/07 - Building a CNN/
|
007 Develop an Image Recognition System Using Convolutional Neural Networks.mp4
|
91.4 MB
|
001 Get the code and dataset ready.html
|
3.9 KB
|
002 Step 1 - Convolutional Neural Networks Explained Image Classification Tutorial.mp4
|
29.2 MB
|
002 Step 1 - Convolutional Neural Networks Explained Image Classification Tutorial.srt
|
13.9 KB
|
003 Step 2 - Deep Learning Preprocessing Scaling --& Transforming Images for CNNs.mp4
|
70.7 MB
|
003 Step 2 - Deep Learning Preprocessing Scaling --& Transforming Images for CNNs.srt
|
31.3 KB
|
004 Step 3 - Building CNN Architecture Convolutional Layers --& Max Pooling Explained.mp4
|
71.3 MB
|
004 Step 3 - Building CNN Architecture Convolutional Layers --& Max Pooling Explained.srt
|
37.5 KB
|
005 Step 4 - Train CNN for Image Classification Optimize with Keras --& TensorFlow.mp4
|
29.3 MB
|
005 Step 4 - Train CNN for Image Classification Optimize with Keras --& TensorFlow.srt
|
12.6 KB
|
006 Step 5 - Deploying a CNN for Real-World Image Recognition.mp4
|
59.4 MB
|
006 Step 5 - Deploying a CNN for Real-World Image Recognition.srt
|
30.2 KB
|
007 Develop an Image Recognition System Using Convolutional Neural Networks.srt
|
37.4 KB
|
Course updated jan 2025.txt
|
0.0 KB
|
Direct Download.txt
|
0.0 KB
|
/
|
Direct Download.txt
|
0.0 KB
|
Course updated jan 2025.txt
|
0.0 KB
|
/01 - Welcome to the course!/
|
001 Welcome Challenge!.html
|
5.9 KB
|
002 Introduction to Deep Learning From Historical Context to Modern Applications.mp4
|
36.3 MB
|
002 Introduction to Deep Learning From Historical Context to Modern Applications.srt
|
21.8 KB
|
003 Get the codes, datasets and slides here.html
|
2.8 KB
|
004 EXTRA Use ChatGPT to Boost your Deep Learning Skills.html
|
3.3 KB
|
Course updated jan 2025.txt
|
0.0 KB
|
Direct Download.txt
|
0.0 KB
|
/02 - --------------------- Part 1 - Artificial Neural Networks ---------------------/
|
001 Welcome to Part 1 - Artificial Neural Networks.html
|
2.6 KB
|
/03 - ANN Intuition/
|
001 What You'll Need for ANN.html
|
2.6 KB
|
002 How Neural Networks Learn Gradient Descent and Backpropagation Explained.mp4
|
8.5 MB
|
002 How Neural Networks Learn Gradient Descent and Backpropagation Explained.srt
|
4.6 KB
|
003 Understanding Neurons The Building Blocks of Artificial Neural Networks.mp4
|
59.4 MB
|
003 Understanding Neurons The Building Blocks of Artificial Neural Networks.srt
|
30.2 KB
|
004 Understanding Activation Functions in Neural Networks Sigmoid, ReLU, and More.mp4
|
33.0 MB
|
004 Understanding Activation Functions in Neural Networks Sigmoid, ReLU, and More.srt
|
14.5 KB
|
005 How Do Neural Networks Work Step-by-Step Guide to Property Valuation Example.mp4
|
31.1 MB
|
005 How Do Neural Networks Work Step-by-Step Guide to Property Valuation Example.srt
|
23.5 KB
|
006 How Do Neural Networks Learn Understanding Backpropagation and Cost Functions.mp4
|
51.6 MB
|
006 How Do Neural Networks Learn Understanding Backpropagation and Cost Functions.srt
|
22.3 KB
|
007 Mastering Gradient Descent Key to Efficient Neural Network Training.mp4
|
35.9 MB
|
007 Mastering Gradient Descent Key to Efficient Neural Network Training.srt
|
18.0 KB
|
008 How to Use Stochastic Gradient Descent for Deep Learning Optimization.mp4
|
34.8 MB
|
008 How to Use Stochastic Gradient Descent for Deep Learning Optimization.srt
|
15.2 KB
|
009 Understanding Backpropagation Algorithm Key to Optimizing Deep Learning Models.mp4
|
21.3 MB
|
009 Understanding Backpropagation Algorithm Key to Optimizing Deep Learning Models.srt
|
8.8 KB
|
/04 - Building an ANN/
|
001 Get the code and dataset ready.html
|
4.1 KB
|
002 Step 1 - Data Preprocessing for Deep Learning Preparing Neural Network Dataset.mp4
|
38.1 MB
|
002 Step 1 - Data Preprocessing for Deep Learning Preparing Neural Network Dataset.srt
|
19.2 KB
|
003 Check out our free course on ANN for Regression.html
|
2.8 KB
|
004 Step 2 - Data Preprocessing for Neural Networks Essential Steps and Techniques.mp4
|
72.5 MB
|
004 Step 2 - Data Preprocessing for Neural Networks Essential Steps and Techniques.srt
|
31.6 KB
|
005 Step 3 - Constructing an Artificial Neural Network Adding Input --& Hidden Layers.mp4
