FileMood

Download [Coursera] Machine Learning by Andrew Ng

Coursera Machine Learning by Andrew Ng

Name

[Coursera] Machine Learning by Andrew Ng

 DOWNLOAD Copy Link

Total Size

1.6 GB

Total Files

185

Last Seen

2024-11-15 01:25

Hash

48D1F81A7493A4B5440B09796F76B89EE160419F

/01. Introduction (Week 1)/

1 - 1 - Welcome (7 min).mp4

12.5 MB

1 - 2 - What is Machine Learning- (7 min).mp4

9.8 MB

1 - 3 - Supervised Learning (12 min).mp4

14.1 MB

1 - 4 - Unsupervised Learning (14 min).mp4

17.5 MB

docs-slides-Lecture1.pdf

3.5 MB

docs-slides-Lecture1.pptx

4.2 MB

/02. Linear Regression with One Variable (Week 1)/

2 - 1 - Model Representation (8 min).mp4

9.4 MB

2 - 2 - Cost Function (8 min).mp4

9.5 MB

2 - 3 - Cost Function - Intuition I (11 min).mp4

12.8 MB

2 - 4 - Cost Function - Intuition II (9 min).mp4

11.9 MB

2 - 5 - Gradient Descent (11 min).mp4

14.2 MB

2 - 6 - Gradient Descent Intuition (12 min).mp4

13.7 MB

2 - 7 - Gradient Descent For Linear Regression (10 min).mp4

12.8 MB

2 - 8 - What-'s Next (6 min).mp4

6.4 MB

docs-slides-Lecture2.pdf

3.0 MB

docs-slides-Lecture2.pptx

5.6 MB

/03. Linear Algebra Review (Week 1, Optional)/

3 - 1 - Matrices and Vectors (9 min).mp4

10.0 MB

3 - 2 - Addition and Scalar Multiplication (7 min).mp4

7.8 MB

3 - 3 - Matrix Vector Multiplication (14 min).mp4

15.7 MB

3 - 4 - Matrix Matrix Multiplication (11 min).mp4

13.2 MB

3 - 5 - Matrix Multiplication Properties (9 min).mp4

10.3 MB

3 - 6 - Inverse and Transpose (11 min).mp4

13.5 MB

docs-slides-Lecture3.pdf

1.9 MB

docs-slides-Lecture3.pptx

5.2 MB

/04. Linear Regression with Multiple Variables (Week 2)/

4 - 1 - Multiple Features (8 min).mp4

9.3 MB

4 - 2 - Gradient Descent for Multiple Variables (5 min).mp4

6.1 MB

4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mp4

9.9 MB

4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mp4

9.7 MB

4 - 5 - Features and Polynomial Regression (8 min).mp4

8.7 MB

4 - 6 - Normal Equation (16 min).mp4

18.0 MB

4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mp4

6.5 MB

docs-slides-Lecture4.pdf

1.8 MB

docs-slides-Lecture4.pptx

4.6 MB

/05. Octave Tutorial (Week 2)/

5 - 1 - Basic Operations (14 min).mp4

18.6 MB

5 - 2 - Moving Data Around (16 min).mp4

21.8 MB

5 - 3 - Computing on Data (13 min).mp4

16.0 MB

5 - 4 - Plotting Data (10 min).mp4

14.0 MB

5 - 5 - Control Statements- for, while, if statements (13 min).mp4

17.3 MB

5 - 6 - Vectorization (14 min).mp4

16.9 MB

5 - 7 - Working on and Submitting Programming Exercises (4 min).mp4

5.7 MB

docs-slides-Lecture5.pdf

248.2 KB

docs-slides-Lecture5.pptx

417.1 KB

/06. Logistic Regression (Week 3)/

6 - 1 - Classification (8 min).mp4

9.2 MB

6 - 2 - Hypothesis Representation (7 min).mp4

8.7 MB

6 - 3 - Decision Boundary (15 min).mp4

17.6 MB

6 - 4 - Cost Function (11 min).mp4

13.7 MB

6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mp4

12.5 MB

6 - 6 - Advanced Optimization (14 min).mp4

19.0 MB

6 - 7 - Multiclass Classification- One-vs-all (6 min).mp4

7.3 MB

docs-slides-Lecture6.pdf

2.2 MB

docs-slides-Lecture6.pptx

4.0 MB

/07. Regularization (Week 3)/

7 - 1 - The Problem of Overfitting (10 min).mp4

11.7 MB

7 - 2 - Cost Function (10 min).mp4

12.2 MB

7 - 3 - Regularized Linear Regression (11 min).mp4

12.6 MB

7 - 4 - Regularized Logistic Regression (9 min).mp4

11.4 MB

docs-slides-Lecture7.pdf

2.5 MB

docs-slides-Lecture7.pptx

2.7 MB

