|
12.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/13.7 - Data Preprocessing Column Standardization/ |
|
|
38.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/13.8 - Co-variance of a Data Matrix/ |
|
|
34.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
12.7 KB |
/13.9 - MNIST dataset (784 dimensional)/ |
|
|
36.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.9 KB |
/14.1 - Why learn PCA/ |
|
|
9.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/14.10 - PCA for dimensionality reduction (not-visualization)/ |
|
14.10 - PCA for dimensionality reduction (not-visualization).mp4 |
33.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/14.2 - Geometric intuition of PCA/ |
|
|
21.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.3 KB |
/14.3 - Mathematical objective function of PCA/ |
|
|
28.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
12.6 KB |
/14.4 - Alternative formulation of PCA Distance minimization/ |
|
14.4 - Alternative formulation of PCA Distance minimization.mp4 |
24.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.4 KB |
/14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/ |
|
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction.mp4 |
33.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/14.6 - PCA for Dimensionality Reduction and Visualization/ |
|
14.6 - PCA for Dimensionality Reduction and Visualization.mp4 |
23.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/14.7 - Visualize MNIST dataset/ |
|
|
16.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/14.8 - Limitations of PCA/ |
|
|
9.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/14.9 - PCA Code example/ |
|
|
89.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
19.7 KB |
/15.1 - What is t-SNE/ |
|
|
16.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/15.2 - Neighborhood of a point, Embedding/ |
|
|
15.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/15.3 - Geometric intuition of t-SNE/ |
|
|
21.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/15.4 - Crowding Problem/ |
|
|
20.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/15.5 - How to apply t-SNE and interpret its output/ |
|
|
70.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.4 KB |
/15.6 - t-SNE on MNIST/ |
|
|
22.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/15.7 - Code example of t-SNE/ |
|
|
29.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
14.5 KB |
/15.8 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
20.6 KB |
/16.1 - Questions & Answers/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
21.3 KB |
/17.1 - Dataset overview Amazon Fine Food reviews(EDA)/ |
|
|
116.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/ |
|
|
22.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.11 - Bag of Words( Code Sample)/ |
|
|
72.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
21.5 KB |
/17.12 - Text Preprocessing( Code Sample)/ |
|
|
60.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.13 - Bi-Grams and n-grams (Code Sample)/ |
|
|
24.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.14 - TF-IDF (Code Sample)/ |
|
|
18.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
21.0 KB |
/17.15 - Word2Vec (Code Sample)/ |
|
|
56.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/ |
|
|
10.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.17 - Assignment-2 Apply t-SNE/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
183.2 KB |
/17.2 - Data Cleaning Deduplication/ |
|
|
71.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.3 - Why convert text to a vector/ |
|
|
34.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.4 - Bag of Words (BoW)/ |
|
|
74.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
23.0 KB |
/17.5 - Text Preprocessing Stemming/ |
|
|
0.1 KB |
|
0.2 KB |
|
92.5 MB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.6 - uni-gram, bi-gram, n-grams/ |
|
|
35.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.7 - tf-idf (term frequency- inverse document frequency)/ |
|
17.7 - tf-idf (term frequency- inverse document frequency).mp4 |
55.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/17.8 - Why use log in IDF/ |
|
|
34.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
21.9 KB |
/17.9 - Word2Vec/ |
|
|
41.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.8 KB |
/18.1 - How “Classification” works/ |
|
|
25.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.10 - KNN Limitations/ |
|
|
23.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.11 - Decision surface for K-NN as K changes/ |
|
|
57.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.12 - Overfitting and Underfitting/ |
|
|
57.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.13 - Need for Cross validation/ |
|
|
54.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.14 - K-fold cross validation/ |
|
|
46.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.15 - Visualizing train, validation and test datasets/ |
|
|
40.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.16 - How to determine overfitting and underfitting/ |
|
|
48.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.17 - Time based splitting/ |
|
|
46.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.18 - k-NN for regression/ |
|
|
13.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.19 - Weighted k-NN/ |
|
|
18.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.2 - Data matrix notation/ |
|
|
16.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.20 - Voronoi diagram/ |
|
|
13.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.21 - Binary search tree/ |
|
|
42.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.22 - How to build a kd-tree/ |
|
|
46.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
17.2 KB |
/18.23 - Find nearest neighbours using kd-tree/ |
|
|
46.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.24 - Limitations of Kd tree/ |
|
|
20.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.25 - Extensions/ |
|
|
19.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.26 - Hashing vs LSH/ |
|
|
25.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.27 - LSH for cosine similarity/ |
|
|
100.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.28 - LSH for euclidean distance/ |
|
|
31.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.29 - Probabilistic class label/ |
|
|
19.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.3 - Classification vs Regression (examples)/ |
|
|
14.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.30 - Code SampleDecision boundary/ |
|
|
100.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.31 - Code SampleCross Validation/ |
|
|
58.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
18.4 KB |
/18.32 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
26.4 KB |
/18.4 - K-Nearest Neighbours Geometric intuition with a toy example/ |
|
18.4 - K-Nearest Neighbours Geometric intuition with a toy example.mp4 |
28.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.5 - Failure cases of KNN/ |
|
|
19.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/ |
|
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming.mp4 |
49.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.7 - Cosine Distance & Cosine Similarity/ |
|
|
46.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.8 - How to measure the effectiveness of k-NN/ |
|
|
40.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/18.9 - TestEvaluation time and space complexity/ |
|
|
30.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/19.1 - Questions & Answers/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
22.5 KB |
/2.1 - Python, Anaconda and relevant packages installations/ |
|
2.1 - Python, Anaconda and relevant packages installations.mp4.mkv |
41.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
22.7 KB |
/2.10 - Control flow for loop/ |
|
|
30.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
14.6 KB |
/2.11 - Control flow break and continue/ |
|
|
16.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
14.6 KB |
/2.2 - Why learn Python/ |
|
|
5.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/2.3 - Keywords and identifiers/ |
|
|
19.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/2.4 - comments, indentation and statements/ |
|
|
13.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/2.5 - Variables and data types in Python/ |
|
|
75.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/2.6 - Standard Input and Output/ |
|
|
20.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/2.7 - Operators/ |
|
|
21.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/2.8 - Control flow if else/ |
|
|
15.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
17.6 KB |
/2.9 - Control flow while loop/ |
|
|
49.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
28.2 KB |
/20.1 - Introduction/ |
|
|
11.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.10 - Local reachability-density(A)/ |
