FileMood

Download CS224n Natural Language Processing with Deep Learning

CS224n Natural Language Processing with Deep Learning

Name

CS224n Natural Language Processing with Deep Learning

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

11.5 GB

Total Files

528

Hash

CC69879874B8F098B313AC73D7E6A66386833FB1

/01 Introduction to NLP and Deep Learning/

CS224n笔记1 自然语言处理与深度学习简介.url

0.1 KB

cs224n-2017-lecture1.docx

3.0 MB

cs224n-2017-lecture1.pdf

12.5 MB

cs224n-2017-notes1.pdf

358.1 KB

cs229-cvxopt.pdf

168.8 KB

cs229-linalg.pdf

205.3 KB

cs229-prob.pdf

292.4 KB

Lecture 1 Natural Language Processing with Deep Learning.mp4

725.8 MB

Lecture 1 Natural Language Processing with Deep Learning.srt

105.0 KB

/02 Word Vector Representations word2vec/

5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

112.0 KB

A SIMPLE BUT TOUGH-TO-BEAT BASELINE FOR SENTENCE EMBEDDINGS.pdf

323.7 KB

CS224n笔记2 词的向量表示:word2vec.url

0.2 KB

cs224n-2017-lecture2-highlight.pdf

576.9 KB

cs224n-2017-lecture2.pdf

3.1 MB

Efficient Estimation of Word Representations in Vector Space.pdf

228.7 KB

Lecture 2 Word Vector Representations_ word2vec.mp4

852.9 MB

Lecture 2 Word Vector Representations_ word2vec.srt

99.6 KB

/03 Advanced Word Vector Representations/

CS224n笔记3 高级词向量表示.url

0.2 KB

cs224n-2017-lecture3-highlight.pdf

186.4 KB

cs224n-2017-lecture3.pdf

6.7 MB

cs224n-2017-notes2.pdf

480.6 KB

Evaluation methods for unsupervised word embeddings.pdf

286.8 KB

glove.pdf

2.6 MB

Improving Distributional Similarity with Lessons Learned from Word Embeddings.pdf

291.1 KB

Lecture 3 GloVe_ Global Vectors for Word Representation.mp4

578.3 MB

Lecture 3 GloVe_ Global Vectors for Word Representation.srt

116.0 KB

Linear Algebraic Structure of Word Senses, with Applications to Polysemy.pdf

678.3 KB

/04 Word Window Classification and Neural Networks/

A Neural Probabilistic Language Model.pdf

140.1 KB

backprop_old.pdf

351.0 KB

CS224n笔记4 Word Window分类与神经网络.url

0.2 KB

cs224n-2017-lecture4.pdf

3.6 MB

cs224n-2017-notes3.pdf

628.0 KB

cs224n-2017-review-differential-calculus.pdf

142.3 KB

Lecture 4 Word Window Classification and Neural Networks.mp4

393.3 MB

Lecture 4 Word Window Classification and Neural Networks.srt

110.2 KB

Natural Language Processing (almost) from Scratch.pdf

379.8 KB

/05 Backpropagation and Project Advice/

A Primer on Neural Network Models for Natural Language Processing.pdf

718.5 KB

Bag of Tricks for Efficient Text Classification.pdf

71.6 KB

CS224n笔记5 反向传播与项目指导.url

0.2 KB

cs224n-2017-lecture5-highlight.pdf

201.3 KB

cs224n-2017-lecture5.pdf

3.8 MB

Lecture 5 Backpropagation and Project Advice.mp4

439.1 MB

Lecture 5 Backpropagation and Project Advice.srt

110.5 KB

/06 Dependency Parsing/

(Synthesis Lectures on Human Language Technologies) Sandra Kubler, Ryan McDonald, Joakim Nivre, Graeme Hirst-Dependency parsing-Morgan and Claypool Publishers (2009).pdf