|
57.5 MB
|
005 Step 3 - Constructing an Artificial Neural Network Adding Input --& Hidden Layers.srt
|
25.1 KB
|
006 Step 4 - Compile and Train Neural Network Optimizers, Loss Functions --& Metrics.mp4
|
47.6 MB
|
006 Step 4 - Compile and Train Neural Network Optimizers, Loss Functions --& Metrics.srt
|
20.8 KB
|
007 Step 5 - How to Make Predictions and Evaluate Neural Network Model in Python.mp4
|
64.6 MB
|
007 Step 5 - How to Make Predictions and Evaluate Neural Network Model in Python.srt
|
27.2 KB
|
/05 - -------------------- Part 2 - Convolutional Neural Networks --------------------/
|
001 Welcome to Part 2 - Convolutional Neural Networks.html
|
2.6 KB
|
/06 - CNN Intuition/
|
001 What You'll Need for CNN.html
|
2.6 KB
|
002 Understanding CNN Architecture From Convolution to Fully Connected Layers.mp4
|
11.2 MB
|
002 Understanding CNN Architecture From Convolution to Fully Connected Layers.srt
|
6.2 KB
|
003 How Do Convolutional Neural Networks Work Understanding CNN Architecture.mp4
|
57.6 MB
|
003 How Do Convolutional Neural Networks Work Understanding CNN Architecture.srt
|
27.0 KB
|
004 How to Apply Convolution Filters in Neural Networks Feature Detection Explained.mp4
|
46.6 MB
|
004 How to Apply Convolution Filters in Neural Networks Feature Detection Explained.srt
|
28.7 KB
|
005 Rectified Linear Units --(ReLU--) in Deep Learning Optimizing CNN Performance.mp4
|
26.4 MB
|
005 Rectified Linear Units --(ReLU--) in Deep Learning Optimizing CNN Performance.srt
|
11.2 KB
|
006 Understanding Spatial Invariance in CNNs Max Pooling Explained for Beginners.mp4
|
58.4 MB
|
006 Understanding Spatial Invariance in CNNs Max Pooling Explained for Beginners.srt
|
25.9 KB
|
007 How to Flatten Pooled Feature Maps in Convolutional Neural Networks --(CNNs--).mp4
|
6.4 MB
|
007 How to Flatten Pooled Feature Maps in Convolutional Neural Networks --(CNNs--).srt
|
3.3 KB
|
008 How Do Fully Connected Layers Work in Convolutional Neural Networks --(CNNs--).mp4
|
55.3 MB
|
008 How Do Fully Connected Layers Work in Convolutional Neural Networks --(CNNs--).srt
|
38.4 KB
|
009 CNN Building Blocks Feature Maps, ReLU, Pooling, and Fully Connected Layers.mp4
|
17.2 MB
|
009 CNN Building Blocks Feature Maps, ReLU, Pooling, and Fully Connected Layers.srt
|
7.0 KB
|
010 Understanding Softmax Activation and Cross-Entropy Loss in Deep Learning.mp4
|
70.6 MB
|
010 Understanding Softmax Activation and Cross-Entropy Loss in Deep Learning.srt
|
32.8 KB
|
/08 - ---------------------- Part 3 - Recurrent Neural Networks ----------------------/
|
001 Welcome to Part 3 - Recurrent Neural Networks.html
|
2.8 KB
|
/09 - RNN Intuition/
|
001 What You'll Need for RNN.html
|
2.6 KB
|
002 How Do Recurrent Neural Networks --(RNNs--) Work Deep Learning Explained.mp4
|
7.2 MB
|
002 How Do Recurrent Neural Networks --(RNNs--) Work Deep Learning Explained.srt
|
4.1 KB
|
003 What is a Recurrent Neural Network --(RNN--) Deep Learning for Sequential Data.mp4
|
45.7 MB
|
003 What is a Recurrent Neural Network --(RNN--) Deep Learning for Sequential Data.srt
|
28.6 KB
|
004 Understanding the Vanishing Gradient Problem in Recurrent Neural Networks --(RNNs--).mp4
|
57.6 MB
|
004 Understanding the Vanishing Gradient Problem in Recurrent Neural Networks --(RNNs--).srt
|
27.2 KB
|
005 Understanding Long Short-Term Memory --(LSTM--) Architecture for Deep Learning.mp4
|
78.7 MB
|
005 Understanding Long Short-Term Memory --(LSTM--) Architecture for Deep Learning.srt
|
34.4 KB
|
006 How LSTMs Work in Practice Visualizing Neural Network Predictions.mp4
|
67.2 MB
|
006 How LSTMs Work in Practice Visualizing Neural Network Predictions.srt
|
25.5 KB
|
007 LSTM Variations Peepholes, Combined Gates, and GRUs in Deep Learning.mp4
|
14.4 MB
|
007 LSTM Variations Peepholes, Combined Gates, and GRUs in Deep Learning.srt
|
6.0 KB
|
/10 - Building a RNN/
|
001 Get the code and dataset ready.html
|
4.6 KB
|
002 Step 1 - Building a Robust LSTM Neural Network for Stock Price Trend Prediction.mp4
|
25.8 MB
|
002 Step 1 - Building a Robust LSTM Neural Network for Stock Price Trend Prediction.srt
|
13.1 KB
|
003 Step 2 - Importing Training Data for LSTM Stock Price Prediction Model.mp4
