FileMood

Download Coursera-ML

Coursera ML

Name

Coursera-ML

 DOWNLOAD Copy Link

Total Size

1.6 GB

Total Files

274

Hash

E9D6C0D130949E16F3F8D7105241D28B55590A18

/

avatar.png

56.8 KB

/I. Introduction (Week 1)/

1 - 1 - Welcome (7 min).mp4

12.5 MB

1 - 1 - Welcome (7 min).srt

10.1 KB

1 - 2 - What is Machine Learning (7 min).mp4

9.8 MB

1 - 2 - What is Machine Learning- (7 min).srt

10.4 KB

1 - 3 - Supervised Learning (12 min).mp4

14.1 MB

1 - 3 - Supervised Learning (12 min).srt

17.2 KB

1 - 4 - Unsupervised Learning (14 min).mp4

17.5 MB

1 - 4 - Unsupervised Learning (14 min).srt

29.8 KB

docs_slides_Lecture1.pdf

3.5 MB

docs_slides_Lecture1.pptx

4.2 MB

/II. Linear Regression with One Variable (Week 1)/

2 - 1 - Model Representation (8 min).mp4

9.4 MB

2 - 1 - Model Representation (8 min).srt

10.2 KB

2 - 2 - Cost Function (8 min).mp4

9.5 MB

2 - 2 - Cost Function (8 min).srt

10.1 KB

2 - 3 - Cost Function - Intuition I (11 min).mp4

12.8 MB

2 - 3 - Cost Function - Intuition I (11 min).srt

12.4 KB

2 - 4 - Cost Function - Intuition II (9 min).mp4

11.9 MB

2 - 4 - Cost Function - Intuition II (9 min).srt

11.4 KB

2 - 5 - Gradient Descent (11 min).mp4

14.2 MB

2 - 5 - Gradient Descent (11 min).srt

15.8 KB

2 - 6 - Gradient Descent Intuition (12 min).mp4

13.7 MB

2 - 6 - Gradient Descent Intuition (12 min).srt

15.9 KB

2 - 7 - Gradient Descent For Linear Regression (10 min).mp4

12.8 MB

2 - 7 - Gradient Descent For Linear Regression (10 min).srt

19.2 KB

2 - 8 - What's Next (6 min).srt

8.7 KB

2 - 8 - Whats Next (6 min).mp4

6.4 MB

docs_slides_Lecture2.pdf

3.0 MB

docs_slides_Lecture2.pptx

5.6 MB

/III. Linear Algebra Review (Week 1, Optional)/

3 - 1 - Matrices and Vectors (9 min).mp4

10.0 MB

3 - 1 - Matrices and Vectors (9 min).srt

16.3 KB

3 - 1 - Matrices and Vectors (9 min).txt

7.2 KB

3 - 2 - Addition and Scalar Multiplication (7 min).mp4

7.8 MB

3 - 2 - Addition and Scalar Multiplication (7 min).srt

12.3 KB

3 - 3 - Matrix Vector Multiplication (14 min).mp4

15.7 MB

3 - 3 - Matrix Vector Multiplication (14 min).srt

24.8 KB

3 - 4 - Matrix Matrix Multiplication (11 min).mp4

13.2 MB

3 - 4 - Matrix Matrix Multiplication (11 min).srt

21.1 KB

3 - 5 - Matrix Multiplication Properties (9 min).mp4

10.3 MB

3 - 5 - Matrix Multiplication Properties (9 min).srt

17.2 KB

3 - 6 - Inverse and Transpose (11 min).mp4

13.5 MB

3 - 6 - Inverse and Transpose (11 min).srt

21.6 KB

docs_slides_Lecture3.pdf

1.9 MB

docs_slides_Lecture3.pptx

5.2 MB

/IV. Linear Regression with Multiple Variables (Week 2)/

4 - 1 - Multiple Features (8 min).mp4

9.3 MB

4 - 1 - Multiple Features (8 min).srt

14.9 KB

4 - 2 - Gradient Descent for Multiple Variables (5 min).mp4

6.1 MB

4 - 2 - Gradient Descent for Multiple Variables (5 min).srt

6.8 KB

4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mp4

9.9 MB

4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).srt

17.4 KB

4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mp4

9.7 MB

4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).srt

18.9 KB

4 - 5 - Features and Polynomial Regression (8 min).mp4