1.1 MB

CS224n笔记6 句法分析.url

0.1 KB

cs224n-2017-lecture6-highlight.pdf

929.4 KB

cs224n-2017-lecture6.pdf

3.5 MB

cs224n-2017-notes4.pdf

189.8 KB

Globally Normalized Transition-Based Neural Networks.pdf

172.1 KB

Improving Distributional Similarity with Lessons Learned from Word Embeddings.pdf

288.4 KB

Incrementality in Deterministic Dependency Parsing.pdf

122.7 KB

Lecture 6 Dependency Parsing.mp4

756.6 MB

Universal Dependencies A cross-linguistic typology.pdf

167.4 KB

/07 Introduction to TensorFlow/

CS224n笔记7 TensorFlow入门.url

0.1 KB

cs224n-2017-lecture7-highlight.pdf

2.1 MB

cs224n-2017-tensorflow-notes.pdf

297.4 KB

cs224n-2017-tensorflow.pdf

2.4 MB

Lecture 7 Introduction to TensorFlow.mp4

307.7 MB

Visual Dialog.pdf

7.7 MB

/08 Recurrent Neural Networks and Language Models/

CS224n笔记8 RNN和语言模型.url

0.2 KB

cs224n-2017-lecture8-highlight.pdf

550.8 KB

cs224n-2017-lecture8.pdf

3.7 MB

Lecture 8 Recurrent Neural Networks and Language Models.mp4

781.8 MB

Structured Training for Neural Network Transition-Based Parsing.pdf

680.0 KB

/09 Machine translation and advanced recurrent LSTMs and GRUs/

CS224n笔记9 机器翻译和高级LSTM及GRU.url

0.1 KB

cs224n-2017-lecture9-highlight.pdf

1.7 MB

cs224n-2017-lecture9.pdf

8.5 MB

cs224n-2017-notes5.pdf

1.1 MB

DATA NOISING AS SMOOTHING IN NEURAL NETWORK LANGUAGE MODELS.pdf

400.7 KB

Exploring the Limits of Language Modeling.pdf

335.3 KB

Lecture 9 Machine Translation and Advanced Recurrent LSTMs and GRUs.mp4

615.7 MB

SUBWORD LANGUAGE MODELING WITH NEURAL NETWORKS.pdf

57.4 KB

/10 Neural Machine Translation and Models with Attention/

CS224n笔记10 NMT与Attention.url

0.2 KB

cs224n-2017-lecture10-highlight.pdf

390.7 KB

cs224n-2017-lecture10.pdf

14.7 MB

Effective Approaches to Attention-based Neural Machine Translation.pdf

163.9 KB

Google’s Multilingual Neural Machine Translation System- Enabling Zero-Shot Translation.pdf

