FileMood

Download [CourseClub.Me] Coursera – Machine Learning Specialization (Andrew Ng)

CourseClub Me Coursera Machine Learning Specialization Andrew Ng

Name

[CourseClub.Me] Coursera – Machine Learning Specialization (Andrew Ng)

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

1.7 GB

Total Files

461

Last Seen

2025-07-19 00:26

Hash

E70480F15339F4380B9B6D36330F888C79ED5231

/.../01_neural-networks-intuition/

01_welcome.en.srt

5.5 KB

01_welcome.en.txt

2.9 KB

01_welcome.mp4

11.2 MB

02_neurons-and-the-brain.en.srt

18.7 KB

02_neurons-and-the-brain.en.txt

9.7 KB

02_neurons-and-the-brain.mp4

28.2 MB

03_demand-prediction.en.srt

27.2 KB

03_demand-prediction.en.txt

14.3 KB

03_demand-prediction.mp4

30.9 MB

04_example-recognizing-images.en.srt

10.4 KB

04_example-recognizing-images.en.txt

5.5 KB

04_example-recognizing-images.mp4

15.3 MB

/.../02_neural-network-model/

01_neural-network-layer.en.srt

13.3 KB

01_neural-network-layer.en.txt

7.0 KB

01_neural-network-layer.mp4

21.4 MB

02_more-complex-neural-networks.en.srt

12.0 KB

02_more-complex-neural-networks.en.txt

6.2 KB

02_more-complex-neural-networks.mp4

17.9 MB

03_inference-making-predictions-forward-propagation.en.srt

7.1 KB

03_inference-making-predictions-forward-propagation.en.txt

4.4 KB

03_inference-making-predictions-forward-propagation.mp4

13.2 MB

/.../03_tensorflow-implementation/

01_inference-in-code.en.srt

10.3 KB

01_inference-in-code.en.txt

5.4 KB

01_inference-in-code.mp4

17.6 MB

02_data-in-tensorflow.en.srt

13.5 KB

02_data-in-tensorflow.en.txt

8.5 KB

02_data-in-tensorflow.mp4

26.0 MB

03_building-a-neural-network.en.srt

11.0 KB

03_building-a-neural-network.en.txt

7.0 KB

03_building-a-neural-network.mp4

25.6 MB

/.../04_neural-network-implementation-in-python/

01_forward-prop-in-a-single-layer.en.srt

6.2 KB

01_forward-prop-in-a-single-layer.en.txt

3.9 KB

01_forward-prop-in-a-single-layer.mp4

13.0 MB

02_general-implementation-of-forward-propagation.en.srt

11.9 KB

02_general-implementation-of-forward-propagation.en.txt

6.2 KB

02_general-implementation-of-forward-propagation.mp4

22.4 MB

/.../05_speculations-on-artificial-general-intelligence-agi/

01_is-there-a-path-to-agi.en.srt

16.8 KB

01_is-there-a-path-to-agi.en.txt

8.8 KB

01_is-there-a-path-to-agi.mp4

29.5 MB

/.../06_vectorization-optional/

01_how-neural-networks-are-implemented-efficiently.en.srt

6.3 KB

01_how-neural-networks-are-implemented-efficiently.en.txt

3.2 KB

01_how-neural-networks-are-implemented-efficiently.mp4

14.4 MB

02_matrix-multiplication.en.srt

12.6 KB

02_matrix-multiplication.en.txt

6.5 KB

02_matrix-multiplication.mp4

16.7 MB

03_matrix-multiplication-rules.en.srt

11.7 KB

03_matrix-multiplication-rules.en.txt

7.3 KB

03_matrix-multiplication-rules.mp4

19.4 MB