|
|
22.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.11 - Local outlier Factor(A)/ |
|
|
91.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.12 - Impact of Scale & Column standardization/ |
|
|
32.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.13 - Interpretability/ |
|
|
30.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.14 - Feature Importance and Forward Feature selection/ |
|
20.14 - Feature Importance and Forward Feature selection.mp4 |
55.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.15 - Handling categorical and numerical features/ |
|
|
61.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.16 - Handling missing values by imputation/ |
|
|
55.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.17 - curse of dimensionality/ |
|
|
99.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.18 - Bias-Variance tradeoff/ |
|
|
88.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.19 - Intuitive understanding of bias-variance/ |
|
|
16.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.3 KB |
/20.2 - Imbalanced vs balanced dataset/ |
|
|
58.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.20 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
27.5 KB |
/20.21 - best and wrost case of algorithm/ |
|
|
15.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.3 - Multi-class classification/ |
|
|
29.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.4 - k-NN, given a distance or similarity matrix/ |
|
|
21.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.5 - Train and test set differences/ |
|
|
54.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.6 - Impact of outliers/ |
|
|
17.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/ |
|
20.7 - Local outlier Factor (Simple solution Mean distance to Knn).mp4 |
38.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.8 - k distance/ |
|
|
8.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/20.9 - Reachability-Distance(A,B)/ |
|
|
23.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/21.1 - Accuracy/ |
|
|
36.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/21.10 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
23.1 KB |
/21.2 - Confusion matrix, TPR, FPR, FNR, TNR/ |
|
|
62.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/21.3 - Precision and recall, F1-score/ |
|
|
27.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/ |
|
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC.mp4 |
50.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/21.5 - Log-loss/ |
|
|
33.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/21.6 - R-SquaredCoefficient of determination/ |
|
|
51.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/21.7 - Median absolute deviation (MAD)/ |
|
|
12.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/21.8 - Distribution of errors/ |
|
|
17.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/21.9 - Assignment-3 Apply k-Nearest Neighbor/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
143.3 KB |
/22.1 - Questions & Answers/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
20.3 KB |
/23.1 - Conditional probability/ |
|
|
35.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.10 - Bias and Variance tradeoff/ |
|
|
35.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.7 KB |
/23.11 - Feature importance and interpretability/ |
|
|
25.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.12 - Imbalanced data/ |
|
|
36.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.13 - Outliers/ |
|
|
13.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.14 - Missing values/ |
|
|
7.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.15 - Handling Numerical features (Gaussian NB)/ |
|
|
36.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.16 - Multiclass classification/ |
|
|
4.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.17 - Similarity or Distance matrix/ |
|
|
6.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.18 - Large dimensionality/ |
|
|
5.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.19 - Best and worst cases/ |
|
|
18.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.2 - Independent vs Mutually exclusive events/ |
|
|
16.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.20 - Code example/ |
|
|
40.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.21 - Assignment-4 Apply Naive Bayes/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
119.4 KB |
/23.22 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
26.8 KB |
/23.3 - Bayes Theorem with examples/ |
|
|
78.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.4 - Exercise problems on Bayes Theorem/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.4 KB |
/23.5 - Naive Bayes algorithm/ |
|
|
122.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.6 - Toy example Train and test stages/ |
|
|
121.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.7 - Naive Bayes on Text data/ |
|
|
38.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.8 - LaplaceAdditive Smoothing/ |
|
|
60.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/23.9 - Log-probabilities for numerical stability/ |
|
|
28.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.1 - Geometric intuition of Logistic Regression/ |
|
|
79.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.10 - Column Standardization/ |
|
|
11.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.11 - Feature importance and Model interpretability/ |
|
|
35.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.12 - Collinearity of features/ |
|
|
35.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.13 - TestRun time space and time complexity/ |
|
|
26.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.14 - Real world cases/ |
|
|
27.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/24.15 - Non-linearly separable data & feature engineering/ |
|
24.15 - Non-linearly separable data & feature engineering.mp4 |
70.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/ |
|
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV.mp4 |
112.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
17.5 KB |
/24.17 - Assignment-5 Apply Logistic Regression/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
129.3 KB |
/24.18 - Extensions to Generalized linear models/ |
|
|
26.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.8 KB |
/24.2 - Sigmoid function Squashing/ |
|
|
94.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.3 - Mathematical formulation of Objective function/ |
|
|
59.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.4 - Weight vector/ |
|
|
26.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.5 - L2 Regularization Overfitting and Underfitting/ |
|
|
65.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
6.9 KB |
/24.6 - L1 regularization and sparsity/ |
|
|
27.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.7 - Probabilistic Interpretation Gaussian Naive Bayes/ |
|
24.7 - Probabilistic Interpretation Gaussian Naive Bayes.mp4 |
75.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.5 KB |
/24.8 - Loss minimization interpretation/ |
|
|
48.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/24.9 - hyperparameters and random search/ |
|
|
55.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/25.1 - Geometric intuition of Linear Regression/ |
|
|
33.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/25.2 - Mathematical formulation/ |
|
|
35.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.7 KB |
/25.3 - Real world Cases/ |
|
|
20.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.5 KB |
/25.4 - Code sample for Linear Regression/ |
|
|
56.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/26.1 - Differentiation/ |
|
|
72.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.10 - Logistic regression formulation revisited/ |
|
|
14.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.11 - Why L1 regularization creates sparsity/ |
|
|
45.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.12 - Assignment 6 Implement SGD for linear regression/ |
|
26.12 - Assignment 6 Implement SGD for linear regression.mp4 |
15.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.13 - Revision questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
24.6 KB |
/26.2 - Online differentiation tools/ |
|
|
51.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.3 - Maxima and Minima/ |
|
|
29.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.4 - Vector calculus Grad/ |
|
|
25.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.5 - Gradient descent geometric intuition/ |
|
|
46.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.6 - Learning rate/ |
|
|
18.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.7 - Gradient descent for linear regression/ |
|
|
19.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.8 - SGD algorithm/ |
|
|
26.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/26.9 - Constrained Optimization & PCA/ |
