FileMood

Download [CourseClub.NET] Coursera - Neural Networks and Deep Learning

CourseClub NET Coursera Neural Networks and Deep Learning

Name

[CourseClub.NET] Coursera - Neural Networks and Deep Learning

 DOWNLOAD Copy Link

Total Size

920.8 MB

Total Files

96

Hash

9D4AB63E818A10F7C0054D8DBE135E73F64AE06F

/001.Welcome to the Deep Learning Specialization/

001. Welcome.mp4

10.7 MB

001. Welcome.srt

9.0 KB

/002.Introduction to Deep Learning/

002. What is a neural network.mp4

10.5 MB

002. What is a neural network.srt

10.1 KB

003. Supervised Learning with Neural Networks.mp4

13.5 MB

003. Supervised Learning with Neural Networks.srt

12.2 KB

004. Why is Deep Learning taking off.mp4

19.6 MB

004. Why is Deep Learning taking off.srt

18.3 KB

005. About this Course.mp4

4.9 MB

005. About this Course.srt

4.5 KB

006. Course Resources.mp4

2.6 MB

006. Course Resources.srt

3.7 KB

/003.Heroes of Deep Learning (Optional)/

007. Geoffrey Hinton interview.mp4

201.1 MB

007. Geoffrey Hinton interview.srt

58.9 KB

/004.Logistic Regression as a Neural Network/

008. Binary Classification.mp4

16.0 MB

008. Binary Classification.srt

10.8 KB

009. Logistic Regression.mp4

8.9 MB

009. Logistic Regression.srt

7.7 KB

010. Logistic Regression Cost Function.mp4

13.8 MB

010. Logistic Regression Cost Function.srt

11.3 KB

011. Gradient Descent.mp4

17.9 MB

011. Gradient Descent.srt

15.7 KB

012. Derivatives.mp4

14.1 MB

012. Derivatives.srt

12.3 KB

013. More Derivative Examples.mp4

17.6 MB

013. More Derivative Examples.srt

13.2 KB

014. Computation graph.mp4

5.9 MB

014. Computation graph.srt

4.4 KB

015. Derivatives with a Computation Graph.mp4

22.7 MB

015. Derivatives with a Computation Graph.srt

16.7 KB

016. Logistic Regression Gradient Descent.mp4

11.7 MB

016. Logistic Regression Gradient Descent.srt

9.2 KB

017. Gradient Descent on m Examples.mp4

12.8 MB

017. Gradient Descent on m Examples.srt

12.6 KB

/005.Python and Vectorization/

018. Vectorization.mp4

13.2 MB

018. Vectorization.srt

9.8 KB

019. More Vectorization Examples.mp4

10.8 MB

019. More Vectorization Examples.srt

7.6 KB

020. Vectorizing Logistic Regression.mp4

12.0 MB

020. Vectorizing Logistic Regression.srt

9.8 KB

021. Vectorizing Logistic Regression's Gradient Output.mp4

16.3 MB

021. Vectorizing Logistic Regression's Gradient Output.srt

11.0 KB

022. Broadcasting in Python.mp4

17.0 MB

022. Broadcasting in Python.srt

14.3 KB

023. A note on python numpy vectors.mp4

13.0 MB

023. A note on python numpy vectors.srt

9.3 KB

024. Quick tour of Jupyter iPython Notebooks.mp4

9.7 MB

024. Quick tour of Jupyter iPython Notebooks.srt

5.9 KB

025. Explanation of logistic regression cost function (optional).mp4

11.0 MB

025. Explanation of logistic regression cost function (optional).srt

8.7 KB

/006.Heroes of Deep Learning (Optional)/

026. Pieter Abbeel interview.mp4

83.9 MB

026. Pieter Abbeel interview.srt

27.5 KB

/007.Shallow Neural Network/

027. Neural Networks Overview.mp4

7.6 MB

027. Neural Networks Overview.srt

6.8 KB

028. Neural Network Representation.mp4

8.7 MB

028. Neural Network Representation.srt

8.3 KB

029. Computing a Neural Network's Output.mp4

17.1 MB

029. Computing a Neural Network's Output.srt

16.9 KB

030. Vectorizing across multiple examples.mp4

14.5 MB

030. Vectorizing across multiple examples.srt

10.3 KB

031. Explanation for Vectorized Implementation.mp4

12.6 MB

031. Explanation for Vectorized Implementation.srt

8.9 KB

032. Activation functions.mp4

20.9 MB

032. Activation functions.srt

17.4 KB

033. Why do you need non-linear activation functions.mp4

9.7 MB

033. Why do you need non-linear activation functions.srt

7.9 KB

034. Derivatives of activation functions.mp4

11.9 MB

034. Derivatives of activation functions.srt

11.6 KB

035. Gradient descent for Neural Networks.mp4

16.8 MB

035. Gradient descent for Neural Networks.srt

13.8 KB

036. Backpropagation intuition (optional).mp4

27.3 MB

036. Backpropagation intuition (optional).srt

18.2 KB

037. Random Initialization.mp4

12.5 MB

037. Random Initialization.srt

10.6 KB

/008.Heroes of Deep Learning (Optional)/

038. Ian Goodfellow interview.mp4

57.2 MB

038. Ian Goodfellow interview.srt

23.6 KB

/009.Deep Neural Network/

039. Deep L-layer neural network.mp4

10.8 MB

039. Deep L-layer neural network.srt

7.6 KB

040. Forward Propagation in a Deep Network.mp4

13.7 MB

040. Forward Propagation in a Deep Network.srt

10.1 KB

041. Getting your matrix dimensions right.mp4

18.2 MB

041. Getting your matrix dimensions right.srt

11.7 KB

042. Why deep representations.mp4

18.4 MB

042. Why deep representations.srt

14.9 KB

043. Building blocks of deep neural networks.mp4

13.4 MB

043. Building blocks of deep neural networks.srt

11.2 KB

044. Forward and Backward Propagation.mp4

20.8 MB

044. Forward and Backward Propagation.srt

13.8 KB

045. Parameters vs Hyperparameters.mp4

10.7 MB

045. Parameters vs Hyperparameters.srt

13.3 KB

046. What does this have to do with the brain.mp4

6.3 MB

046. What does this have to do with the brain.srt

5.8 KB

/

[CourseClub.NET].url

0.1 KB

[DesireCourse.Com].url

0.1 KB

[FCS Forum].url

0.1 KB

[FreeCourseSite.com].url

0.1 KB

 

Total files 96


Copyright © 2024 FileMood.com