2.7 MB

Lecture 10 Neural Machine Translation and Models with Attention.mp4

383.1 MB

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE.pdf

444.5 KB

Sequence to Sequence Learning with Neural Networks.pdf

112.1 KB

/11 Gated recurrent units and further topics in NMT/

Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models.pdf

155.8 KB

CS224n笔记11 GRU和NMT的进一步话题.url

0.1 KB

cs224n-2017-lecture11-highlight.pdf

1.3 MB

cs224n-2017-lecture11.pdf

16.0 MB

cs224n-2017-notes6.pdf

594.0 KB

Lecture 11 Gated Recurrent Units and Further Topics in NMT.mp4

782.2 MB

Lip Reading Sentences in the Wild.pdf

2.0 MB

Neural Machine Translation of Rare Words with Subword Units.pdf

193.2 KB

On Using Very Large Target Vocabulary for Neural Machine Translation.pdf

327.5 KB

Pointing the Unknown Words.pdf

404.5 KB

/12 End-to-end models for Speech Processing/

CS224n笔记12 语音识别的end-to-end模型.url

0.1 KB

cs224n-2017-lecture12.pdf

30.3 MB

Lecture 12 End-to-End Models for Speech Processing.mp4

279.1 MB

Lecture 12 End-to-End Models for Speech Processing.srt

107.9 KB

/13 Convolutional Neural Networks/

A Convolutional Neural Network for Modelling Sentences.pdf

343.1 KB

Character-Aware Neural Language Models.pdf

480.4 KB

Convolutional Neural Networks for Sentence Classification.pdf

180.6 KB

CS224n笔记13 卷积神经网络.url

0.2 KB

cs224n-2017-lecture13-CNNs.pdf

7.1 MB

cs224n-2017-lecture13-highlight.pdf

1.6 MB

Lecture 13 Convolutional Neural Networks.mp4

693.1 MB

Lecture 13 Convolutional Neural Networks.srt

120.1 KB

/14 Tree Recursive Neural Networks and Constituency Parsing/

CS224n笔记14 Tree RNN与短语句法分析.url

0.2 KB

cs224n-2017-lecture14-highlight.pdf

433.5 KB

cs224n-2017-lecture14-TreeRNNs.pdf

6.1 MB

cs224n-2017-notes7.pdf

1.3 MB

Deep Reinforcement Learning for Dialogue Generation.pdf

5.2 MB

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks.pdf

422.1 KB

Lecture 14- Tree Recursive Neural Networks and Constituency Parsing.mp4

367.5 MB

Parsing with Compositional Vector Grammars.pdf

562.1 KB

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank.pdf

1.3 MB

/15 Coreference Resolution/

CS224n笔记15 指代消解.url

0.1 KB

cs224n-2017-lecture15.pdf

11.0 MB

Deep Reinforcement Learning for Mention-Ranking Coreference Models.pdf

1.2 MB

Easy Victories and Uphill Battles in Coreference Resolution.pdf

273.4 KB

Lecture 15 Coreference Resolution.mp4

777.1 MB

/16 Dynamic Neural Networks for Question Answering/

CS224n笔记16 DMN与问答系统.url

0.1 KB

cs224n-2017-lecture16-DMN-QA.pdf

7.4 MB

cs224n-2017-lecture16-highlight.pdf

1.5 MB

cs224n-2017-notes8.pdf

177.3 KB

Learning Program Embeddings to Propagate Feedback on Student Code.pdf

767.7 KB

Lecture 16 Dynamic Neural Networks for Question Answering.mp4

481.5 MB

/17 Issues in NLP and Possible Architectures for NLP/

CS224n笔记17 NLP存在的问题与未来的架构.url

0.2 KB

cs224n-2017-lecture17-highlight.pdf

1.4 MB

cs224n-2017-lecture17.pdf

11.6 MB

Learning to Compose Neural Networks for Question Answering.pdf

3.1 MB

Lecture 17 Issues in NLP and Possible Architectures for NLP.mp4

327.5 MB

/18 Tackling the Limits of Deep Learning for NLP/

CS224n笔记18 挑战深度学习与自然语言处理的极限.url

0.2 KB

cs224n-2017-lecture18-highlight.pdf

1.1 MB

cs224n-2017-lecture18.pdf

17.6 MB

Hybrid computing using a neural network with dynamic external memory.pdf

2.7 MB