|
28.1 MB
|
003 Step 2 - Importing Training Data for LSTM Stock Price Prediction Model.srt
|
11.5 KB
|
004 Step 3 - Applying Min-Max Normalization for Time Series Data in Neural Networks.mp4
|
23.7 MB
|
004 Step 3 - Applying Min-Max Normalization for Time Series Data in Neural Networks.srt
|
9.7 KB
|
005 Step 4 - Building X_train and y_train Arrays for LSTM Time Series Forecasting.mp4
|
60.6 MB
|
005 Step 4 - Building X_train and y_train Arrays for LSTM Time Series Forecasting.srt
|
24.9 KB
|
006 Step 5 - Preparing Time Series Data for LSTM Neural Network in Stock Forecasting.mp4
|
43.4 MB
|
006 Step 5 - Preparing Time Series Data for LSTM Neural Network in Stock Forecasting.srt
|
20.4 KB
|
007 Step 6 - Create RNN Architecture Sequential Layers vs Computational Graphs.mp4
|
11.3 MB
|
007 Step 6 - Create RNN Architecture Sequential Layers vs Computational Graphs.srt
|
4.8 KB
|
008 Step 7 - Adding First LSTM Layer Key Components for Stock Market Prediction.mp4
|
34.7 MB
|
008 Step 7 - Adding First LSTM Layer Key Components for Stock Market Prediction.srt
|
14.5 KB
|
009 Step 8 - Implementing Dropout Regularization in LSTM Networks for Forecasting.mp4
|
21.2 MB
|
009 Step 8 - Implementing Dropout Regularization in LSTM Networks for Forecasting.srt
|
8.7 KB
|
010 Step 9 - Finalizing RNN Architecture Dense Layer for Stock Price Forecasting.mp4
|
13.3 MB
|
010 Step 9 - Finalizing RNN Architecture Dense Layer for Stock Price Forecasting.srt
|
5.5 KB
|
011 Step 10 - Compile RNN with Adam Optimizer for Stock Price Prediction in Python.mp4
|
17.4 MB
|
011 Step 10 - Compile RNN with Adam Optimizer for Stock Price Prediction in Python.srt
|
7.2 KB
|
012 Step 11 - Optimizing Epochs and Batch Size for LSTM Stock Price Forecasting.mp4
|
43.5 MB
|
012 Step 11 - Optimizing Epochs and Batch Size for LSTM Stock Price Forecasting.srt
|
14.6 KB
|
013 Step 12 - Visualizing LSTM Predictions Real vs Forecasted Google Stock Prices.mp4
|
22.3 MB
|
013 Step 12 - Visualizing LSTM Predictions Real vs Forecasted Google Stock Prices.srt
|
8.6 KB
|
014 Step 13 - Preparing Historical Stock Data for LSTM Model Scaling and Reshaping.mp4
|
67.2 MB
|
014 Step 13 - Preparing Historical Stock Data for LSTM Model Scaling and Reshaping.srt
|
26.3 KB
|
015 Step 14 - Creating 3D Input Structure for LSTM Stock Price Prediction in Python.mp4
|
33.2 MB
|
015 Step 14 - Creating 3D Input Structure for LSTM Stock Price Prediction in Python.srt
|
13.0 KB
|
016 Step 15 - Visualizing LSTM Predictions Plotting Real vs Predicted Stock Prices.mp4
|
36.0 MB
|
016 Step 15 - Visualizing LSTM Predictions Plotting Real vs Predicted Stock Prices.srt
|
15.6 KB
|
/11 - Evaluating and Improving the RNN/
|
001 Evaluating the RNN.html
|
4.1 KB
|
002 Improving the RNN.html
|
3.6 KB
|
/12 - ------------------------ Part 4 - Self Organizing Maps ------------------------/
|
001 Welcome to Part 4 - Self Organizing Maps.html
|
2.7 KB
|
/13 - SOMs Intuition/
|
001 How Do Self-Organizing Maps Work Understanding SOM in Deep Learning.mp4
|
10.0 MB
|
001 How Do Self-Organizing Maps Work Understanding SOM in Deep Learning.srt
|
5.4 KB
|
002 Self-Organizing Maps --(SOM--) Unsupervised Deep Learning for Dimensionality Reduct.mp4
|
34.1 MB
|
002 Self-Organizing Maps --(SOM--) Unsupervised Deep Learning for Dimensionality Reduct.srt
|
15.2 KB
|
003 Why K-Means Clustering is Essential for Understanding Self-Organizing Maps.mp4
|
7.5 MB
|
003 Why K-Means Clustering is Essential for Understanding Self-Organizing Maps.srt
|
4.0 KB
|
004 Self-Organizing Maps Tutorial Dimensionality Reduction in Machine Learning.mp4
|
56.4 MB
|
004 Self-Organizing Maps Tutorial Dimensionality Reduction in Machine Learning.srt
|
26.7 KB
|
005 How Self-Organizing Maps --(SOMs--) Learn Unsupervised Deep Learning Explained.mp4
|
40.8 MB
|
005 How Self-Organizing Maps --(SOMs--) Learn Unsupervised Deep Learning Explained.srt
|
25.4 KB
|
006 How to Create a Self-Organizing Map --(SOM--) in DL Step-by-Step Tutorial.mp4
|
26.6 MB
|
006 How to Create a Self-Organizing Map --(SOM--) in DL Step-by-Step Tutorial.srt
|
16.8 KB
|
007 Interpreting SOM Clusters Unsupervised Learning Techniques for Data Analysis.mp4