8.7 MB

4 - 5 - Features and Polynomial Regression (8 min).srt

16.3 KB

4 - 6 - Normal Equation (16 min).mp4

18.0 MB

4 - 6 - Normal Equation (16 min).srt

31.9 KB

4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mp4

6.5 MB

4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).srt

10.0 KB

docs_slides_Lecture4.pdf

1.8 MB

docs_slides_Lecture4.pptx

4.6 MB

ex1.zip

481.1 KB

/IX. Neural Networks Learning (Week 5)/

9 - 1 - Cost Function (7 min).mp4

8.0 MB

9 - 1 - Cost Function (7 min).srt

13.5 KB

9 - 2 - Backpropagation Algorithm (12 min).mp4

14.6 MB

9 - 2 - Backpropagation Algorithm (12 min).srt

23.4 KB

9 - 3 - Backpropagation Intuition (13 min).mp4

16.2 MB

9 - 3 - Backpropagation Intuition (13 min).srt

25.6 KB

9 - 4 - Implementation Note Unrolling Parameters (8 min).mp4

9.8 MB

9 - 4 - Implementation Note- Unrolling Parameters (8 min).srt

15.3 KB

9 - 5 - Gradient Checking (12 min).mp4

14.2 MB

9 - 5 - Gradient Checking (12 min).srt

24.1 KB

9 - 6 - Random Initialization (7 min).mp4

7.9 MB

9 - 6 - Random Initialization (7 min).srt

14.3 KB

9 - 7 - Putting It Together (14 min).mp4

17.1 MB

9 - 7 - Putting It Together (14 min).srt

28.3 KB

9 - 8 - Autonomous Driving (7 min).mp4

15.6 MB

9 - 8 - Autonomous Driving (7 min).srt

10.0 KB

docs_slides_Lecture9.pdf

3.5 MB

docs_slides_Lecture9.pptx

5.2 MB

ex4.zip

7.9 MB

/V. Octave Tutorial (Week 2)/

5 - 1 - Basic Operations (14 min).mp4

18.6 MB

5 - 1 - Basic Operations (14 min).srt

26.0 KB

5 - 2 - Moving Data Around (16 min).mp4

21.8 MB

5 - 2 - Moving Data Around (16 min).srt

29.3 KB

5 - 3 - Computing on Data (13 min).mp4

16.0 MB

5 - 3 - Computing on Data (13 min).srt

25.5 KB

5 - 4 - Plotting Data (10 min).mp4

14.0 MB

5 - 4 - Plotting Data (10 min).srt

17.8 KB

5 - 5 - Control Statements for while if statements (13 min).mp4

17.3 MB

5 - 5 - Control Statements- for, while, if statements (13 min).srt

23.9 KB

5 - 6 - Vectorization (14 min).mp4

16.9 MB

5 - 6 - Vectorization (14 min).srt

25.8 KB

5 - 7 - Working on and Submitting Programming Exercises (4 min).mp4

5.7 MB

5 - 7 - Working on and Submitting Programming Exercises (4 min).srt

4.5 KB

docs_slides_Lecture5.pdf

248.2 KB

docs_slides_Lecture5.pptx

417.1 KB

/VI. Logistic Regression (Week 3)/

6 - 1 - Classification (8 min).mp4

9.2 MB

6 - 1 - Classification (8 min).srt

16.6 KB

6 - 2 - Hypothesis Representation (7 min).mp4

8.7 MB

6 - 2 - Hypothesis Representation (7 min).srt

14.5 KB

6 - 3 - Decision Boundary (15 min).mp4

17.6 MB

6 - 3 - Decision Boundary (15 min).srt

27.4 KB

6 - 4 - Cost Function (11 min).mp4

13.7 MB

6 - 4 - Cost Function (11 min).srt

22.7 KB

6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mp4

12.5 MB

6 - 5 - Simplified Cost Function and Gradient Descent (10 min).srt

20.0 KB

6 - 6 - Advanced Optimization (14 min).mp4

19.0 MB

6 - 6 - Advanced Optimization (14 min).srt

28.5 KB

6 - 7 - Multiclass Classification One-vs-all (6 min).mp4

7.3 MB

6 - 7 - Multiclass Classification- One-vs-all (6 min).srt

12.9 KB

docs_slides_Lecture6.pdf

2.2 MB

docs_slides_Lecture6.pptx