Lecture 18 Tackling the Limits of Deep Learning for NLP.mp4

492.7 MB

Neural Turing Machines.pdf

1.4 MB

/assignments/assignment1/

assignment1.pdf

210.3 KB

assignment1_soln.pdf

303.3 KB

collect_submission.sh

0.1 KB

get_datasets.sh

0.6 KB

Makefile

0.2 KB

q1_softmax.py

2.9 KB

q1_softmax.pyc

3.8 KB

q2_gradcheck.py

2.5 KB

q2_gradcheck.pyc

2.8 KB

q2_neural.py

2.9 KB

q2_sigmoid.py

1.7 KB

q2_sigmoid.pyc

2.6 KB

q3_run.py

2.2 KB

q3_sgd.py

3.8 KB

q3_sgd.pyc

4.8 KB

q3_word2vec.py

9.6 KB

q3_word2vec.pyc

10.9 KB

q3_word_vectors.png

35.2 KB

q4_dev_conf.png

30.3 KB

q4_dev_pred.txt

119.5 KB

q4_reg_v_acc.png

40.4 KB

q4_sentiment.py

7.9 KB

requirements.txt

0.0 KB

saved_params_10000.npy

9.2 MB

saved_params_15000.npy

9.2 MB

saved_params_20000.npy

9.2 MB

saved_params_25000.npy

9.2 MB

saved_params_30000.npy

9.2 MB

saved_params_35000.npy

9.2 MB

saved_params_40000.npy

9.2 MB

saved_params_5000.npy

9.1 MB

/assignments/assignment1/utils/

__init__.pyc

0.2 KB

glove.py

0.7 KB

glove.pyc

1.1 KB

treebank.py

7.6 KB

treebank.pyc

9.4 KB

/assignments/assignment1/utils/datasets/

glove.6B.50d.txt

171.4 MB

/assignments/assignment1/utils/datasets/stanfordSentimentTreebank/

datasetSentences.txt

1.3 MB

datasetSplit.txt

83.8 KB

dictionary.txt

12.0 MB

original_rt_snippets.txt

1.2 MB

README.txt

2.4 KB

sentiment_labels.txt

3.3 MB

SOStr.txt

1.2 MB

STree.txt

1.3 MB

/assignments/assignment2/

assignment2-soln.pdf

333.7 KB

assignment2.pdf

323.2 KB

model.py

4.1 KB

model.pyc

5.9 KB

q1_classifier.py

7.8 KB

q1_softmax.py

4.1 KB

q1_softmax.pyc

4.7 KB

q2_initialization.py

1.8 KB

q2_initialization.pyc

2.5 KB

q2_parser_model.py

11.4 KB

q2_parser_transitions.py

8.1 KB

q2_parser_transitions.pyc

9.6 KB

q2_test.predicted.pkl

585.4 KB

/assignments/assignment2/data/

dev.conll

1.3 MB

dev.gold.conll

1.3 MB

en-cw.txt

60.5 MB

test.conll

1.8 MB

test.gold.conll

1.8 MB

train.conll

31.0 MB

train.gold.conll

31.0 MB

/assignments/assignment2/data/weights/

checkpoint

0.1 KB

parser.weights.data-00000-of-00001

28.1 MB

parser.weights.index

0.7 KB

parser.weights.meta

8.0 MB

/assignments/assignment2/utils/

__init__.pyc

0.2 KB

general_utils.py

6.3 KB

general_utils.pyc

7.1 KB

parser_utils.py

15.6 KB

parser_utils.pyc

17.5 KB

/assignments/assignment3/

assignment3-soln.pdf

352.9 KB

assignment3.pdf

229.4 KB

data_util.py

6.0 KB

data_util.pyc

10.0 KB

defs.py

0.3 KB

defs.pyc

0.8 KB

make_submission.sh

0.5 KB

model.py

4.1 KB

model.pyc

5.9 KB

ner_model.py

5.4 KB

ner_model.pyc

6.3 KB

q1_window.py

22.5 KB

q2_rnn.py

26.9 KB

q2_rnn_cell.py

5.2 KB

q2_rnn_cell.pyc

6.1 KB

q3-0-dynamics.png

25.2 KB

q3-1-dynamics.png

25.7 KB

q3-clip-gru.png

39.5 KB

q3-clip-rnn.png

34.2 KB

q3-noclip-gru.png

37.3 KB

q3-noclip-rnn.png

34.5 KB

q3_gru.py

14.2 KB

q3_gru_cell.py

6.7 KB

q3_gru_cell.pyc

7.2 KB

requirements.txt

0.0 KB

util.py

18.5 KB

util.pyc

22.4 KB

/assignments/assignment3/data/

dev.conll

403.0 KB

test.masked

346.1 KB

tiny.conll

73.7 KB

train.conll

1.6 MB

vocab.txt

835.2 KB

wordVectors.txt

47.7 MB

/assignments/assignment3/results/gru/20170703_112643/

checkpoint

0.1 KB

features.pkl

234.5 KB

gru_predictions.conll

520.8 KB

log

8.8 KB

model.weights.data-00000-of-00001