|
|
35.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.5 KB |
/27.1 - Questions & Answers/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
25.7 KB |
/28.1 - Geometric Intution/ |
|
|
49.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/28.10 - Train and run time complexities/ |
|
|
19.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/28.11 - nu-SVM control errors and support vectors/ |
|
|
17.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/28.12 - SVM Regression/ |
|
|
19.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
12.4 KB |
/28.13 - Cases/ |
|
|
22.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/28.14 - Code Sample/ |
|
|
66.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/28.15 - Assignment-7 Apply SVM/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
128.1 KB |
/28.16 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
22.8 KB |
/28.2 - Mathematical derivation/ |
|
|
85.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/28.3 - Why we take values +1 and and -1 for Support vector planes/ |
|
28.3 - Why we take values +1 and and -1 for Support vector planes.mp4 |
20.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/28.4 - Loss function (Hinge Loss) based interpretation/ |
|
|
46.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
17.9 KB |
/28.5 - Dual form of SVM formulation/ |
|
|
42.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
20.6 KB |
/28.6 - kernel trick/ |
|
|
24.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/28.7 - Polynomial Kernel/ |
|
|
28.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.7 KB |
/28.8 - RBF-Kernel/ |
|
|
54.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/28.9 - Domain specific Kernels/ |
|
|
17.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/29.1 - Questions & Answers/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
24.8 KB |
/3.1 - Lists/ |
|
|
148.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
27.0 KB |
/3.2 - Tuples part 1/ |
|
|
27.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/3.3 - Tuples part-2/ |
|
|
11.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/3.4 - Sets/ |
|
|
50.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/3.5 - Dictionary/ |
|
|
65.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/3.6 - Strings/ |
|
|
48.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/ |
|
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes.mp4 |
44.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.10 - Overfitting and Underfitting/ |
|
|
18.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.11 - Train and Run time complexity/ |
|
|
16.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.12 - Regression using Decision Trees/ |
|
|
23.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.13 - Cases/ |
|
|
31.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.14 - Code Samples/ |
|
|
42.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.15 - Assignment-8 Apply Decision Trees/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
126.3 KB |
/30.16 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
22.8 KB |
/30.2 - Sample Decision tree/ |
|
|
22.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/30.3 - Building a decision TreeEntropy/ |
|
|
46.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.4 - Building a decision TreeInformation Gain/ |
|
|
26.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
16.7 KB |
/30.5 - Building a decision Tree Gini Impurity/ |
|
|
17.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.6 - Building a decision Tree Constructing a DT/ |
|
|
60.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.7 - Building a decision Tree Splitting numerical features/ |
|
30.7 - Building a decision Tree Splitting numerical features.mp4 |
18.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.8 - Feature standardization/ |
|
|
10.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/30.9 - Building a decision TreeCategorical features with many possible values/ |
|
30.9 - Building a decision TreeCategorical features with many possible values.mp4 |
21.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/31.1 - Questions & Answers/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
22.0 KB |
/32.1 - What are ensembles/ |
|
|
14.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.10 - Residuals, Loss functions and gradients/ |
|
|
31.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
22.6 KB |
/32.11 - Gradient Boosting/ |
|
|
30.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.12 - Regularization by Shrinkage/ |
|
|
23.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.13 - Train and Run time complexity/ |
|
|
14.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.14 - XGBoost Boosting + Randomization/ |
|
|
65.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.15 - AdaBoost geometric intuition/ |
|
|
17.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.16 - Stacking models/ |
|
|
97.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.17 - Cascading classifiers/ |
|
|
36.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.18 - Kaggle competitions vs Real world/ |
|
|
24.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.19 - Assignment-9 Apply Random Forests & GBDT/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
132.0 KB |
/32.2 - Bootstrapped Aggregation (Bagging) Intuition/ |
|
|
44.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.20 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
23.5 KB |
/32.3 - Random Forest and their construction/ |
|
|
36.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.4 - Bias-Variance tradeoff/ |
|
|
17.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.5 - Train and run time complexity/ |
|
|
21.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.6 - BaggingCode Sample/ |
|
|
19.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.7 - Extremely randomized trees/ |
|
|
22.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.8 - Random Tree Cases/ |
|
|
14.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/32.9 - Boosting Intuition/ |
|
|
41.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/33.1 - Introduction/ |
|
|
37.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.10 - Indicator variables/ |
|
|
16.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.11 - Feature binning/ |
|
|
35.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.12 - Interaction variables/ |
|
|
20.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.13 - Mathematical transforms/ |
|
|
10.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.14 - Model specific featurizations/ |
|
|
22.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.15 - Feature orthogonality/ |
|
|
28.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.16 - Domain specific featurizations/ |
|
|
9.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.17 - Feature slicing/ |
|
|
23.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.18 - Kaggle Winners solutions/ |
|
|
47.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.2 - Moving window for Time Series Data/ |
|
|
61.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.3 - Fourier decomposition/ |
|
|
56.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.4 - Deep learning features LSTM/ |
|
|
19.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.5 - Image histogram/ |
|
|
38.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.6 - Keypoints SIFT/ |
|
|
40.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.7 - Deep learning features CNN/ |
|
|
9.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.8 - Relational data/ |
|
|
28.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/33.9 - Graph data/ |
|
|
31.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/34.1 - Calibration of ModelsNeed for calibration/ |
|
|
17.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/34.10 - AB testing/ |
|
|
57.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.6 KB |
/34.11 - Data Science Life cycle/ |
|
|
63.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/34.12 - VC dimension/ |
|
|
71.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.4 KB |
/34.2 - Productionization and deployment of Machine Learning Models/ |
|
34.2 - Productionization and deployment of Machine Learning Models.mp4.mkv |
280.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.2 KB |
/34.3 - Calibration Plots/ |
|
|
41.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.4 KB |
/34.4 - Platt’s CalibrationScaling/ |
|
|
28.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.2 KB |
/34.5 - Isotonic Regression/ |
|
|
25.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.4 KB |
/34.6 - Code Samples/ |
|
|
21.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.7 KB |
/34.7 - Modeling in the presence of outliers RANSAC/ |
|
|