04_matrix-multiplication-code.en.srt

9.0 KB

04_matrix-multiplication-code.en.txt

4.7 KB

04_matrix-multiplication-code.mp4

14.0 MB

/.../01_neural-network-training/

01_tensorflow-implementation.en.srt

6.1 KB

01_tensorflow-implementation.en.txt

3.2 KB

01_tensorflow-implementation.mp4

11.9 MB

02_training-details.en.srt

21.4 KB

02_training-details.en.txt

11.2 KB

02_training-details.mp4

25.3 MB

/.../02_activation-functions/

01_alternatives-to-the-sigmoid-activation.en.srt

7.0 KB

01_alternatives-to-the-sigmoid-activation.en.txt

4.4 KB

01_alternatives-to-the-sigmoid-activation.mp4

12.5 MB

02_choosing-activation-functions.en.srt

14.1 KB

02_choosing-activation-functions.en.txt

7.4 KB

02_choosing-activation-functions.mp4

24.5 MB

03_why-do-we-need-activation-functions.en.srt

7.8 KB

03_why-do-we-need-activation-functions.en.txt

4.1 KB

03_why-do-we-need-activation-functions.mp4

13.6 MB

/.../03_multiclass-classification/

01_multiclass.en.srt

4.4 KB

01_multiclass.en.txt

2.8 KB

01_multiclass.mp4

8.8 MB

02_softmax.en.srt

15.7 KB

02_softmax.en.txt

8.1 KB

02_softmax.mp4

21.7 MB

03_neural-network-with-softmax-output.en.srt

9.3 KB

03_neural-network-with-softmax-output.en.txt

5.9 KB

03_neural-network-with-softmax-output.mp4

15.8 MB

04_improved-implementation-of-softmax.en.srt

13.7 KB

04_improved-implementation-of-softmax.en.txt

7.2 KB

04_improved-implementation-of-softmax.mp4

18.7 MB

05_classification-with-multiple-outputs-optional.en.srt

6.9 KB

05_classification-with-multiple-outputs-optional.en.txt

3.7 KB

05_classification-with-multiple-outputs-optional.mp4

13.5 MB

/.../04_additional-neural-network-concepts/

01_advanced-optimization.en.srt

10.8 KB

01_advanced-optimization.en.txt

5.7 KB

01_advanced-optimization.mp4

16.3 MB

02_additional-layer-types.en.srt

11.6 KB

02_additional-layer-types.en.txt

7.4 KB

02_additional-layer-types.mp4

23.2 MB

/.../01_advice-for-applying-machine-learning/

01_deciding-what-to-try-next.en.srt

6.9 KB

01_deciding-what-to-try-next.en.txt

3.6 KB

01_deciding-what-to-try-next.mp4

13.5 MB

02_evaluating-a-model.en.srt

13.1 KB

02_evaluating-a-model.en.txt

8.3 KB

02_evaluating-a-model.mp4

24.8 MB

/.../02_bias-and-variance/

01_diagnosing-bias-and-variance.en.srt

18.3 KB

01_diagnosing-bias-and-variance.en.txt

9.5 KB

01_diagnosing-bias-and-variance.mp4

25.3 MB

02_regularization-and-bias-variance.en.srt

16.7 KB

02_regularization-and-bias-variance.en.txt

8.5 KB

02_regularization-and-bias-variance.mp4

26.4 MB

03_establishing-a-baseline-level-of-performance.en.srt

16.3 KB

03_establishing-a-baseline-level-of-performance.en.txt

8.5 KB

03_establishing-a-baseline-level-of-performance.mp4

22.9 MB

04_learning-curves.en.srt

20.5 KB

04_learning-curves.en.txt

10.7 KB

04_learning-curves.mp4