12.5 MB

model.weights.index

1.3 KB

model.weights.meta

7.4 MB

results.txt

877.4 KB

/assignments/assignment3/results/gru/20170703_123247/

checkpoint

0.1 KB

features.pkl

234.5 KB

gru_predictions.conll

520.5 KB

log

8.8 KB

model.weights.data-00000-of-00001

12.5 MB

model.weights.index

1.3 KB

model.weights.meta

7.4 MB

results.txt

877.4 KB

/assignments/assignment3/results/rnn/20170702_203928/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

8.9 KB

model.weights.data-00000-of-00001

2.2 MB

model.weights.index

0.6 KB

model.weights.meta

4.4 MB

results.txt

877.3 KB

rnn_predictions.conll

520.5 KB

/assignments/assignment3/results/rnn/20170702_210024/

features.pkl

234.5 KB

log

0.0 KB

/assignments/assignment3/results/rnn/20170702_210148/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

10.0 KB

model.weights.data-00000-of-00001

2.2 MB

model.weights.index

0.6 KB

model.weights.meta

4.4 MB

results.txt

877.3 KB

rnn_predictions.conll

520.5 KB

/assignments/assignment3/results/rnn/20170702_213222/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

10.0 KB

model.weights.data-00000-of-00001

2.2 MB

model.weights.index

0.6 KB

model.weights.meta

4.4 MB

results.txt

877.3 KB

rnn_predictions.conll

520.7 KB

/assignments/assignment3/results/rnn/20170702_215952/

features.pkl

234.5 KB

log

0.0 KB

/assignments/assignment3/results/rnn/20170702_220153/

features.pkl

234.5 KB

log

0.0 KB

/assignments/assignment3/results/rnn/20170702_220230/

features.pkl

234.5 KB

log

0.1 KB

/assignments/assignment3/results/rnn/20170702_220336/

features.pkl

234.5 KB

log

0.1 KB

/assignments/assignment3/results/rnn/20170702_220424/

features.pkl

234.5 KB

log

0.1 KB

/assignments/assignment3/results/rnn/20170702_220540/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

5.5 KB

model.weights.data-00000-of-00001

2.2 MB

model.weights.index

0.6 KB

model.weights.meta

4.3 MB

/assignments/assignment3/results/rnn/20170702_223821/

features.pkl

234.5 KB

log

0.1 KB

/assignments/assignment3/results/rnn/20170702_223929/

features.pkl

234.5 KB

log

0.1 KB

/assignments/assignment3/results/rnn/20170702_224010/

features.pkl

234.5 KB

log

0.1 KB

/assignments/assignment3/results/rnn/20170702_224032/

features.pkl

234.5 KB

log

0.1 KB

/assignments/assignment3/results/rnn/20170703_090925/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

8.9 KB

model.weights.data-00000-of-00001

8.2 MB

model.weights.index

0.7 KB

model.weights.meta

4.4 MB

results.txt

877.3 KB

rnn_predictions.conll

520.7 KB

/assignments/assignment3/results/window/20170702_191726/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

10.0 KB

model.weights.data-00000-of-00001

6.7 MB

model.weights.index

0.6 KB

model.weights.meta

2.1 MB

results.txt

877.3 KB

window_predictions.conll

520.7 KB

/assignments/assignment3/results/window/20170702_192143/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

10.0 KB

model.weights.data-00000-of-00001

6.7 MB

model.weights.index

0.6 KB

model.weights.meta

2.1 MB

results.txt

877.3 KB

window_predictions.conll

520.7 KB

/assignments/assignment3/results/window/20170702_192351/

features.pkl

234.5 KB

log

0.2 KB

/assignments/assignment3/results/window/20170702_192948/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