49.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.5 KB |
/34.8 - Productionizing models/ |
|
|
48.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.5 KB |
/34.9 - Retraining models periodically/ |
|
|
20.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.7 KB |
/35.1 - What is Clustering/ |
|
|
25.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/35.10 - K-Medoids/ |
|
|
47.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/35.11 - Determining the right K/ |
|
|
11.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
19.5 KB |
/35.12 - Code Samples/ |
|
|
32.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/35.13 - Time and space complexity/ |
|
|
8.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
118.7 KB |
/35.2 - Unsupervised learning/ |
|
|
8.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/35.3 - Applications/ |
|
|
63.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/35.4 - Metrics for Clustering/ |
|
|
31.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.2 KB |
/35.5 - K-Means Geometric intuition, Centroids/ |
|
|
22.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/35.6 - K-Means Mathematical formulation Objective function/ |
|
35.6 - K-Means Mathematical formulation Objective function.mp4 |
27.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/35.7 - K-Means Algorithm/ |
|
|
26.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/35.8 - How to initialize K-Means++/ |
|
|
65.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.5 KB |
/35.9 - Failure casesLimitations/ |
|
|
46.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/36.1 - Agglomerative & Divisive, Dendrograms/ |
|
|
37.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.5 KB |
/36.2 - Agglomerative Clustering/ |
|
|
35.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.3 KB |
/36.3 - Proximity methods Advantages and Limitations/ |
|
|
96.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.3 KB |
/36.4 - Time and Space Complexity/ |
|
|
9.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.3 KB |
/36.5 - Limitations of Hierarchical Clustering/ |
|
|
12.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/36.6 - Code sample/ |
|
|
11.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.9 KB |
/36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
118.7 KB |
/37.1 - Density based clustering/ |
|
|
12.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
118.0 KB |
/37.11 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
23.7 KB |
/37.2 - MinPts and Eps Density/ |
|
|
13.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/37.3 - Core, Border and Noise points/ |
|
|
18.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.5 KB |
/37.4 - Density edge and Density connected points/ |
|
|
13.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/37.5 - DBSCAN Algorithm/ |
|
|
31.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/37.6 - Hyper Parameters MinPts and Eps/ |
|
|
23.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/37.7 - Advantages and Limitations of DBSCAN/ |
|
|
44.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.9 KB |
/37.8 - Time and Space Complexity/ |
|
|
8.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.2 KB |
/37.9 - Code samples/ |
|
|
12.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.2 KB |
/38.1 - Problem formulation Movie reviews/ |
|
|
88.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.7 KB |
/38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/ |
|
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution.mp4 |
41.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.8 KB |
/38.11 - Cold Start problem/ |
|
|
14.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/38.12 - Word vectors as MF/ |
|
|
55.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/38.13 - Eigen-Faces/ |
|
|
52.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.4 KB |
/38.14 - Code example/ |
|
|
58.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.6 KB |
/38.15 - Assignment-11 Apply Truncated SVD/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
115.0 KB |
/38.16 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
23.0 KB |
/38.2 - Content based vs Collaborative Filtering/ |
|
|
28.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/38.3 - Similarity based Algorithms/ |
|
|
40.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/38.4 - Matrix Factorization PCA, SVD/ |
|
|
57.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/38.5 - Matrix Factorization NMF/ |
|
|
7.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/38.6 - Matrix Factorization for Collaborative filtering/ |
|
|
57.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.0 KB |
/38.7 - Matrix Factorization for feature engineering/ |
|
|
21.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/38.8 - Clustering as MF/ |
|
|
52.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.7 KB |
/38.9 - Hyperparameter tuning/ |
|
|
25.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/39.1 - Questions & Answers/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
21.4 KB |
/4.1 - Introduction/ |
|
|
52.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.3 KB |
/4.10 - Debugging Python/ |
|
|
60.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/4.2 - Types of functions/ |
|
|
100.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/4.3 - Function arguments/ |
|
|
39.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/4.4 - Recursive functions/ |
|
|
50.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/4.5 - Lambda functions/ |
|
|
22.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/4.6 - Modules/ |
|
|
18.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
18.8 KB |
/4.7 - Packages/ |
|
|
16.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
14.8 KB |
/4.8 - File Handling/ |
|
|
97.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/4.9 - Exception Handling/ |
|
|
63.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/40.1 - BusinessReal world problem/ |
|
|
50.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.10 - Data Modeling Multi label Classification/ |
|
|
83.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.11 - Data preparation/ |
|
|
19.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.12 - Train-Test Split/ |
|
|
7.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.13 - Featurization/ |
|
|
21.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.14 - Logistic regression One VS Rest/ |
|
|
33.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.15 - Sampling data and tags+Weighted models/ |
|
|
22.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.16 - Logistic regression revisited/ |
|
|
17.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.17 - Why not use advanced techniques/ |
|
|
7.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.18 - Assignments/ |
|
|
15.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/40.2 - Business objectives and constraints/ |
|
|
10.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.3 - Mapping to an ML problem Data overview/ |
|
|
13.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.4 - Mapping to an ML problemML problem formulation/ |
|
|
19.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.5 - Mapping to an ML problemPerformance metrics/ |
|
|
78.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.6 - Hamming loss/ |
|
|
17.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.7 - EDAData Loading/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.8 - EDAAnalysis of tags/ |
|
|
48.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/40.9 - EDAData Preprocessing/ |
|
|
47.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/41.1 - BusinessReal world problem Problem definition/ |
|
|
26.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.10 - EDA Feature analysis/ |
|
|
42.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.11 - EDA Data Visualization T-SNE/ |
|
|
9.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.12 - EDA TF-IDF weighted Word2Vec featurization/ |
|
|
25.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.13 - ML Models Loading Data/ |
|
|
26.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.14 - ML Models Random Model/ |
|
|
16.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.15 - ML Models Logistic Regression and Linear SVM/ |
|
|
45.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.16 - ML Models XGBoost/ |
|
|
24.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.17 - Assignments/ |
|
|
10.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.5 KB |
/41.2 - Business objectives and constraints/ |
|
|
12.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.3 - Mapping to an ML problem Data overview/ |
|
|
13.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.4 - Mapping to an ML problem ML problem and performance metric/ |
|
41.4 - Mapping to an ML problem ML problem and performance metric..mp4 |