29.4 MB

05_deciding-what-to-try-next-revisited.en.srt

14.9 KB

05_deciding-what-to-try-next-revisited.en.txt

7.9 KB

05_deciding-what-to-try-next-revisited.mp4

29.4 MB

06_bias-variance-and-neural-networks.en.srt

14.9 KB

06_bias-variance-and-neural-networks.en.txt

9.7 KB

06_bias-variance-and-neural-networks.mp4

28.2 MB

/.../03_machine-learning-development-process/

01_iterative-loop-of-ml-development.en.srt

12.4 KB

01_iterative-loop-of-ml-development.en.txt

6.6 KB

01_iterative-loop-of-ml-development.mp4

15.5 MB

02_error-analysis.en.srt

13.5 KB

02_error-analysis.en.txt

7.2 KB

02_error-analysis.mp4

18.4 MB

03_adding-data.en.srt

19.5 KB

03_adding-data.en.txt

12.4 KB

03_adding-data.mp4

34.3 MB

05_full-cycle-of-a-machine-learning-project.en.srt

0.0 KB

05_full-cycle-of-a-machine-learning-project.en.txt

0.0 KB

05_full-cycle-of-a-machine-learning-project.mp4

0.0 KB

06_fairness-bias-and-ethics.en.srt

13.7 KB

06_fairness-bias-and-ethics.en.txt

8.9 KB

06_fairness-bias-and-ethics.mp4

26.6 MB

/.../04_skewed-datasets-optional/

01_error-metrics-for-skewed-datasets.en.srt

17.4 KB

01_error-metrics-for-skewed-datasets.en.txt

9.1 KB

01_error-metrics-for-skewed-datasets.mp4

23.7 MB

02_trading-off-precision-and-recall.en.srt

18.7 KB

02_trading-off-precision-and-recall.en.txt

9.8 KB

02_trading-off-precision-and-recall.mp4

27.9 MB

/.../01_decision-trees/

01_decision-tree-model.en.srt

11.1 KB

01_decision-tree-model.en.txt

5.8 KB

01_decision-tree-model.mp4

15.5 MB

02_learning-process.en.srt

18.5 KB

02_learning-process.en.txt

9.7 KB

02_learning-process.mp4

30.4 MB

/.../02_decision-tree-learning/

01_measuring-purity.en.srt

10.4 KB

01_measuring-purity.en.txt

5.5 KB

01_measuring-purity.mp4

19.0 MB

02_choosing-a-split-information-gain.en.srt

17.8 KB

02_choosing-a-split-information-gain.en.txt

9.2 KB

02_choosing-a-split-information-gain.mp4

24.9 MB

03_putting-it-together.en.srt

14.9 KB

03_putting-it-together.en.txt

7.9 KB

03_putting-it-together.mp4

19.3 MB

04_using-one-hot-encoding-of-categorical-features.en.srt

6.8 KB

04_using-one-hot-encoding-of-categorical-features.en.txt

4.4 KB

04_using-one-hot-encoding-of-categorical-features.mp4

14.9 MB

05_continuous-valued-features.en.srt

8.8 KB

05_continuous-valued-features.en.txt

5.6 KB

05_continuous-valued-features.mp4

16.7 MB

06_regression-trees-optional.en.srt

12.5 KB

06_regression-trees-optional.en.txt

7.9 KB

06_regression-trees-optional.mp4

19.8 MB

/.../03_tree-ensembles/

01_using-multiple-decision-trees.en.srt

6.6 KB

01_using-multiple-decision-trees.en.txt

3.5 KB

01_using-multiple-decision-trees.mp4

13.1 MB

02_sampling-with-replacement.en.srt

6.7 KB

02_sampling-with-replacement.en.txt

3.5 KB

02_sampling-with-replacement.mp4

15.0 MB

03_random-forest-algorithm.en.srt