/08. Neural Networks Representation (Week 4)/

8 - 1 - Non-linear Hypotheses (10 min).mp4

11.4 MB

8 - 2 - Neurons and the Brain (8 min).mp4

10.4 MB

8 - 3 - Model Representation I (12 min).mp4

14.2 MB

8 - 4 - Model Representation II (12 min).mp4

14.1 MB

8 - 5 - Examples and Intuitions I (7 min).mp4

8.3 MB

8 - 6 - Examples and Intuitions II (10 min).mp4

14.7 MB

8 - 7 - Multiclass Classification (4 min).mp4

5.1 MB

docs-slides-Lecture8.pdf

5.2 MB

docs-slides-Lecture8.pptx

42.3 MB

/09. Neural Networks Learning (Week 5)/

9 - 1 - Cost Function (7 min).mp4

8.0 MB

9 - 2 - Backpropagation Algorithm (12 min).mp4

14.6 MB

9 - 3 - Backpropagation Intuition (13 min).mp4

16.2 MB

9 - 4 - Implementation Note- Unrolling Parameters (8 min).mp4

9.8 MB

9 - 5 - Gradient Checking (12 min).mp4

14.2 MB

9 - 6 - Random Initialization (7 min).mp4

7.9 MB

9 - 7 - Putting It Together (14 min).mp4

17.1 MB

9 - 8 - Autonomous Driving (7 min).mp4

15.6 MB

docs-slides-Lecture9.pdf

3.5 MB

docs-slides-Lecture9.pptx

5.2 MB

/10. Advice for Applying Machine Learning (Week 6)/

10 - 1 - Deciding What to Try Next (6 min).mp4

7.2 MB

10 - 2 - Evaluating a Hypothesis (8 min).mp4

8.9 MB

10 - 3 - Model Selection and Train-Validation-Test Sets (12 min).mp4

14.8 MB

10 - 4 - Diagnosing Bias vs. Variance (8 min).mp4

9.4 MB

10 - 5 - Regularization and Bias-Variance (11 min).mp4

13.2 MB

10 - 6 - Learning Curves (12 min).mp4

13.5 MB

10 - 7 - Deciding What to Do Next Revisited (7 min).mp4

8.6 MB

docs-slides-Lecture10.pdf

1.6 MB

docs-slides-Lecture10.pptx

3.5 MB

/11. Machine Learning System Design (Week 6)/

11 - 1 - Prioritizing What to Work On (10 min).mp4

11.7 MB

11 - 2 - Error Analysis (13 min).mp4

16.2 MB

11 - 3 - Error Metrics for Skewed Classes (12 min).mp4

13.9 MB

11 - 4 - Trading Off Precision and Recall (14 min).mp4

16.8 MB

11 - 5 - Data For Machine Learning (11 min).mp4

13.5 MB

docs-slides-Lecture11.pdf

509.6 KB

docs-slides-Lecture11.pptx

2.0 MB

/12. Support Vector Machines (Week 7)/

12 - 1 - Optimization Objective (15 min).mp4

17.5 MB

12 - 2 - Large Margin Intuition (11 min).mp4

12.4 MB

12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mp4

22.9 MB

12 - 4 - Kernels I (16 min).mp4

18.4 MB

12 - 5 - Kernels II (16 min).mp4

18.3 MB

12 - 6 - Using An SVM (21 min).mp4

25.1 MB

docs-slides-Lecture12.pdf

2.4 MB

docs-slides-Lecture12.pptx

5.6 MB

/13. Clustering (Week 8)/

13 - 1 - Unsupervised Learning- Introduction (3 min).mp4

4.0 MB

13 - 2 - K-Means Algorithm (13 min).mp4

14.5 MB

13 - 3 - Optimization Objective (7 min).mp4

8.5 MB

13 - 4 - Random Initialization (8 min).mp4

9.1 MB

13 - 5 - Choosing the Number of Clusters (8 min).mp4

9.9 MB

docs-slides-Lecture13.pdf

2.3 MB

docs-slides-Lecture13.pptx

2.9 MB

/14. Dimensionality Reduction (Week 8)/

14 - 1 - Motivation I- Data Compression (10 min).mp4

15.0 MB

14 - 2 - Motivation II- Visualization (6 min).mp4

6.6 MB

14 - 3 - Principal Component Analysis Problem Formulation (9 min).mp4

11.0 MB

14 - 4 - Principal Component Analysis Algorithm (15 min).mp4

18.7 MB

14 - 5 - Choosing the Number of Principal Components (11 min).mp4

12.4 MB

14 - 6 - Reconstruction from Compressed Representation (4 min).mp4

5.2 MB

14 - 7 - Advice for Applying PCA (13 min).mp4

15.4 MB

docs-slides-Lecture14.pdf

1.7 MB

docs-slides-Lecture14.pptx

3.8 MB

/15. Anomaly Detection (Week 9)/

15 - 1 - Problem Motivation (8 min).mp4

8.8 MB