|
17.8 MB
|
007 Interpreting SOM Clusters Unsupervised Learning Techniques for Data Analysis.srt
|
7.8 KB
|
008 Understanding K-Means Clustering Intuitive Explanation with Visual Examples.mp4
|
57.3 MB
|
008 Understanding K-Means Clustering Intuitive Explanation with Visual Examples.srt
|
25.0 KB
|
009 K-Means Clustering Avoiding the Random Initialization Trap in Machine Learning.mp4
|
31.1 MB
|
009 K-Means Clustering Avoiding the Random Initialization Trap in Machine Learning.srt
|
14.4 KB
|
010 How to Find the Optimal Number of Clusters in K-Means WCSS and Elbow Method.mp4
|
45.3 MB
|
010 How to Find the Optimal Number of Clusters in K-Means WCSS and Elbow Method.srt
|
20.9 KB
|
/14 - Building a SOM/
|
001 Get the code and dataset ready.html
|
4.5 KB
|
002 Step 1 - Implementing Self-Organizing Maps --(SOMs--) for Fraud Detection in Python.mp4
|
54.5 MB
|
002 Step 1 - Implementing Self-Organizing Maps --(SOMs--) for Fraud Detection in Python.srt
|
28.4 KB
|
003 Step 2 - SOM Weight Initialization and Training Tutorial for Anomaly Detection.mp4
|
38.4 MB
|
003 Step 2 - SOM Weight Initialization and Training Tutorial for Anomaly Detection.srt
|
16.4 KB
|
004 Step 3 - SOM Visualization Techniques Colorbar --& Markers for Outlier Detection.mp4
|
67.4 MB
|
004 Step 3 - SOM Visualization Techniques Colorbar --& Markers for Outlier Detection.srt
|
29.9 KB
|
005 Step 4 - Catching Cheaters with SOMs Mapping Winning Nodes to Customer Data.mp4
|
47.0 MB
|
005 Step 4 - Catching Cheaters with SOMs Mapping Winning Nodes to Customer Data.srt
|
22.3 KB
|
Course updated jan 2025.txt
|
0.0 KB
|
Direct Download.txt
|
0.0 KB
|
/15 - Mega Case Study/
|
001 Get the code and dataset ready.html
|
4.5 KB
|
002 Step 1 - Building a Hybrid Deep Learning Model for Credit Card Fraud Detection.mp4
|
11.3 MB
|
002 Step 1 - Building a Hybrid Deep Learning Model for Credit Card Fraud Detection.srt
|
5.3 KB
|
003 Step 2 - Developing a Fraud Detection System Using Self-Organizing Maps.mp4
|
18.6 MB
|
003 Step 2 - Developing a Fraud Detection System Using Self-Organizing Maps.srt
|
7.6 KB
|
004 Step 3 - Building a Hybrid Model From Unsupervised to Supervised Deep Learning.mp4
|
58.4 MB
|
004 Step 3 - Building a Hybrid Model From Unsupervised to Supervised Deep Learning.srt
|
30.9 KB
|
005 Step 4 - Implementing Fraud Detection with SOM A Deep Learning Approach.mp4
|
37.1 MB
|
005 Step 4 - Implementing Fraud Detection with SOM A Deep Learning Approach.srt
|
19.4 KB
|
/16 - ------------------------- Part 5 - Boltzmann Machines -------------------------/
|
001 Welcome to Part 5 - Boltzmann Machines.html
|
3.7 KB
|
/17 - Boltzmann Machine Intuition/
|
001 Understanding Boltzmann Machines Deep Learning Fundamentals for AI Enthusiasts.mp4
|
6.8 MB
|
001 Understanding Boltzmann Machines Deep Learning Fundamentals for AI Enthusiasts.srt
|
4.7 KB
|
002 Boltzmann Machines vs. Neural Networks Key Differences in Deep Learning.mp4
|
57.1 MB
|
002 Boltzmann Machines vs. Neural Networks Key Differences in Deep Learning.srt
|
24.9 KB
|
003 Deep Learning Fundamentals Energy-Based Models --& Their Role in Neural Networks.mp4
|
42.4 MB
|
003 Deep Learning Fundamentals Energy-Based Models --& Their Role in Neural Networks.srt
|
18.3 KB
|
004 How to Edit Wikipedia Adding Boltzmann Distribution in Deep Learning.mp4
|
14.0 MB
|
004 How to Edit Wikipedia Adding Boltzmann Distribution in Deep Learning.srt
|
6.6 KB
|
005 How Restricted Boltzmann Machines Work Deep Learning for Recommender Systems.mp4
|
49.9 MB
|
005 How Restricted Boltzmann Machines Work Deep Learning for Recommender Systems.srt
|
32.3 KB
|
006 How Energy-Based Models Work Deep Dive into Contrastive Divergence Algorithm.mp4
|
62.1 MB
|
006 How Energy-Based Models Work Deep Dive into Contrastive Divergence Algorithm.srt
|
29.6 KB
|
007 Deep Belief Networks Understanding RBM Stacking in Deep Learning Models.mp4
|
21.5 MB
|
007 Deep Belief Networks Understanding RBM Stacking in Deep Learning Models.srt
|
9.0 KB
|
008 Deep Boltzmann Machines vs Deep Belief Networks Key Differences Explained.mp4
|
11.7 MB
|
008 Deep Boltzmann Machines vs Deep Belief Networks Key Differences Explained.srt