10.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.5 - Mapping to an ML problem Train-test split/ |
|
|
11.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.6 - EDA Basic Statistics/ |
|
|
21.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.7 - EDA Basic Feature Extraction/ |
|
|
41.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.8 - EDA Text Preprocessing/ |
|
|
24.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/41.9 - EDA Advanced Feature Extraction/ |
|
|
137.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.7 KB |
/42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/42.10 - Text Pre-Processing Tokenization and Stop-word removal/ |
|
42.10 - Text Pre-Processing Tokenization and Stop-word removal.mp4 |
50.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.11 - Stemming/ |
|
|
9.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.12 - Text based product similarity Converting text to an n-D vector bag of words/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.13 - Code for bag of words based product similarity/ |
|
|
122.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.14 - TF-IDF featurizing text based on word-importance/ |
|
42.14 - TF-IDF featurizing text based on word-importance.mp4 |
43.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.15 - Code for TF-IDF based product similarity/ |
|
|
50.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.16 - Code for IDF based product similarity/ |
|
|
41.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.18 - Code for Average Word2Vec product similarity/ |
|
|
74.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.19 - TF-IDF weighted Word2Vec/ |
|
|
20.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
18.6 KB |
/42.2 - Plan of action/ |
|
|
26.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.20 - Code for IDF weighted Word2Vec product similarity/ |
|
42.20 - Code for IDF weighted Word2Vec product similarity.mp4 |
23.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.21 - Weighted similarity using brand and color/ |
|
|
22.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.22 - Code for weighted similarity/ |
|
|
36.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.23 - Building a real world solution/ |
|
|
13.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.25 - Using Keras + Tensorflow to extract features/ |
|
|
34.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.26 - Visual similarity based product similarity/ |
|
|
27.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.27 - Measuring goodness of our solution AB testing/ |
|
|
17.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.3 - Amazon product advertising API/ |
|
|
13.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.4 - Data folders and paths/ |
|
|
16.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.5 - Overview of the data and Terminology/ |
|
|
48.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.6 - Data cleaning and understandingMissing data in various features/ |
|
42.6 - Data cleaning and understandingMissing data in various features.mp4 |
99.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.7 - Understand duplicate rows/ |
|
|
25.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.8 - Remove duplicates Part 1/ |
|
|
51.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/42.9 - Remove duplicates Part 2/ |
|
|
64.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/43.1 - Businessreal world problem Problem definition/ |
|
|
23.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.10 - ML models – using byte files only Random Model/ |
|
|
41.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.11 - k-NN/ |
|
|
22.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.12 - Logistic regression/ |
|
|
22.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.13 - Random Forest and Xgboost/ |
|
|
31.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.14 - ASM Files Feature extraction & Multiprocessing/ |
|
|
46.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.9 KB |
/43.15 - File-size feature/ |
|
|
4.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.16 - Univariate analysis/ |
|
|
9.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.17 - t-SNE analysis/ |
|
|
10.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.18 - ML models on ASM file features/ |
|
|
40.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.19 - Models on all features t-SNE/ |
|
|
9.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.2 - Businessreal world problem Objectives and constraints/ |
|
43.2 - Businessreal world problem Objectives and constraints.mp4 |
16.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.20 - Models on all features RandomForest and Xgboost/ |
|
|
17.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.21 - Assignments/ |
|
|
9.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.9 KB |
/43.3 - Machine Learning problem mapping Data overview/ |
|
|
49.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.4 - Machine Learning problem mapping ML problem/ |
|
|
30.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.5 - Machine Learning problem mapping Train and test splitting/ |
|
43.5 - Machine Learning problem mapping Train and test splitting.mp4 |
11.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.6 - Exploratory Data Analysis Class distribution/ |
|
|
8.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.7 - Exploratory Data Analysis Feature extraction from byte files/ |
|
43.7 - Exploratory Data Analysis Feature extraction from byte files.mp4 |
32.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/43.9 - Exploratory Data Analysis Train-Test class distribution/ |
|
43.9 - Exploratory Data Analysis Train-Test class distribution.mp4 |
6.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.1 - BusinessReal world problemProblem definition/ |
|
|
28.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.10 - Exploratory Data AnalysisCold start problem/ |
|
|
10.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.11 - Computing Similarity matricesUser-User similarity matrix/ |
|
44.11 - Computing Similarity matricesUser-User similarity matrix.mp4 |
71.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.12 - Computing Similarity matricesMovie-Movie similarity/ |
|
44.12 - Computing Similarity matricesMovie-Movie similarity.mp4 |
14.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.13 - Computing Similarity matricesDoes movie-movie similarity work/ |
|
44.13 - Computing Similarity matricesDoes movie-movie similarity work.mp4 |
26.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.14 - ML ModelsSurprise library/ |
|
|
28.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.2 KB |
/44.15 - Overview of the modelling strategy/ |
|
|
32.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.16 - Data Sampling/ |
|
|
11.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.17 - Google drive with intermediate files/ |
|
|
4.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.18 - Featurizations for regression/ |
|
|
39.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.19 - Data transformation for Surprise/ |
|
|
6.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.2 - Objectives and constraints/ |
|
|
24.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.20 - Xgboost with 13 features/ |
|
|
24.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.21 - Surprise Baseline model/ |
|
|
27.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.0 KB |
/44.22 - Xgboost + 13 features +Surprise baseline model/ |
|
|
10.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.23 - Surprise KNN predictors/ |
|
|
69.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.24 - Matrix Factorization models using Surprise/ |
|
|
15.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.25 - SVD ++ with implicit feedback/ |
|
|
28.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.26 - Final models with all features and predictors/ |
|
|
16.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.27 - Comparison between various models/ |
|
|
12.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.28 - Assignments/ |
|
|
19.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.9 KB |
/44.3 - Mapping to an ML problemData overview/ |
|
|
10.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.4 - Mapping to an ML problemML problem formulation/ |
|
|
13.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.5 - Exploratory Data AnalysisData preprocessing/ |
|
|
28.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.6 - Exploratory Data AnalysisTemporal Train-Test split/ |
|
44.6 - Exploratory Data AnalysisTemporal Train-Test split..mp4 |
13.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.7 - Exploratory Data AnalysisPreliminary data analysis/ |
|
44.7 - Exploratory Data AnalysisPreliminary data analysis..mp4 |