15 - 2 - Gaussian Distribution (10 min).mp4

12.3 MB

15 - 3 - Algorithm (12 min).mp4

14.6 MB

15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mp4

15.9 MB

15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mp4

9.7 MB

15 - 6 - Choosing What Features to Use (12 min).mp4

14.8 MB

15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mp4

16.7 MB

15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mp4

17.1 MB

docs-slides-Lecture15.pdf

3.5 MB

docs-slides-Lecture15.pptx

6.3 MB

/16. Recommender Systems (Week 9)/

16 - 1 - Problem Formulation (8 min).mp4

11.2 MB

16 - 2 - Content Based Recommendations (15 min).mp4

17.8 MB

16 - 3 - Collaborative Filtering (10 min).mp4

12.3 MB

16 - 4 - Collaborative Filtering Algorithm (9 min).mp4

10.8 MB

16 - 5 - Vectorization- Low Rank Matrix Factorization (8 min).mp4

10.2 MB

16 - 6 - Implementational Detail- Mean Normalization (9 min).mp4

10.2 MB

docs-slides-Lecture16.pdf

1.5 MB

docs-slides-Lecture16.pptx

3.8 MB

/17. Large Scale Machine Learning (Week 10)/

17 - 1 - Learning With Large Datasets (6 min).mp4

6.8 MB

17 - 2 - Stochastic Gradient Descent (13 min).mp4

16.1 MB

17 - 3 - Mini-Batch Gradient Descent (6 min).mp4

7.7 MB

17 - 4 - Stochastic Gradient Descent Convergence (12 min).mp4

14.0 MB

17 - 5 - Online Learning (13 min).mp4

15.6 MB

17 - 6 - Map Reduce and Data Parallelism (14 min).mp4

16.8 MB

docs-slides-Lecture17.pdf

2.1 MB

docs-slides-Lecture17.pptx

4.0 MB

/18. Application Example Photo OCR/

18 - 1 - Problem Description and Pipeline (7 min).mp4

8.3 MB

18 - 2 - Sliding Windows (15 min).mp4

17.3 MB

18 - 3 - Getting Lots of Data and Artificial Data (16 min).mp4

19.7 MB

18 - 4 - Ceiling Analysis- What Part of the Pipeline to Work on Next (14 min).mp4

16.9 MB

docs-slides-Lecture18.pdf

2.1 MB

docs-slides-Lecture18.pptx

6.4 MB

/19. Conclusion/

19 - 1 - Summary and Thank You (5 min).mp4

6.4 MB

/

_ Coursera.pdf

217.0 KB

small-icon.hover.png

26.2 KB

Wiki - Course FAQ _ Coursera.pdf

100.4 KB

Wiki - Course Information _ Coursera.pdf

83.5 KB

Wiki - Course Schedule _ Coursera.pdf

72.1 KB

Wiki - Octave __ Matlab Tutorial _ Coursera.pdf

907.4 KB

Wiki - Tutoring _ Coursera.pdf

2.4 MB

/Homeworks/

01. Introduction.pdf

93.2 KB

02. Linear regression with one variable.pdf

619.4 KB

03. Linear Algebra.pdf

657.9 KB

04. Linear Regression with Multiple Variables.pdf

579.1 KB

05. Octave Tutorial.pdf

660.8 KB

06. Logistic Regression.pdf

692.1 KB

07. Regularization.pdf

624.2 KB

08. Neural Networks Representation.pdf

1.1 MB

09. Neural Networks Learning.pdf

619.7 KB

10. Advice for Applying Machine Learning.pdf

295.5 KB

11. Machine Learning System Design.pdf

583.2 KB

12. Support Vector Machines.pdf

2.0 MB

13. Clustering.pdf

591.6 KB

14. Anomaly Detection.pdf

646.7 KB

15. Principal Component Analysis.pdf

1.1 MB

16. Recommender Systems.pdf

704.8 KB

17. Large Scale Machine Learning.pdf

626.1 KB

18. Application Photo OCR.pdf

700.2 KB

View Review Questions _ Coursera.pdf

150.9 KB

/Programming Assignments/

Assignment Details _ Coursera.pdf

56.9 KB

List Assignments _ Coursera.pdf

197.3 KB

mlclass-ex1-004.zip

475.4 KB

mlclass-ex2-004.zip

243.9 KB

mlclass-ex3-004.zip

7.9 MB

mlclass-ex4-004.zip

8.0 MB

mlclass-ex5-004.zip

176.7 KB

mlclass-ex6-004.zip

914.5 KB

mlclass-ex7-004.zip

11.6 MB

mlclass-ex8-004.zip

810.0 KB

 

Total files 185


Copyright © 2024 FileMood.com