4.0 MB

/VII. Regularization (Week 3)/

7 - 1 - The Problem of Overfitting (10 min).mp4

11.7 MB

7 - 1 - The Problem of Overfitting (10 min).srt

19.7 KB

7 - 2 - Cost Function (10 min).mp4

12.2 MB

7 - 2 - Cost Function (10 min).srt

20.2 KB

7 - 3 - Regularized Linear Regression (11 min).mp4

12.6 MB

7 - 3 - Regularized Linear Regression (11 min).srt

20.9 KB

7 - 4 - Regularized Logistic Regression (9 min).mp4

11.4 MB

7 - 4 - Regularized Logistic Regression (9 min).srt

17.6 KB

docs_slides_Lecture7.pdf

2.5 MB

docs_slides_Lecture7.pptx

2.7 MB

ex2.zip

248.8 KB

/VIII. Neural Networks Representation (Week 4)/

8 - 1 - Non-linear Hypotheses (10 min).mp4

11.4 MB

8 - 1 - Non-linear Hypotheses (10 min).srt

19.5 KB

8 - 2 - Neurons and the Brain (8 min).mp4

10.4 MB

8 - 2 - Neurons and the Brain (8 min).srt

16.8 KB

8 - 3 - Model Representation I (12 min).mp4

14.2 MB

8 - 3 - Model Representation I (12 min).srt

22.1 KB

8 - 4 - Model Representation II (12 min).mp4

14.1 MB

8 - 4 - Model Representation II (12 min).srt

23.0 KB

8 - 5 - Examples and Intuitions I (7 min).mp4

8.3 MB

8 - 5 - Examples and Intuitions I (7 min).srt

13.4 KB

8 - 6 - Examples and Intuitions II (10 min).mp4

14.7 MB

8 - 6 - Examples and Intuitions II (10 min).srt

17.5 KB

8 - 7 - Multiclass Classification (4 min).mp4

5.1 MB

8 - 7 - Multiclass Classification (4 min).srt

7.6 KB

docs_slides_Lecture8.pdf

5.2 MB

docs_slides_Lecture8.pptx

42.3 MB

ex3.zip

7.9 MB

/X. Advice for Applying Machine Learning (Week 6)/

10 - 1 - Deciding What to Try Next (6 min).mp4

7.2 MB

10 - 1 - Deciding What to Try Next (6 min).srt

12.7 KB

10 - 2 - Evaluating a Hypothesis (8 min).mp4

8.9 MB

10 - 2 - Evaluating a Hypothesis (8 min).srt

11.8 KB

10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).mp4

14.8 MB

10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).srt

25.2 KB

10 - 4 - Diagnosing Bias vs. Variance (8 min).mp4

9.4 MB

10 - 4 - Diagnosing Bias vs. Variance (8 min).srt

16.5 KB

10 - 5 - Regularization and Bias_Variance (11 min).mp4

13.2 MB

10 - 5 - Regularization and Bias_Variance (11 min).srt

23.1 KB

10 - 6 - Learning Curves (12 min).mp4

13.5 MB

10 - 6 - Learning Curves (12 min).srt

25.3 KB

10 - 7 - Deciding What to Do Next Revisited (7 min).mp4

8.6 MB

10 - 7 - Deciding What to Do Next Revisited (7 min).srt

14.4 KB

docs_slides_Lecture10.pdf

1.6 MB

docs_slides_Lecture10.pptx

3.5 MB

ex5.zip

181.3 KB

/XI. Machine Learning System Design (Week 6)/

11 - 1 - Prioritizing What to Work On (10 min).mp4

11.7 MB

11 - 1 - Prioritizing What to Work On (10 min).srt

20.1 KB

11 - 2 - Error Analysis (13 min).mp4

16.2 MB

11 - 2 - Error Analysis (13 min).srt

28.1 KB

11 - 3 - Error Metrics for Skewed Classes (12 min).mp4

13.9 MB

11 - 3 - Error Metrics for Skewed Classes (12 min).srt

22.6 KB

11 - 4 - Trading Off Precision and Recall (14 min).mp4

16.8 MB

11 - 4 - Trading Off Precision and Recall (14 min).srt

29.3 KB

11 - 5 - Data For Machine Learning (11 min).mp4

13.5 MB

11 - 5 - Data For Machine Learning (11 min).srt

23.7 KB

docs_slides_Lecture11.pdf

509.6 KB