9.0 KB

03_random-forest-algorithm.en.txt

5.7 KB

03_random-forest-algorithm.mp4

16.1 MB

04_xgboost.en.srt

9.6 KB

04_xgboost.en.txt

6.2 KB

04_xgboost.mp4

22.1 MB

05_when-to-use-decision-trees.en.srt

10.7 KB

05_when-to-use-decision-trees.en.txt

5.7 KB

05_when-to-use-decision-trees.mp4

18.3 MB

/.../04_decision-trees/04_acknowledgments/

01_acknowledgements_instructions.html

4.9 KB

/Coursera - Advanced Learning Algorithms/

[CourseClub.Me].url

0.1 KB

/.../03_regression-model/

01_linear-regression-model-part-1.en.srt

0.0 KB

01_linear-regression-model-part-1.en.txt

0.0 KB

01_linear-regression-model-part-1.mp4

0.0 KB

02_linear-regression-model-part-2.en.srt

0.0 KB

02_linear-regression-model-part-2.en.txt

0.0 KB

02_linear-regression-model-part-2.mp4

0.0 KB

03_cost-function-formula.en.srt

0.0 KB

03_cost-function-formula.en.txt

0.0 KB

03_cost-function-formula.mp4

17.5 MB

04_cost-function-intuition.en.srt

0.0 KB

04_cost-function-intuition.en.txt

0.0 KB

04_cost-function-intuition.mp4

31.0 MB

05_visualizing-the-cost-function.en.srt

0.0 KB

05_visualizing-the-cost-function.en.txt

0.0 KB

05_visualizing-the-cost-function.mp4

0.0 KB

06_visualization-examples.en.srt

0.0 KB

06_visualization-examples.en.txt

0.0 KB

06_visualization-examples.mp4

18.0 MB

/.../04_train-the-model-with-gradient-descent/

01_gradient-descent.mp4

0.0 KB

04_learning-rate.en.srt

0.0 KB

04_learning-rate.en.txt

0.0 KB

04_learning-rate.mp4

0.0 KB

/.../01_multiple-linear-regression/

01_multiple-features.mp4

0.0 KB

/.../01_classification-with-logistic-regression/

01_motivations.en.srt

13.0 KB

01_motivations.en.txt

8.0 KB

01_motivations.mp4

22.0 MB

02_logistic-regression.en.srt

0.0 KB

02_logistic-regression.en.txt

0.0 KB

02_logistic-regression.mp4

0.0 KB

03_decision-boundary.en.srt

0.0 KB

03_decision-boundary.en.txt

0.0 KB

03_decision-boundary.mp4

19.9 MB

/.../03_gradient-descent-for-logistic-regression/

01_gradient-descent-implementation.mp4

0.0 KB

/.../04_the-problem-of-overfitting/

01_the-problem-of-overfitting.en.srt

18.8 KB

01_the-problem-of-overfitting.en.txt

9.8 KB

01_the-problem-of-overfitting.mp4

25.1 MB

02_addressing-overfitting.en.srt

13.2 KB

02_addressing-overfitting.en.txt

7.0 KB

02_addressing-overfitting.mp4

16.5 MB

03_cost-function-with-regularization.en.srt

0.0 KB

03_cost-function-with-regularization.en.txt

0.0 KB

03_cost-function-with-regularization.mp4

0.0 KB

04_regularized-linear-regression.en.srt

0.0 KB

04_regularized-linear-regression.en.txt

0.0 KB

04_regularized-linear-regression.mp4

20.8 MB

05_regularized-logistic-regression.en.srt

0.0 KB

05_regularized-logistic-regression.en.txt

0.0 KB

05_regularized-logistic-regression.mp4

21.8 MB

/.../03_week-3-classification/05_acknowledgments/