8.8 KB

model.weights.data-00000-of-00001

6.7 MB

model.weights.index

0.6 KB

model.weights.meta

2.1 MB

results.txt

877.3 KB

window_predictions.conll

520.7 KB

/assignments/assignment3/results/window/20170702_193234/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

8.9 KB

model.weights.data-00000-of-00001

6.7 MB

model.weights.index

0.6 KB

model.weights.meta

2.1 MB

results.txt

877.3 KB

window_predictions.conll

520.8 KB

/assignments/assignment3/results/window/20170702_193730/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

8.8 KB

model.weights.data-00000-of-00001

7.2 MB

model.weights.index

0.6 KB

model.weights.meta

2.1 MB

results.txt

877.3 KB

window_predictions.conll

520.7 KB

/assignments/assignment3/results/window/20170702_193912/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

8.9 KB

model.weights.data-00000-of-00001

7.7 MB

model.weights.index

0.6 KB

model.weights.meta

2.1 MB

results.txt

877.3 KB

window_predictions.conll

520.7 KB

/assignments/assignment3/results/window/20170702_194019/

checkpoint

0.1 KB

features.pkl

234.5 KB

log

8.9 KB

model.weights.data-00000-of-00001

6.7 MB

model.weights.index

0.6 KB

model.weights.meta

2.1 MB

results.txt

877.3 KB

window_predictions.conll

520.8 KB

/assignments/

LICENSE

35.1 KB

README.md

4.0 KB

/cs224n-winter17-notes/

gradient-notes.pdf

231.3 KB

gradient-notes.tex

15.8 KB

notes1.aux

3.7 KB

notes1.blg

1.3 KB

notes1.log

40.6 KB

notes1.out

0.7 KB

notes1.pdf

357.0 KB

notes1.synctex.gz

137.1 KB

notes1.tex

38.5 KB

notes2.aux

8.2 KB

notes2.log

41.0 KB

notes2.out

0.4 KB

notes2.pdf

490.5 KB

notes2.synctex.gz

116.4 KB

notes2.tex

34.1 KB

notes3.aux

7.8 KB

notes3.log

53.0 KB

notes3.out

0.4 KB

notes3.pdf

606.9 KB

notes3.synctex.gz

157.2 KB

notes3.tex

47.4 KB

notes4.aux

2.0 KB

notes4.log

54.7 KB

notes4.out

0.3 KB

notes4.pdf

190.1 KB

notes4.synctex.gz

43.6 KB

notes4.tex

14.5 KB

notes5.aux

7.0 KB

notes5.log

57.4 KB

notes5.out

0.7 KB

notes5.pdf

1.1 MB

notes5.synctex.gz

110.0 KB

notes5.tex

33.2 KB

notes6.aux

6.7 KB

notes6.log

57.8 KB

notes6.out

1.4 KB

notes6.pdf

594.6 KB

notes6.synctex.gz

143.7 KB

notes6.tex

46.6 KB

notes7.aux

6.3 KB

notes7.log

50.9 KB

notes7.out

0.6 KB

notes7.pdf

1.3 MB

notes7.synctex.gz

89.7 KB

notes7.tex

34.8 KB

notes8.aux

1.9 KB

notes8.log

45.7 KB

notes8.out

0.4 KB

notes8.pdf

177.3 KB

notes8.synctex.gz

27.2 KB

notes8.tex

10.1 KB

README.md

0.1 KB

review-differential-calculus.pdf

142.3 KB

review-differential-calculus.tex

22.4 KB

tensorflow.pdf

298.2 KB

tensorflow.tex

16.0 KB

update_overleaf.sh

0.5 KB

/notes1/fig/

CBOW.png