|
5.1 KB
|
Course updated jan 2025.txt
|
0.0 KB
|
Direct Download.txt
|
0.0 KB
|
/18 - Building a Boltzmann Machine/
|
001 Get the code and dataset ready.html
|
4.9 KB
|
002 Step 0 - Building a Movie Recommender System with RBMs Data Preprocessing Guide.mp4
|
36.5 MB
|
002 Step 0 - Building a Movie Recommender System with RBMs Data Preprocessing Guide.srt
|
17.1 KB
|
003 Same Data Preprocessing in Parts 5 and 6.html
|
2.7 KB
|
004 Step 1 - Importing Movie Datasets for RBM-Based Recommender Systems in Python.mp4
|
36.8 MB
|
004 Step 1 - Importing Movie Datasets for RBM-Based Recommender Systems in Python.srt
|
16.3 KB
|
005 Step 2 - Preparing Training and Test Sets for Restricted Boltzmann Machine.mp4
|
38.5 MB
|
005 Step 2 - Preparing Training and Test Sets for Restricted Boltzmann Machine.srt
|
16.6 KB
|
006 Step 3 - Preparing Data for RBM Calculating Total Users and Movies in Python.mp4
|
33.4 MB
|
006 Step 3 - Preparing Data for RBM Calculating Total Users and Movies in Python.srt
|
16.8 KB
|
007 Step 4 - Convert Training --& Test Sets to RBM-Ready Arrays in Python.mp4
|
83.2 MB
|
007 Step 4 - Convert Training --& Test Sets to RBM-Ready Arrays in Python.srt
|
36.0 KB
|
008 Step 5 - Converting NumPy Arrays to PyTorch Tensors for Deep Learning Models.mp4
|
20.3 MB
|
008 Step 5 - Converting NumPy Arrays to PyTorch Tensors for Deep Learning Models.srt
|
9.1 KB
|
009 Step 6 - RBM Data Preprocessing Transforming Movie Ratings for Neural Networks.mp4
|
30.5 MB
|
009 Step 6 - RBM Data Preprocessing Transforming Movie Ratings for Neural Networks.srt
|
13.3 KB
|
010 Step 7 - Implementing Restricted Boltzmann Machine Class Structure in PyTorch.mp4
|
40.8 MB
|
010 Step 7 - Implementing Restricted Boltzmann Machine Class Structure in PyTorch.srt
|
18.1 KB
|
011 Step 8 - RBM Hidden Layer Sampling Bernoulli Distribution in PyTorch Tutorial.mp4
|
50.7 MB
|
011 Step 8 - RBM Hidden Layer Sampling Bernoulli Distribution in PyTorch Tutorial.srt
|
24.7 KB
|
012 Step 9 - RBM Visible Node Sampling Bernoulli Distribution in Deep Learning.mp4
|
25.0 MB
|
012 Step 9 - RBM Visible Node Sampling Bernoulli Distribution in Deep Learning.srt
|
10.9 KB
|
013 Step 10 - RBM Training Function Updating Weights and Biases with Gibbs Sampling.mp4
|
46.5 MB
|
013 Step 10 - RBM Training Function Updating Weights and Biases with Gibbs Sampling.srt
|
19.4 KB
|
014 Step 11 - How to Set Up an RBM Model Choosing NV, NH, and Batch Size Parameters.mp4
|
28.3 MB
|
014 Step 11 - How to Set Up an RBM Model Choosing NV, NH, and Batch Size Parameters.srt
|
11.9 KB
|
015 Step 12 - RBM Training Loop Epoch Setup and Loss Function Implementation.mp4
|
53.5 MB
|
015 Step 12 - RBM Training Loop Epoch Setup and Loss Function Implementation.srt
|
21.8 KB
|
016 Step 13 - RBM Training Updating Weights and Biases with Contrastive Divergence.mp4
|
77.3 MB
|
016 Step 13 - RBM Training Updating Weights and Biases with Contrastive Divergence.srt
|
30.6 KB
|
017 Step 14 - Optimizing RBM Models From Training to Test Set Performance Analysis.mp4
|
68.3 MB
|
017 Step 14 - Optimizing RBM Models From Training to Test Set Performance Analysis.srt
|
30.2 KB
|
018 Evaluating the Boltzmann Machine.html
|
6.2 KB
|
/19 - ---------------------------- Part 6 - AutoEncoders ----------------------------/
|
001 Welcome to Part 6 - AutoEncoders.html
|
3.2 KB
|
Course updated jan 2025.txt
|
0.0 KB
|
Direct Download.txt
|
0.0 KB
|
/20 - AutoEncoders Intuition/
|
001 Deep Learning Autoencoders Types, Architecture, and Training Explained.mp4
|
8.7 MB
|
001 Deep Learning Autoencoders Types, Architecture, and Training Explained.srt
|
3.9 KB
|
002 Autoencoders in Machine Learning Applications and Architecture Overview.mp4
|
26.9 MB
|
002 Autoencoders in Machine Learning Applications and Architecture Overview.srt
|
19.9 KB
|
003 Autoencoder Bias in Deep Learning Improving Neural Network Performance.mp4
|
5.0 MB
|
003 Autoencoder Bias in Deep Learning Improving Neural Network Performance.srt
|
2.4 KB
|
004 How to Train an Autoencoder Step-by-Step Guide for Deep Learning Beginners.mp4
|
24.6 MB
|
004 How to Train an Autoencoder Step-by-Step Guide for Deep Learning Beginners.srt