01_acknowledgments_instructions.html

4.7 KB

/Coursera - Supervised Machine Learning Regression and Classification/

[CourseClub.Me].url

0.1 KB

/Week 1/betaversion/

C1_W1_Lab01_Python_Jupyter_Soln.ipynb

4.1 KB

C1_W1_Lab02_Course_Preview_Soln.ipynb

0.6 KB

C1_W1_Lab03_Model_Representation_Soln.ipynb

13.2 KB

C1_W1_Lab04_Cost_function_Soln.ipynb

9.9 KB

C1_W1_Lab05_Gradient_Descent_Soln.ipynb

20.6 KB

lab_utils_common.py

3.3 KB

lab_utils_uni.py

14.5 KB

/Week 1/betaversion/images/

C1W1L1_Markdown.PNG

32.0 KB

C1W1L1_Run.PNG

7.3 KB

C1W1L1_Tour.PNG

8.9 KB

C1_W1_L3_S1_Lecture_b.png

84.8 KB

C1_W1_L3_S1_model.png

77.4 KB

C1_W1_L3_S1_trainingdata.png

88.3 KB

C1_W1_L3_S2_Lecture_b.png

136.5 KB

C1_W1_L4_S1_Lecture_GD.png

92.9 KB

C1_W1_Lab02_GoalOfRegression.PNG

107.7 KB

C1_W1_Lab03_alpha_too_big.PNG

61.4 KB

C1_W1_Lab03_lecture_learningrate.PNG

85.6 KB

C1_W1_Lab03_lecture_slopes.PNG

69.1 KB

/Week 1/

C1_W1_Lab01_Python_Jupyter_Soln.ipynb

4.1 KB

C1_W1_Lab02_Course_Preview_Soln.ipynb

0.6 KB

C1_W1_Lab03_Model_Representation_Soln.ipynb

50.4 KB

C1_W1_Lab04_Cost_function_Soln.ipynb

9.9 KB

C1_W1_Lab05_Gradient_Descent_Soln.ipynb

19.9 KB

data.txt

0.7 KB

deeplearning.mplstyle

4.9 KB

lab_utils_common.py

3.3 KB

lab_utils_uni.py

14.5 KB

/Week 1/images/

C1W1L1_Markdown.PNG

32.0 KB

C1W1L1_Run.PNG

7.3 KB

C1W1L1_Tour.PNG

8.9 KB

C1_W1_L3_S1_Lecture_b.png

84.8 KB

C1_W1_L3_S1_model.png

77.4 KB

C1_W1_L3_S1_trainingdata.png

88.3 KB

C1_W1_L3_S2_Lecture_b.png

136.5 KB

C1_W1_L4_S1_Lecture_GD.png

92.9 KB

C1_W1_Lab02_GoalOfRegression.PNG

107.7 KB

C1_W1_Lab03_alpha_too_big.PNG

61.4 KB

C1_W1_Lab03_lecture_learningrate.PNG

85.6 KB

C1_W1_Lab03_lecture_slopes.PNG

69.1 KB

/Week 1/__pycache__/

lab_utils_common.cpython-37.pyc

3.2 KB

lab_utils_uni.cpython-37.pyc

12.5 KB

/Week 2/archive/

C1_W2_Lab01_Python_Numpy_Vectorization_Soln-Copy1.ipynb

25.5 KB

/Week 2/

C1_W2_Lab01_Python_Numpy_Vectorization_Soln.ipynb

25.5 KB

C1_W2_Lab02_Multiple_Variable_Soln.ipynb

60.0 KB

C1_W2_Lab03_Feature_Scaling_and_Learning_Rate_Soln.ipynb

26.2 KB

C1_W2_Lab04_FeatEng_PolyReg_Soln.ipynb

12.4 KB

C1_W2_Lab05_Sklearn_GD_Soln.ipynb

6.4 KB

C1_W2_Lab06_Sklearn_Normal_Soln.ipynb

6.9 KB

deeplearning.mplstyle

4.9 KB

lab_utils_common.py

3.3 KB

lab_utils_multi.py

21.3 KB

/Week 2/data/

houses.txt

12.5 KB

/Week 2/images/

C1_W2_L1_S1_Lecture_b.png

84.8 KB

C1_W2_L1_S1_model.png

77.4 KB

C1_W2_L1_S1_trainingdata.png

88.3 KB

C1_W2_L1_S2_Lectureb.png

136.5 KB

C1_W2_L2_S1_Lecture_GD.png

92.9 KB

C1_W2_Lab02_GoalOfRegression.PNG

107.7 KB

C1_W2_Lab03_alpha_to_big.PNG

61.4 KB

C1_W2_Lab03_lecture_learningrate.PNG

85.6 KB

C1_W2_Lab03_lecture_slopes.PNG

69.1 KB

C1_W2_Lab04_dot_notrans.gif

1.7 MB

C1_W2_Lab04_Figures And animations.pptx

238.3 KB

C1_W2_Lab04_Matrices.PNG