38.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/44.8 - Exploratory Data AnalysisSparse matrix representation/ |
|
44.8 - Exploratory Data AnalysisSparse matrix representation.mp4 |
31.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.6 KB |
/44.9 - Exploratory Data AnalysisAverage ratings for various slices/ |
|
44.9 - Exploratory Data AnalysisAverage ratings for various slices.mp4 |
16.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.1 - BusinessReal world problem Overview/ |
|
|
46.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.10 - Univariate AnalysisVariation Feature/ |
|
|
81.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.5 KB |
/45.11 - Univariate AnalysisText feature/ |
|
|
73.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.12 - Machine Learning ModelsData preparation/ |
|
|
42.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.13 - Baseline Model Naive Bayes/ |
|
|
121.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.14 - K-Nearest Neighbors Classification/ |
|
|
43.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
21.6 KB |
/45.15 - Logistic Regression with class balancing/ |
|
|
48.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.16 - Logistic Regression without class balancing/ |
|
|
18.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.17 - Linear-SVM/ |
|
|
32.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.18 - Random-Forest with one-hot encoded features/ |
|
|
36.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.19 - Random-Forest with response-coded features/ |
|
|
27.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.2 - Business objectives and constraints/ |
|
|
30.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.20 - Stacking Classifier/ |
|
|
40.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.21 - Majority Voting classifier/ |
|
|
21.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.22 - Assignments/ |
|
|
21.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.3 - ML problem formulation Data/ |
|
|
24.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.4 - ML problem formulation Mapping real world to ML problem#/ |
|
45.4 - ML problem formulation Mapping real world to ML problem..mp4 |
69.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/45.4 - ML problem formulation Mapping real world to ML problem/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.5 - ML problem formulation Train, CV and Test data construction/ |
|
45.5 - ML problem formulation Train, CV and Test data construction.mp4 |
11.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.6 - Exploratory Data AnalysisReading data & preprocessing/ |
|
45.6 - Exploratory Data AnalysisReading data & preprocessing.mp4 |
35.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.7 - Exploratory Data AnalysisDistribution of Class-labels/ |
|
45.7 - Exploratory Data AnalysisDistribution of Class-labels.mp4 |
31.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.8 - Exploratory Data Analysis “Random” Model/ |
|
|
82.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/45.9 - Univariate AnalysisGene feature/ |
|
|
151.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.1 - BusinessReal world problem Overview/ |
|
|
49.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.10 - Data Cleaning Speed/ |
|
|
19.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.11 - Data Cleaning Distance/ |
|
|
7.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.12 - Data Cleaning Fare/ |
|
|
17.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.13 - Data Cleaning Remove all outlierserroneous points/ |
|
46.13 - Data Cleaning Remove all outlierserroneous points.mp4 |
11.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.14 - Data PreparationClusteringSegmentation/ |
|
|
83.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.15 - Data PreparationTime binning/ |
|
|
25.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.16 - Data PreparationSmoothing time-series data/ |
|
|
10.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.17 - Data PreparationSmoothing time-series data cont/ |
|
46.17 - Data PreparationSmoothing time-series data cont...mp4 |
11.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/46.18 - Data Preparation Time series and Fourier transforms/ |
|
46.18 - Data Preparation Time series and Fourier transforms..mp4 |
31.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
18.2 KB |
/46.19 - Ratios and previous-time-bin values/ |
|
|
23.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.2 - Objectives and Constraints/ |
|
|
40.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.20 - Simple moving average/ |
|
|
33.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.21 - Weighted Moving average/ |
|
|
15.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.22 - Exponential weighted moving average/ |
|
|
25.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.23 - Results/ |
|
|
15.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
13.2 KB |
/46.24 - Regression models Train-Test split & Features/ |
|
|
35.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.25 - Linear regression/ |
|
|
10.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.26 - Random Forest regression/ |
|
|
18.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.27 - Xgboost Regression/ |
|
|
8.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.28 - Model comparison/ |
|
|
20.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.29 - Assignment/ |
|
|
21.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/46.3 - Mapping to ML problem Data/ |
|
|
37.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.4 - Mapping to ML problem dask dataframes/ |
|
|
36.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.5 - Mapping to ML problem FieldsFeatures/ |
|
|
24.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.6 - Mapping to ML problem Time series forecastingRegression/ |
|
46.6 - Mapping to ML problem Time series forecastingRegression.mp4 |
19.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.7 - Mapping to ML problem Performance metrics/ |
|
|
26.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.8 - Data Cleaning Latitude and Longitude data/ |
|
|
22.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/46.9 - Data Cleaning Trip Duration/ |
|
|
24.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/47.1 - History of Neural networks and Deep Learning/ |
|
|
62.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/47.10 - Backpropagation/ |
|
|
76.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/47.11 - Activation functions/ |
|
|
45.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.3 KB |
/47.12 - Vanishing Gradient problem/ |
|
|
86.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/47.13 - Bias-Variance tradeoff/ |
|
|
36.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/47.14 - Decision surfaces Playground/ |
|
|
61.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.5 KB |
/47.2 - How Biological Neurons work/ |
|
|
20.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/47.3 - Growth of biological neural networks/ |
|
|
48.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/47.4 - Diagrammatic representation Logistic Regression and Perceptron/ |
|
47.4 - Diagrammatic representation Logistic Regression and Perceptron.mp4 |
42.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/47.5 - Multi-Layered Perceptron (MLP)/ |
|
|
59.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/47.6 - Notation/ |
|
|
72.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/47.7 - Training a single-neuron model/ |
|
|
71.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.5 KB |
/47.8 - Training an MLP Chain Rule/ |
|
|
107.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/47.9 - Training an MLPMemoization/ |
|
|
39.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/48.1 - Deep Multi-layer perceptrons1980s to 2010s/ |
|
|
44.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/48.10 - Nesterov Accelerated Gradient (NAG)/ |
|
|
20.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.7 KB |
/48.11 - OptimizersAdaGrad/ |
|
|
36.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
18.4 KB |
/48.12 - Optimizers Adadelta andRMSProp/ |
|
|
21.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.7 KB |
/48.13 - Adam/ |
|
|
28.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
20.5 KB |
/48.14 - Which algorithm to choose when/ |
|
|
22.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/48.15 - Gradient Checking and clipping/ |
|
|
25.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/48.16 - Softmax and Cross-entropy for multi-class classification/ |
|
48.16 - Softmax and Cross-entropy for multi-class classification..mp4 |
90.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/48.17 - How to train a Deep MLP/ |
|
|
19.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/48.18 - Auto Encoders/ |