|
11.5 KB
|
005 How to Use Overcomplete Hidden Layers in Autoencoders for Feature Extraction.mp4
|
15.5 MB
|
005 How to Use Overcomplete Hidden Layers in Autoencoders for Feature Extraction.srt
|
6.7 KB
|
006 Sparse Autoencoders in Deep Learning Preventing Overfitting in Neural Networks.mp4
|
24.8 MB
|
006 Sparse Autoencoders in Deep Learning Preventing Overfitting in Neural Networks.srt
|
10.4 KB
|
007 Denoising Autoencoders Deep Learning Regularization Technique Explained.mp4
|
10.1 MB
|
007 Denoising Autoencoders Deep Learning Regularization Technique Explained.srt
|
4.4 KB
|
008 What are Contractive Autoencoders Deep Learning Regularization Techniques.mp4
|
9.5 MB
|
008 What are Contractive Autoencoders Deep Learning Regularization Techniques.srt
|
4.0 KB
|
009 What are Stacked Autoencoders in Deep Learning Architecture and Applications.mp4
|
7.6 MB
|
009 What are Stacked Autoencoders in Deep Learning Architecture and Applications.srt
|
2.9 KB
|
010 Deep Autoencoders vs Stacked Autoencoders Key Differences in Neural Networks.mp4
|
7.4 MB
|
010 Deep Autoencoders vs Stacked Autoencoders Key Differences in Neural Networks.srt
|
3.1 KB
|
/21 - Building an AutoEncoder/
|
001 Get the code and dataset ready.html
|
4.9 KB
|
002 Same Data Preprocessing in Parts 5 and 6.html
|
2.6 KB
|
003 Step 1 - Building a Movie Recommendation System with AutoEncoders Data Import.mp4
|
43.6 MB
|
003 Step 1 - Building a Movie Recommendation System with AutoEncoders Data Import.srt
|
21.4 KB
|
004 Step 2 - Preparing Training and Test Sets for Autoencoder Recommendation System.mp4
|
42.6 MB
|
004 Step 2 - Preparing Training and Test Sets for Autoencoder Recommendation System.srt
|
20.5 KB
|
005 Step 3 - Preparing Data for Recommendation Systems User --& Movie Count in Python.mp4
|
30.3 MB
|
005 Step 3 - Preparing Data for Recommendation Systems User --& Movie Count in Python.srt
|
16.8 KB
|
006 Homework Challenge - Coding Exercise.html
|
3.9 KB
|
007 Step 4 - Prepare Data for Autoencoder Creating User-Movie Rating Matrices.mp4
|
75.7 MB
|
007 Step 4 - Prepare Data for Autoencoder Creating User-Movie Rating Matrices.srt
|
35.9 KB
|
008 Step 5 - Convert Training and Test Sets to PyTorch Tensors for Deep Learning.mp4
|
18.4 MB
|
008 Step 5 - Convert Training and Test Sets to PyTorch Tensors for Deep Learning.srt
|
9.1 KB
|
009 Step 6 - Building Autoencoder Architecture Class Creation for Neural Networks.mp4
|
61.3 MB
|
009 Step 6 - Building Autoencoder Architecture Class Creation for Neural Networks.srt
|
30.1 KB
|
010 Step 7 - Python Autoencoder Tutorial Implementing Activation Functions --& Layers.mp4
|
50.1 MB
|
010 Step 7 - Python Autoencoder Tutorial Implementing Activation Functions --& Layers.srt
|
28.1 KB
|
011 Step 8 - PyTorch Techniques for Efficient Autoencoder Training on Large Datasets.mp4
|
54.4 MB
|
011 Step 8 - PyTorch Techniques for Efficient Autoencoder Training on Large Datasets.srt
|
32.8 KB
|
012 Step 9 - Implementing Stochastic Gradient Descent in Autoencoder Architecture.mp4
|
48.9 MB
|
012 Step 9 - Implementing Stochastic Gradient Descent in Autoencoder Architecture.srt
|
28.3 KB
|
013 Step 10 - Machine Learning Metrics Interpreting Loss in Autoencoder Training.mp4
|
16.0 MB
|
013 Step 10 - Machine Learning Metrics Interpreting Loss in Autoencoder Training.srt
|
8.3 KB
|
014 Step 11 - How to Evaluate Recommender System Performance Using Test Set Loss.mp4
|
42.1 MB
|
014 Step 11 - How to Evaluate Recommender System Performance Using Test Set Loss.srt
|
20.8 KB
|
015 THANK YOU Video.mp4
|
9.6 MB
|
015 THANK YOU Video.srt
|
2.9 KB
|
/22 - ------------------- Annex - Get the Machine Learning Basics -------------------/
|
001 Annex - Get the Machine Learning Basics.html
|
3.2 KB
|
/23 - Regression & Classification Intuition/
|
001 What You Need for Regression & Classification.html
|
2.6 KB
|
002 Simple Linear Regression Understanding Y = B0 + B1X in Machine Learning.mp4
|
17.1 MB
|
002 Simple Linear Regression Understanding Y = B0 + B1X in Machine Learning.srt
|
9.8 KB
|
003 Linear Regression Explained Finding the Best Fitting Line for Data Analysis.mp4
|
11.4 MB