14.1 KB

C1_W2_Lab04_Vectors.PNG

6.0 KB

C1_W2_Lab06_contours.PNG

38.0 KB

C1_W2_Lab06_featurescalingheader.PNG

70.2 KB

C1_W2_Lab06_learningrate.PNG

77.6 KB

C1_W2_Lab06_LongRun.PNG

309.2 KB

C1_W2_Lab06_scale.PNG

66.4 KB

C1_W2_Lab06_ShortRun.PNG

371.9 KB

C1_W2_Lab07_FeatureEngLecture.PNG

95.4 KB

/Week 2/__pycache__/

lab_utils_common.cpython-37.pyc

3.2 KB

lab_utils_multi.cpython-37.pyc

18.0 KB

lab_utils_uni.cpython-37.pyc

25.0 KB

/Week 3/archive/

C1_W3_Lab05_Cost_Function_Soln-Copy1.ipynb

8.5 KB

C1_W3_Lab05_Cost_Function_Soln-Copy2.ipynb

8.5 KB

C1_W3_Lab09_Regularization_Soln-Copy1.ipynb

18.4 KB

/Week 3/

C1_W3_Lab01_Classification_Soln.ipynb

131.2 KB

C1_W3_Lab02_Sigmoid_function_Soln.ipynb

8.4 KB

C1_W3_Lab03_Decision_Boundary_Soln.ipynb

35.5 KB

C1_W3_Lab04_LogisticLoss_Soln.ipynb

11.1 KB

C1_W3_Lab05_Cost_Function_Soln.ipynb

8.6 KB

C1_W3_Lab06_Gradient_Descent_Soln.ipynb

13.8 KB

C1_W3_Lab07_Scikit_Learn_Soln.ipynb

2.7 KB

C1_W3_Lab08_Overfitting_Soln.ipynb

3.5 KB

C1_W3_Lab09_Regularization_Soln.ipynb

18.4 KB

deeplearning.mplstyle

4.9 KB

lab_utils_common.py

11.6 KB

plt_logistic_loss.py

7.2 KB

plt_one_addpt_onclick.py

8.0 KB

plt_overfit.py

15.7 KB

plt_quad_logistic.py

13.0 KB

/Week 3/images/

C1W3_boundary.PNG

25.0 KB

C1W3_example2.PNG

26.4 KB

C1W3_mcpredict.PNG

29.6 KB

C1W3_trainvpredict.PNG

279.7 KB

C1W3_XW.PNG

8.9 KB

C1_W3_Classification.png

44.4 KB

C1_W3_Lab07_overfitting.PNG

26.9 KB

C1_W3_LinearCostRegularized.png

54.2 KB

C1_W3_LinearGradientRegularized.png

53.9 KB

C1_W3_LogisticCostRegularized.png

47.7 KB

C1_W3_LogisticGradientRegularized.png

51.2 KB

C1_W3_LogisticLoss_a.png

45.4 KB

C1_W3_LogisticLoss_b.png

50.3 KB

C1_W3_LogisticLoss_c.png

35.7 KB

C1_W3_LogisticRegression.png

39.0 KB

C1_W3_LogisticRegression_left.png

24.6 KB

C1_W3_LogisticRegression_right.png

22.4 KB

C1_W3_Logistic_gradient_descent.png

43.7 KB

C1_W3_Overfitting_a.png

33.3 KB

C1_W3_Overfitting_b.png

39.0 KB

C1_W3_Overfitting_c.png

34.9 KB

C1_W3_SqErrorVsLogistic.png

53.4 KB

/Week 3/pre_414/

C1_W3_Lab01_Sigmoid_function.ipynb

5.9 KB

C1_W3_Lab02_Decision_Boundary.ipynb

7.3 KB

C1_W3_Lab03_Cost_Function.ipynb

11.9 KB

C1_W3_Lab04_Gradient_Descent.ipynb

10.3 KB

C1_W3_Lab05_One_Vs_All.ipynb

0.9 KB

C1_W3_Lab06_Regularized_Cost.ipynb

0.6 KB

C1_W3_Lab07_Regularized_Gradient_Descent.ipynb

0.6 KB

C1_W3_Lab08_Scikit_Learn.ipynb

3.2 KB

lab_utils.py

0.7 KB

/Week 3/__pycache__/

lab_utils_common.cpython-37.pyc

9.2 KB

plt_logistic_loss.cpython-37.pyc

6.1 KB

plt_logistic_loss_Copy1.cpython-37.pyc

6.2 KB

plt_one_addpt_onclick.cpython-37.pyc

6.6 KB

plt_overfit.cpython-37.pyc

12.2 KB

plt_quad_logistic.cpython-37.pyc

11.5 KB

/Coursera - Supervised Machine Learning Regression and Classification 2022-6 Extras/