|
|
102.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.8 KB |
/48.19 - Word2Vec CBOW/ |
|
|
68.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/48.2 - Dropout layers & Regularization/ |
|
|
85.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
21.1 KB |
/48.20 - Word2Vec Skip-gram/ |
|
|
54.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/48.21 - Word2Vec Algorithmic Optimizations/ |
|
|
49.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.2 KB |
/48.3 - Rectified Linear Units (ReLU)/ |
|
|
107.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.7 KB |
/48.4 - Weight initialization/ |
|
|
56.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/48.5 - Batch Normalization/ |
|
|
59.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.5 KB |
/48.6 - OptimizersHill-descent analogy in 2D/ |
|
|
48.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/48.7 - OptimizersHill descent in 3D and contours/ |
|
|
74.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/48.8 - SGD Recap/ |
|
|
49.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/48.9 - Batch SGD with momentum/ |
|
|
89.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.3 KB |
/49.1 - Tensorflow and Keras overview/ |
|
|
79.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.0 KB |
/49.10 - Model 3 Batch Normalization/ |
|
|
40.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/49.11 - Model 4 Dropout/ |
|
|
25.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/49.12 - MNIST classification in Keras/ |
|
|
90.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/49.13 - Hyperparameter tuning in Keras/ |
|
|
32.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/49.14 - Exercise Try different MLP architectures on MNIST dataset/ |
|
49.14 - Exercise Try different MLP architectures on MNIST dataset..mp4 |
16.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/49.2 - GPU vs CPU for Deep Learning/ |
|
|
61.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/49.3 - Google Colaboratory/ |
|
|
22.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.3 KB |
/49.4 - Install TensorFlow/ |
|
|
30.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.5 KB |
/49.5 - Online documentation and tutorials/ |
|
|
28.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/49.6 - Softmax Classifier on MNIST dataset/ |
|
|
146.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/49.7 - MLP Initialization/ |
|
|
53.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/49.8 - Model 1 Sigmoid activation/ |
|
|
99.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/49.9 - Model 2 ReLU activation/ |
|
|
29.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/5.1 - Numpy Introduction/ |
|
|
164.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
17.8 KB |
/5.2 - Numerical operations on Numpy/ |
|
|
163.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
19.6 KB |
/50.1 - Biological inspiration Visual Cortex/ |
|
|
48.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
13.2 KB |
/50.10 - Data Augmentation/ |
|
|
22.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.5 KB |
/50.11 - Convolution Layers in Keras/ |
|
|
76.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.7 KB |
/50.12 - AlexNet/ |
|
|
77.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
12.0 KB |
/50.13 - VGGNet/ |
|
|
49.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/50.14 - Residual Network/ |
|
|
113.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.0 KB |
/50.15 - Inception Network/ |
|
|
80.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.9 KB |
/50.16 - What is Transfer learning/ |
|
|
84.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.7 KB |
/50.17 - Code example Cats vs Dogs/ |
|
|
84.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/50.18 - Code Example MNIST dataset/ |
|
|
26.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.6 KB |
/50.19 - Assignment Try various CNN networks on MNIST dataset#/ |
|
50.19 - Assignment Try various CNN networks on MNIST dataset..mp4 |
18.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/50.2 - ConvolutionEdge Detection on images/ |
|
|
121.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.0 KB |
/50.3 - ConvolutionPadding and strides/ |
|
|
77.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/50.4 - Convolution over RGB images/ |
|
|
43.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.6 KB |
/50.5 - Convolutional layer/ |
|
|
63.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
12.5 KB |
/50.6 - Max-pooling/ |
|
|
28.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/50.7 - CNN Training Optimization/ |
|
|
23.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.1 KB |
/50.8 - Example CNN LeNet [1998]/ |
|
|
38.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.0 KB |
/50.9 - ImageNet dataset/ |
|
|
34.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.1 KB |
/51.1 - Why RNNs/ |
|
|
55.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/51.10 - Code example IMDB Sentiment classification/ |
|
|
128.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
21.1 KB |
/51.11 - Exercise Amazon Fine Food reviews LSTM model/ |
|
|
12.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/51.2 - Recurrent Neural Network/ |
|
|
110.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/51.3 - Training RNNs Backprop/ |
|
|
66.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/51.4 - Types of RNNs/ |
|
|
51.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.0 KB |
/51.5 - Need for LSTMGRU/ |
|
|
31.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.9 KB |
/51.6 - LSTM/ |
|
|
143.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.3 KB |
/51.7 - GRUs/ |
|
|
27.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.1 KB |
/51.8 - Deep RNN/ |
|
|
16.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/51.9 - Bidirectional RNN/ |
|
|
29.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/52.1 - Questions and Answers/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
39.5 KB |
/53.1 - Self Driving Car Problem definition/ |
|
|
38.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/53.10 - NVIDIA’s end to end CNN model/ |
|
|
108.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/53.11 - Train the model/ |
|
|
64.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.5 KB |
/53.12 - Test and visualize the output/ |
|
|
119.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.3 KB |
/53.13 - Extensions/ |
|
|
16.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.6 KB |
/53.14 - Assignment/ |
|
|
7.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/53.2 - Datasets#/ |
|
|
40.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/53.2 - Datasets/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.7 KB |
/53.3 - Data understanding & Analysis Files and folders/ |
|
|
12.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/53.4 - Dash-cam images and steering angles/ |
|
|
28.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/53.5 - Split the dataset Train vs Test/ |
|
|
5.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/53.6 - EDA Steering angles/ |
|
|
16.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/53.7 - Mean Baseline model simple/ |
|
|
11.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/ |
|
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN.mp4 |
24.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/53.9 - Batch load the dataset/ |
|
|
26.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/54.1 - Real-world problem/ |
|
|
43.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.1 KB |
/54.10 - MIDI music generation/ |
|
|
23.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
11.0 KB |
/54.11 - Survey blog/ |
|
|
24.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.3 KB |
/54.2 - Music representation/ |
|
|
54.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
12.3 KB |
/54.3 - Char-RNN with abc-notation Char-RNN model/ |
|
|
91.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.8 KB |
/54.4 - Char-RNN with abc-notation Data preparation/ |
|
|
138.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
13.5 KB |
/54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/ |
|
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer.mp4 |
68.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/54.6 - Char-RNN with abc-notation State full RNN/ |
|
|
42.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/54.7 - Char-RNN with abc-notation Model architecture,Model training/ |
|
54.7 - Char-RNN with abc-notation Model architecture,Model training..mp4 |
53.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/54.8 - Char-RNN with abc-notation Music generation/ |
|
|
37.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.9 KB |
/54.9 - Char-RNN with abc-notation Generate tabla music/ |
|
|
13.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.9 KB |