|
003 Linear Regression Explained Finding the Best Fitting Line for Data Analysis.srt
|
5.1 KB
|
004 Multiple Linear Regression - Understanding Dependent --& Independent Variables.mp4
|
3.5 MB
|
004 Multiple Linear Regression - Understanding Dependent --& Independent Variables.srt
|
1.7 KB
|
005 Understanding Logistic Regression Intuition and Probability in Classification.mp4
|
60.8 MB
|
005 Understanding Logistic Regression Intuition and Probability in Classification.srt
|
29.0 KB
|
/24 - Data Preprocessing/
|
001 Data Preprocessing.html
|
2.8 KB
|
002 How to Scale Features in Machine Learning Normalization vs Standardization.mp4
|
5.5 MB
|
002 How to Scale Features in Machine Learning Normalization vs Standardization.srt
|
2.8 KB
|
003 Machine Learning Basics Using Train-Test Split to Evaluate Model Performance.mp4
|
7.4 MB
|
003 Machine Learning Basics Using Train-Test Split to Evaluate Model Performance.srt
|
3.4 KB
|
004 Machine Learning Workflow Data Splitting, Feature Scaling, and Model Training.mp4
|
17.3 MB
|
004 Machine Learning Workflow Data Splitting, Feature Scaling, and Model Training.srt
|
11.0 KB
|
/25 - Data Preprocessing in Python/
|
001 Step 1 - Data Preprocessing in Python Essential Tools for ML Models.mp4
|
19.3 MB
|
001 Step 1 - Data Preprocessing in Python Essential Tools for ML Models.srt
|
9.2 KB
|
002 Step 2 - How to Handle Missing Data in Python Data Preprocessing Techniques.mp4
|
19.3 MB
|
002 Step 2 - How to Handle Missing Data in Python Data Preprocessing Techniques.srt
|
11.7 KB
|
003 Step 1 - Importing Essential Python Libraries for Data Preprocessing --& Analysis.mp4
|
12.8 MB
|
003 Step 1 - Importing Essential Python Libraries for Data Preprocessing --& Analysis.srt
|
6.4 KB
|
004 Step 1 - Creating a DataFrame from CSV Python Data Preprocessing Basics.mp4
|
18.8 MB
|
004 Step 1 - Creating a DataFrame from CSV Python Data Preprocessing Basics.srt
|
9.0 KB
|
005 Step 2 - Pandas DataFrame Indexing Building Feature Matrix X with iloc Method.mp4
|
17.0 MB
|
005 Step 2 - Pandas DataFrame Indexing Building Feature Matrix X with iloc Method.srt
|
8.2 KB
|
006 Step 3 - Preprocessing Data Extracting Features and Target Variables in Python.mp4
|
20.8 MB
|
006 Step 3 - Preprocessing Data Extracting Features and Target Variables in Python.srt
|
10.3 KB
|
007 For Python learners, summary of Object-oriented programming classes & objects.html
|
3.8 KB
|
008 Step 1 - Handling Missing Data in Python SimpleImputer for Data Preprocessing.mp4
|
21.4 MB
|
008 Step 1 - Handling Missing Data in Python SimpleImputer for Data Preprocessing.srt
|
10.0 KB
|
009 Step 2 - Preprocessing Datasets Fit and Transform to Handle Missing Values.mp4
|
21.5 MB
|
009 Step 2 - Preprocessing Datasets Fit and Transform to Handle Missing Values.srt
|
9.7 KB
|
010 Step 1 - Preprocessing Categorical Variables One-Hot Encoding in Python.mp4
|
15.9 MB
|
010 Step 1 - Preprocessing Categorical Variables One-Hot Encoding in Python.srt
|
7.2 KB
|
011 Step 2 - Using fit_transform Method for Efficient Data Preprocessing in Python.mp4
|
21.3 MB
|
011 Step 2 - Using fit_transform Method for Efficient Data Preprocessing in Python.srt
|
10.3 KB
|
012 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.mp4
|
16.8 MB
|
012 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.srt
|
7.9 KB
|
013 Step 1 - Machine Learning Data Prep Splitting Dataset Before Feature Scaling.mp4
|
14.1 MB
|
013 Step 1 - Machine Learning Data Prep Splitting Dataset Before Feature Scaling.srt
|
6.4 KB
|
014 Step 2 - Split Data into Train --& Test Sets with Scikit-learn--'s train_test_split.mp4
|
21.6 MB
|
014 Step 2 - Split Data into Train --& Test Sets with Scikit-learn--'s train_test_split.srt
|
10.1 KB
|
015 Step 3 - Preparing Data for ML Splitting Datasets with Python and Scikit-learn.mp4
|
14.0 MB
|
015 Step 3 - Preparing Data for ML Splitting Datasets with Python and Scikit-learn.srt
|
6.2 KB
|
016 Step 1 - How to Apply Feature Scaling for Preprocessing Machine Learning Data.mp4
|
21.4 MB
|
016 Step 1 - How to Apply Feature Scaling for Preprocessing Machine Learning Data.srt
|
10.3 KB
|
017 Step 2 - Feature Scaling in Machine Learning When to Apply StandardScaler.mp4