[CourseClub.Me].url

0.1 KB

/.../01_welcome-to-the-course/

01_welcome.en.srt

5.6 KB

01_welcome.en.txt

2.9 KB

01_welcome.mp4

8.9 MB

/.../01_unsupervised-learning/02_clustering/

01_what-is-clustering.en.srt

6.7 KB

01_what-is-clustering.en.txt

3.6 KB

01_what-is-clustering.mp4

9.2 MB

02_k-means-intuition.en.srt

11.0 KB

02_k-means-intuition.en.txt

5.8 KB

02_k-means-intuition.mp4

13.0 MB

03_k-means-algorithm.en.srt

15.1 KB

03_k-means-algorithm.en.txt

7.9 KB

03_k-means-algorithm.mp4

20.7 MB

04_optimization-objective.en.srt

14.4 KB

04_optimization-objective.en.txt

9.1 KB

04_optimization-objective.mp4

30.9 MB

05_initializing-k-means.en.srt

11.0 KB

05_initializing-k-means.en.txt

7.1 KB

05_initializing-k-means.mp4

18.7 MB

06_choosing-the-number-of-clusters.en.srt

12.0 KB

06_choosing-the-number-of-clusters.en.txt

6.4 KB

06_choosing-the-number-of-clusters.mp4

18.8 MB

/.../03_practice-quiz-clustering/

01_clustering_exam.html

5.7 KB

/.../04_anomaly-detection/

01_finding-unusual-events.en.srt

15.6 KB

01_finding-unusual-events.en.txt

9.9 KB

01_finding-unusual-events.mp4

27.0 MB

02_gaussian-normal-distribution.en.srt

15.3 KB

02_gaussian-normal-distribution.en.txt

8.1 KB

02_gaussian-normal-distribution.mp4

21.6 MB

03_anomaly-detection-algorithm.en.srt

16.4 KB

03_anomaly-detection-algorithm.en.txt

8.6 KB

03_anomaly-detection-algorithm.mp4

22.6 MB

05_anomaly-detection-vs-supervised-learning.en.srt

0.0 KB

05_anomaly-detection-vs-supervised-learning.en.txt

0.0 KB

05_anomaly-detection-vs-supervised-learning.mp4

0.0 KB

06_choosing-what-features-to-use.en.srt

22.8 KB

06_choosing-what-features-to-use.en.txt

11.9 KB

06_choosing-what-features-to-use.mp4

33.5 MB

/.../05_practice-quiz-anomaly-detection/

01_anomaly-detection_exam.html

148.8 KB

/.../01_collaborative-filtering/

01_making-recommendations.en.srt

8.9 KB

01_making-recommendations.en.txt

4.7 KB

01_making-recommendations.mp4

21.4 MB

02_using-per-item-features.en.srt

17.0 KB

02_using-per-item-features.en.txt

8.9 KB

02_using-per-item-features.mp4

24.8 MB

03_collaborative-filtering-algorithm.en.srt

0.0 KB

03_collaborative-filtering-algorithm.en.txt

0.0 KB

03_collaborative-filtering-algorithm.mp4

32.5 MB

04_binary-labels-favs-likes-and-clicks.en.srt

0.0 KB

04_binary-labels-favs-likes-and-clicks.en.txt

0.0 KB

04_binary-labels-favs-likes-and-clicks.mp4

0.0 KB

/.../02_practice-quiz-collaborative-filtering/

01_collaborative-filtering_exam.html

0.0 KB

/.../03_recommender-systems-implementation-detail/

01_mean-normalization.en.srt

0.0 KB

01_mean-normalization.en.txt

0.0 KB

01_mean-normalization.mp4

0.0 KB

03_finding-related-items.en.srt

0.0 KB

03_finding-related-items.en.txt

0.0 KB

03_finding-related-items.mp4

0.0 KB