100.3 KB

manwoman.jpg

99.4 KB

sigmoid.png

25.7 KB

Skip-Gram.png

112.2 KB

tree.png

36.2 KB

/notes1/

reference.bib

2.6 KB

/notes2/fig/

DataSize.png

84.2 KB

hyperparam.png

91.5 KB

IntrinsicEval.png

56.1 KB

LinearBoundary.png

35.2 KB

LinearBoundary2.png

40.3 KB

NonlinearBoundary.png

44.2 KB

pretraining.png

35.9 KB

retraining.png

37.2 KB

TrainTime.png

88.6 KB

window.png

20.0 KB

/notes2/Resources/

ImageBlocks.pptx

46.9 KB

/notes3/fig/

421nnet.png

63.8 KB

dropout.png

136.2 KB

Error_Surf.png

189.8 KB

ErrorSignal.png

39.7 KB

ErrorSignal2.png

20.6 KB

ErrorSignal3.png

37.7 KB

graph_hardtanh.png

6.4 KB

graph_leaky.png

6.2 KB

graph_relu.png

6.1 KB

graph_sigmoid.png

6.7 KB

graph_softsign.png

7.0 KB

graph_tanh.png

6.8 KB

NonlinearBoundary.png

44.2 KB

sigmoidneuron.png

42.5 KB

SimpleFF.png

51.5 KB

SingleLayerNeuralNetwork.png

22.9 KB

/notes3/Resources/

ImageBlocks.pptx

46.9 KB

NNet.pptx

56.5 KB

/notes4/fig/

dep_tree.png

54.2 KB

nn.tex

5.2 KB

transitions.png

48.0 KB

/notes5/fig/

bengio_03.png

89.1 KB

birnn.pdf

151.3 KB

cliping.pdf

274.7 KB

deepbirnn.pdf

160.2 KB

en_decoder.png

58.2 KB

GRU.png

137.1 KB

LSTM.png

168.3 KB

nn.tex

5.2 KB

rnn.pdf

45.5 KB

rnn_loop.pdf

17.8 KB

rnn_node.pdf

21.3 KB

rnn_translate.pdf

44.1 KB

two_layer.pdf

23.1 KB

/notes5/

reference.bib

0.3 KB

/notes6/

alignment.png

21.0 KB

BiEncoder.png

12.2 KB

BPE.png

95.8 KB

candidate_list.png

95.1 KB

Decoder.png

12.7 KB

Encoder.png

10.6 KB

google_example.png

24.9 KB

hybrid.png

49.5 KB

longsentences.png

100.2 KB

partition.png

139.2 KB

pointer.png

212.2 KB

/notes7/fig/

2d_convolution.png

222.3 KB

CNN-alternates.png

520.4 KB

ConstituencyParsing.png

50.8 KB

denpendency.png

44.2 KB

img1.png

130.9 KB

img10.png

77.9 KB

img11.png

42.3 KB

img2.png

147.1 KB

img3.png

48.3 KB

img4.png

92.4 KB

img5.png

80.0 KB

img6.png

102.4 KB

img7.png

141.9 KB

img8.png

49.4 KB

img9.png

102.1 KB

narrow_vs_wide.png

97.0 KB

nonsense.png

41.9 KB

single-conv-complete.png

110.9 KB

single-conv.png

63.3 KB

/notes7/Resources/

ImageBlocks.pptx

46.9 KB

NNet.pptx

56.5 KB

/notes8/fig/

BiGRU.png

31.9 KB

DMN.png

54.1 KB

/sty/

code_snippet.sty

1.3 KB

kbordermatrix.sty

5.5 KB

/tensorflow/fig/

tensorFlow.png

213.4 KB

/tensorflow/

nonsense.svg

45.9 KB

reference.bib

0.3 KB

/Midterm Review/

cs224n-2017-gradient-notes.pdf

232.0 KB

cs224n-midterm-review.pdf

2.9 MB

cs224n-practice-midterm-1.pdf

395.3 KB

cs224n-practice-midterm-2.pdf

334.9 KB

Review Session- Midterm Review.mp4

568.9 MB

/

README.url

0.1 KB

 

Total files 528


Copyright © 2025 FileMood.com