|
17.1 MB
|
017 Step 2 - Feature Scaling in Machine Learning When to Apply StandardScaler.srt
|
8.1 KB
|
018 Step 3 - Normalizing Data with Fit and Transform Methods in Scikit-learn.mp4
|
13.7 MB
|
018 Step 3 - Normalizing Data with Fit and Transform Methods in Scikit-learn.srt
|
6.4 KB
|
019 Step 4 - How to Apply Feature Scaling to Training --& Test Sets in ML.mp4
|
21.2 MB
|
019 Step 4 - How to Apply Feature Scaling to Training --& Test Sets in ML.srt
|
10.3 KB
|
/26 - Logistic Regression/
|
001 Understanding the Logistic Regression Equation A Step-by-Step Guide.mp4
|
17.7 MB
|
001 Understanding the Logistic Regression Equation A Step-by-Step Guide.srt
|
8.3 KB
|
002 How to Calculate Maximum Likelihood in Logistic Regression Step-by-Step Guide.mp4
|
10.1 MB
|
002 How to Calculate Maximum Likelihood in Logistic Regression Step-by-Step Guide.srt
|
6.2 KB
|
003 Step 1a - Machine Learning Classification Logistic Regression in Python.mp4
|
20.6 MB
|
003 Step 1a - Machine Learning Classification Logistic Regression in Python.srt
|
9.3 KB
|
004 Step 1b - Logistic Regression Analysis Importing Libraries and Splitting Data.mp4
|
14.4 MB
|
004 Step 1b - Logistic Regression Analysis Importing Libraries and Splitting Data.srt
|
7.2 KB
|
005 Step 2a - Data Preprocessing for Logistic Regression Importing and Splitting.mp4
|
21.1 MB
|
005 Step 2a - Data Preprocessing for Logistic Regression Importing and Splitting.srt
|
10.2 KB
|
006 Step 2b - Data Preprocessing Feature Scaling for Machine Learning in Python.mp4
|
21.5 MB
|
006 Step 2b - Data Preprocessing Feature Scaling for Machine Learning in Python.srt
|
10.3 KB
|
007 Step 3a - Implementing Logistic Regression for Classification with Scikit-Learn.mp4
|
14.3 MB
|
007 Step 3a - Implementing Logistic Regression for Classification with Scikit-Learn.srt
|
6.8 KB
|
008 Step 3b - Predicting Purchase Decisions with Logistic Regression in Python.mp4
|
12.6 MB
|
008 Step 3b - Predicting Purchase Decisions with Logistic Regression in Python.srt
|
5.7 KB
|
009 Step 4a - Using Classifier Objects to Make Predictions in Machine Learning.mp4
|
21.6 MB
|
009 Step 4a - Using Classifier Objects to Make Predictions in Machine Learning.srt
|
9.4 KB
|
010 Step 4b - Evaluating Logistic Regression Model Predicted vs Real Outcomes.mp4
|
6.6 MB
|
010 Step 4b - Evaluating Logistic Regression Model Predicted vs Real Outcomes.srt
|
3.2 KB
|
011 Step 5 - Evaluating Machine Learning Models Confusion Matrix and Accuracy.mp4
|
21.4 MB
|
011 Step 5 - Evaluating Machine Learning Models Confusion Matrix and Accuracy.srt
|
12.5 KB
|
012 Step 6a - Creating a Confusion Matrix for Machine Learning Model Evaluation.mp4
|
21.2 MB
|
012 Step 6a - Creating a Confusion Matrix for Machine Learning Model Evaluation.srt
|
10.2 KB
|
013 Step 6b - Visualizing Machine Learning Results Training vs Test Set Comparison.mp4
|
12.0 MB
|
013 Step 6b - Visualizing Machine Learning Results Training vs Test Set Comparison.srt
|
5.8 KB
|
014 Step 7a - Visualizing Logistic Regression 2D Plots for Classification Models.mp4
|
21.3 MB
|
014 Step 7a - Visualizing Logistic Regression 2D Plots for Classification Models.srt
|
9.4 KB
|
015 Step 7b - Visualizing Logistic Regression Interpreting Classification Results.mp4
|
13.5 MB
|
015 Step 7b - Visualizing Logistic Regression Interpreting Classification Results.srt
|
6.2 KB
|
016 Step 7c - Visualizing Test Results Assessing Machine Learning Model Accuracy.mp4
|
12.0 MB
|
016 Step 7c - Visualizing Test Results Assessing Machine Learning Model Accuracy.srt
|
5.5 KB
|
017 Logistic Regression in Python - Step 7 (Colour-blind friendly image).html
|
3.0 KB
|
018 Machine Learning Regression and Classification EXTRA.html
|
3.1 KB
|
019 EXTRA CONTENT Logistic Regression Practical Case Study.html
|
2.9 KB
|
Course updated jan 2025.txt
|
0.0 KB
|
Direct Download.txt
|
0.0 KB
|
/27 - Congratulations!! Don't forget your Prize )/
|
001 Huge Congrats for completing the challenge!.html
|
7.2 KB
|
002 Bonus How To UNLOCK Top Salaries (Live Training).html
|
4.1 KB
|
Course updated jan 2025.txt
|
0.0 KB
|
Direct Download.txt
|
0.0 KB
|
Total files 359
|