/.../05_content-based-filtering/

02_deep-learning-for-content-based-filtering.en.srt

0.0 KB

02_deep-learning-for-content-based-filtering.en.txt

0.0 KB

02_deep-learning-for-content-based-filtering.mp4

0.0 KB

03_recommending-from-a-large-catalogue.en.srt

0.0 KB

03_recommending-from-a-large-catalogue.en.txt

0.0 KB

03_recommending-from-a-large-catalogue.mp4

0.0 KB

04_ethical-use-of-recommender-systems.en.srt

0.0 KB

04_ethical-use-of-recommender-systems.en.txt

0.0 KB

04_ethical-use-of-recommender-systems.mp4

26.0 MB

/.../06_practice-quiz-content-based-filtering/

01_content-based-filtering_exam.html

0.0 KB

/.../01_reinforcement-learning-introduction/

01_what-is-reinforcement-learning.en.srt

0.0 KB

01_what-is-reinforcement-learning.en.txt

0.0 KB

01_what-is-reinforcement-learning.mp4

0.0 KB

02_mars-rover-example.en.srt

0.0 KB

02_mars-rover-example.en.txt

0.0 KB

02_mars-rover-example.mp4

13.3 MB

05_review-of-key-concepts.en.srt

0.0 KB

05_review-of-key-concepts.en.txt

0.0 KB

05_review-of-key-concepts.mp4

0.0 KB

/.../03_state-action-value-function/

01_state-action-value-function-definition.en.srt

0.0 KB

01_state-action-value-function-definition.en.txt

0.0 KB

01_state-action-value-function-definition.mp4

0.0 KB

02_state-action-value-function-example.en.srt

0.0 KB

02_state-action-value-function-example.en.txt

0.0 KB

02_state-action-value-function-example.mp4

0.0 KB

03_bellman-equations.en.srt

15.1 KB

03_bellman-equations.en.txt

9.5 KB

03_bellman-equations.mp4

28.0 MB

04_random-stochastic-environment-optional.en.srt

0.0 KB

04_random-stochastic-environment-optional.en.txt

0.0 KB

04_random-stochastic-environment-optional.mp4

0.0 KB

/.../04_quiz-state-action-value-function/

01_state-action-value-function_exam.html

0.0 KB

/.../05_continuous-state-spaces/

02_lunar-lander.en.srt

9.6 KB

02_lunar-lander.en.txt

5.1 KB

02_lunar-lander.mp4

10.6 MB

03_learning-the-state-value-function.mp4

0.0 KB

05_algorithm-refinement-greedy-policy.en.srt

0.0 KB

05_algorithm-refinement-greedy-policy.en.txt

0.0 KB

05_algorithm-refinement-greedy-policy.mp4

0.0 KB

07_the-state-of-reinforcement-learning.en.srt

0.0 KB

07_the-state-of-reinforcement-learning.en.txt

0.0 KB

07_the-state-of-reinforcement-learning.mp4

0.0 KB

/.../06_quiz-continuous-state-spaces/

01_continuous-state-spaces_exam.html

0.0 KB

/.../07_summary-and-thank-you/

01_summary-and-thank-you.en.srt

4.4 KB

01_summary-and-thank-you.en.txt

2.9 KB

01_summary-and-thank-you.mp4

14.6 MB

/.../03_reinforcement-learning/08_acknowledgments/

01_acknowledgments_instructions.html

4.8 KB

/Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/

[CourseClub.Me].url

0.1 KB

/

[CourseClub.Me].url

0.1 KB

 

Total files 461


Copyright © 2025 FileMood.com