/55.1 - Human Activity Recognition Problem definition/ |
|
|
22.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.7 KB |
/55.2 - Dataset understanding/ |
|
|
85.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.2 KB |
/55.3 - Data cleaning & preprocessing/ |
|
|
11.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/55.4 - EDAUnivariate analysis/ |
|
|
19.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/55.5 - EDAData visualization using t-SNE/ |
|
|
21.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/55.6 - Classical ML models/ |
|
|
46.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/55.7 - Deep-learning Model/ |
|
|
47.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/55.8 - Exercise Build deeper LSTM models and hyper-param tune them/ |
|
55.8 - Exercise Build deeper LSTM models and hyper-param tune them.mp4 |
8.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.1 - Problem definition/ |
|
|
18.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.9 KB |
/56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/ |
|
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities.mp4 |
51.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.11 - PageRank/ |
|
|
57.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.12 - Shortest Path/ |
|
|
10.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.13 - Connected-components/ |
|
|
47.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.14 - Adar Index/ |
|
|
35.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.15 - Kartz Centrality/ |
|
|
20.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.16 - HITS Score/ |
|
|
37.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.17 - SVD/ |
|
|
33.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.18 - Weight features/ |
|
|
18.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.19 - Modeling/ |
|
|
41.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/ |
|
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path..mp4 |
24.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.3 - Data format & Limitations/ |
|
|
29.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.4 - Mapping to a supervised classification problem/ |
|
|
22.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.5 - Business constraints & Metrics/ |
|
|
20.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.6 - EDABasic Stats/ |
|
|
40.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
8.8 KB |
/56.7 - EDAFollower and following stats/ |
|
|
35.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.8 - EDABinary Classification Task/ |
|
|
50.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/56.9 - EDATrain and test split/ |
|
|
38.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.1 - Introduction to Databases/ |
|
|
65.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.10 - ORDER BY/ |
|
|
20.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.11 - DISTINCT/ |
|
|
29.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.12 - WHERE, Comparison operators, NULL/ |
|
|
47.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.13 - Logical Operators/ |
|
|
92.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/ |
|
|
23.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.15 - GROUP BY/ |
|
|
44.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.16 - HAVING/ |
|
|
47.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.17 - Order of keywords#/ |
|
|
15.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.18 - Join and Natural Join/ |
|
|
41.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.19 - Inner, Left, Right and Outer joins/ |
|
|
87.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.2 - Why SQL/ |
|
|
35.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.20 - Sub QueriesNested QueriesInner Queries/ |
|
|
94.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.7 KB |
/57.21 - DMLINSERT/ |
|
|
25.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.22 - DMLUPDATE , DELETE/ |
|
|
20.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.23 - DDLCREATE TABLE/ |
|
|
46.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.24 - DDLALTER ADD, MODIFY, DROP/ |
|
|
14.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.25 - DDLDROP TABLE, TRUNCATE, DELETE/ |
|
|
11.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.26 - Data Control Language GRANT, REVOKE/ |
|
|
145.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.27 - Learning resources/ |
|
|
37.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
9.7 KB |
/57.3 - Execution of an SQL statement/ |
|
|
17.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.4 - IMDB dataset/ |
|
|
39.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.5 - Installing MySQL/ |
|
|
39.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
12.3 KB |
/57.6 - Load IMDB data/ |
|
|
6.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
13.7 KB |
/57.7 - USE, DESCRIBE, SHOW TABLES/ |
|
|
40.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.8 - SELECT/ |
|
|
60.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/57.9 - LIMIT, OFFSET/ |
|
|
27.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
/58.1 - AD-Click Predicition/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
806.5 KB |
/out_files/ |
|
|
5.4 KB |
|
185.5 KB |
|
71.9 KB |
|
24.3 KB |
|
72.2 KB |
|
2.8 KB |
|
5.0 KB |
|
23.2 KB |
|
924.9 KB |
|
44.1 KB |
|
28.8 KB |
|
0.8 KB |
|
28.2 KB |
|
25.9 KB |
|
9.2 KB |
|
4.9 KB |
|
59.6 KB |
|
2.8 KB |
|
1.8 KB |
|
23.6 KB |
|
52.0 KB |
|
15.0 KB |
|
109.4 KB |
|
0.9 KB |
|
97.1 KB |
|
328.6 KB |
|
263.6 KB |
|
6.7 KB |
|
139.9 KB |
|
11.9 KB |
|
16.2 KB |
|
13.2 KB |
|
6.5 KB |
|
44.2 KB |
|
44.7 KB |
|
20.7 KB |
|
4.9 KB |
/59.1 - Revision Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
99.1 KB |
/59.2 - Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
70.4 KB |
/59.3 - External resources for Interview Questions/ |
|
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
23.8 KB |
/6.1 - Getting started with Matplotlib/ |
|
|
57.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
14.6 KB |
/7.1 - Getting started with pandas/ |
|
|
33.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/7.2 - Data Frame Basics/ |
|
|
27.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/7.3 - Key Operations on Data Frames/ |
|
|
94.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
17.0 KB |
/8.1 - Space and Time Complexity Find largest number in a list/ |
|
8.1 - Space and Time Complexity Find largest number in a list.mp4 |
50.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.2 KB |
/8.2 - Binary search/ |
|
|
44.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.2 KB |
/8.3 - Find elements common in two lists/ |
|
|
14.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.2 KB |
/8.4 - Find elements common in two lists using a HashtableDict/ |
|
8.4 - Find elements common in two lists using a HashtableDict.mp4 |
31.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.2 KB |
/9.1 - Introduction to IRIS dataset and 2D scatter plot/ |
|
9.1 - Introduction to IRIS dataset and 2D scatter plot.mp4.mkv |
71.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/9.10 - Percentiles and Quantiles/ |
|
|
22.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/ |
|
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation).mp4 |
14.5 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/9.12 - Box-plot with Whiskers/ |
|
|
21.7 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/9.13 - Violin Plots/ |
|
|
8.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/ |
|
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis.mp4 |
20.0 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/9.15 - Multivariate Probability Density, Contour Plot/ |
|
|
23.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/9.16 - Exercise Perform EDA on Haberman dataset/ |
|
|
15.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
22.3 KB |
/9.2 - 3D scatter plot/ |
|
|
14.4 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/9.3 - Pair plots/ |
|
|
24.2 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.7 KB |
/9.4 - Limitations of Pair Plots/ |
|
|
3.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/9.5 - Histogram and Introduction to PDF(Probability Density Function)/ |
|
9.5 - Histogram and Introduction to PDF(Probability Density Function).mkv |
23.3 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/9.6 - Univariate Analysis using PDF/ |
|
|
15.1 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/9.7 - CDF(Cumulative Distribution Function)/ |
|
|
25.8 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
31.2 KB |
/9.8 - Mean, Variance and Standard Deviation/ |
|
|
28.6 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.4 KB |
/9.9 - Median/ |
|
|
27.9 MB |
|
0.1 KB |
|
0.2 KB |
|
1.4 KB |
|
0.1 KB |
|
0.1 KB |
|
10.0 KB |
/ |
|
|
0.1 KB |
|
0.1 KB |
|
0.1 KB |
Total files 4809 |
Copyright © 2025 FileMood.com