docs_slides_Lecture11.pptx

2.0 MB

/XII. Support Vector Machines (Week 7)/

12 - 1 - Optimization Objective (15 min).mp4

17.5 MB

12 - 1 - Optimization Objective (15 min).srt

30.1 KB

12 - 2 - Large Margin Intuition (11 min).mp4

12.4 MB

12 - 2 - Large Margin Intuition (11 min).srt

21.8 KB

12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mp4

22.9 MB

12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).srt

36.7 KB

12 - 4 - Kernels I (16 min).mp4

18.4 MB

12 - 4 - Kernels I (16 min).srt

29.8 KB

12 - 5 - Kernels II (16 min) (1).mp4

18.3 MB

12 - 5 - Kernels II (16 min) (1).srt

31.4 KB

12 - 5 - Kernels II (16 min).mp4

18.3 MB

12 - 5 - Kernels II (16 min).srt

31.4 KB

12 - 6 - Using An SVM (21 min).mp4

25.1 MB

12 - 6 - Using An SVM (21 min).srt

44.5 KB

docs_slides_Lecture12.pdf

2.4 MB

docs_slides_Lecture12.pptx

5.6 MB

ex6.zip

917.9 KB

/XIII. Clustering (Week 8)/

13 - 1 - Unsupervised Learning Introduction (3 min).mp4

4.0 MB

13 - 1 - Unsupervised Learning- Introduction (3 min).srt

7.2 KB

13 - 2 - K-Means Algorithm (13 min).mp4

14.5 MB

13 - 2 - K-Means Algorithm (13 min).srt

26.9 KB

13 - 3 - Optimization Objective (7 min).mp4

8.5 MB

13 - 3 - Optimization Objective (7 min).srt

14.0 KB

13 - 4 - Random Initialization (8 min).mp4

9.1 MB

13 - 4 - Random Initialization (8 min).srt

16.6 KB

13 - 5 - Choosing the Number of Clusters (8 min).mp4

9.9 MB

13 - 5 - Choosing the Number of Clusters (8 min).srt

18.4 KB

docs_slides_Lecture13.pdf

2.3 MB

docs_slides_Lecture13.pptx

2.9 MB

/XIV. Dimensionality Reduction (Week 8)/

14 - 1 - Motivation I Data Compression (10 min).mp4

15.0 MB

14 - 1 - Motivation I- Data Compression (10 min).srt

20.6 KB

14 - 2 - Motivation II Visualization (6 min).mp4

6.6 MB

14 - 2 - Motivation II- Visualization (6 min).srt

10.4 KB

14 - 3 - Principal Component Analysis Problem Formulation (9 min).mp4

11.0 MB

14 - 3 - Principal Component Analysis Problem Formulation (9 min).srt

18.9 KB

14 - 4 - Principal Component Analysis Algorithm (15 min).mp4

18.7 MB

14 - 4 - Principal Component Analysis Algorithm (15 min).srt

29.3 KB

14 - 5 - Choosing the Number of Principal Components (11 min).mp4

12.4 MB

14 - 5 - Choosing the Number of Principal Components (11 min).srt

21.7 KB

14 - 6 - Reconstruction from Compressed Representation (4 min).mp4

5.2 MB

14 - 6 - Reconstruction from Compressed Representation (4 min).srt

7.7 KB

14 - 7 - Advice for Applying PCA (13 min).mp4

15.4 MB

14 - 7 - Advice for Applying PCA (13 min).srt

27.0 KB

docs_slides_Lecture14.pdf

1.7 MB

docs_slides_Lecture14.pptx

3.8 MB

ex7.zip

11.6 MB

/XIX. Conclusion/

19 - 1 - Summary and Thank You (5 min).mp4

6.4 MB

19 - 1 - Summary and Thank You (5 min).srt

8.3 KB

/XV. Anomaly Detection (Week 9)/

15 - 1 - Problem Motivation (8 min).mp4

8.8 MB

15 - 1 - Problem Motivation (8 min).srt

16.4 KB

15 - 2 - Gaussian Distribution (10 min).mp4

12.3 MB

15 - 2 - Gaussian Distribution (10 min).srt

21.1 KB

15 - 3 - Algorithm (12 min).mp4

14.6 MB

15 - 3 - Algorithm (12 min).srt

24.1 KB

15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mp4

15.9 MB

15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).srt

27.9 KB

15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mp4

9.7 MB

15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).srt

16.8 KB

15 - 6 - Choosing What Features to Use (12 min).mp4

14.8 MB

15 - 6 - Choosing What Features to Use (12 min).srt

25.7 KB

15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mp4

16.7 MB

15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).srt

28.1 KB

15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mp4

17.1 MB

15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).srt

26.9 KB

docs_slides_Lecture15.pdf

3.5 MB

docs_slides_Lecture15.pptx

6.3 MB

/XVI. Recommender Systems (Week 9)/

16 - 1 - Problem Formulation (8 min).mp4

11.2 MB

16 - 1 - Problem Formulation (8 min).srt

17.2 KB

16 - 2 - Content Based Recommendations (15 min).mp4

17.8 MB

16 - 2 - Content Based Recommendations (15 min).srt

29.3 KB

16 - 3 - Collaborative Filtering (10 min).mp4

12.3 MB

16 - 3 - Collaborative Filtering (10 min).srt

20.7 KB

16 - 4 - Collaborative Filtering Algorithm (9 min).mp4

10.8 MB

16 - 4 - Collaborative Filtering Algorithm (9 min).srt

16.9 KB

16 - 5 - Vectorization Low Rank Matrix Factorization (8 min).mp4

10.2 MB

16 - 5 - Vectorization- Low Rank Matrix Factorization (8 min).srt

16.7 KB

16 - 6 - Implementational Detail Mean Normalization (9 min).mp4

10.2 MB

16 - 6 - Implementational Detail- Mean Normalization (9 min).srt

17.0 KB

docs_slides_Lecture16.pdf

1.5 MB

docs_slides_Lecture16.pptx

3.8 MB

ex8.zip

813.9 KB

/XVII. Large Scale Machine Learning (Week 10)/

17 - 1 - Learning With Large Datasets (6 min).mp4

6.8 MB

17 - 1 - Learning With Large Datasets (6 min).srt

8.1 KB

17 - 2 - Stochastic Gradient Descent (13 min).mp4

16.1 MB

17 - 2 - Stochastic Gradient Descent (13 min).srt

18.6 KB

17 - 3 - Mini-Batch Gradient Descent (6 min).mp4

7.7 MB

17 - 3 - Mini-Batch Gradient Descent (6 min).srt

8.0 KB

17 - 4 - Stochastic Gradient Descent Convergence (12 min).mp4

14.0 MB

17 - 4 - Stochastic Gradient Descent Convergence (12 min).srt

16.6 KB

17 - 5 - Online Learning (13 min).mp4

15.6 MB

17 - 5 - Online Learning (13 min).srt

28.3 KB

17 - 6 - Map Reduce and Data Parallelism (14 min).mp4

16.8 MB

17 - 6 - Map Reduce and Data Parallelism (14 min).srt

29.6 KB

docs_slides_Lecture17.pdf

2.1 MB

docs_slides_Lecture17.pptx

4.0 MB

/XVIII. Application Example Photo OCR/

18 - 1 - Problem Description and Pipeline (7 min).mp4

8.3 MB

18 - 1 - Problem Description and Pipeline (7 min).srt

15.1 KB

18 - 2 - Sliding Windows (15 min).mp4

17.3 MB

18 - 2 - Sliding Windows (15 min).srt

32.2 KB

18 - 3 - Getting Lots of Data and Artificial Data (16 min).mp4

19.7 MB

18 - 3 - Getting Lots of Data and Artificial Data (16 min).srt

36.0 KB

18 - 4 - Ceiling Analysis What Part of the Pipeline to Work on Next (14 min).mp4

16.9 MB

18 - 4 - Ceiling Analysis- What Part of the Pipeline to Work on Next (14 min).srt

31.2 KB

docs_slides_Lecture18.pdf

2.1 MB

docs_slides_Lecture18.pptx

6.4 MB

 

Total files 274


Copyright © 2024 FileMood.com