FileMood

Download Deep-Learning-A-Z-Jan-2025-udemy

Deep Learning Jan 2025 udemy

Name

Deep-Learning-A-Z-Jan-2025-udemy

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

5.0 GB

Total Files

359

Last Seen

2025-07-18 00:06

Hash

F40D359139D1B8CD941ACE3CFDAE5F090612E963

/07 - Building a CNN/

007 Develop an Image Recognition System Using Convolutional Neural Networks.mp4

91.4 MB

001 Get the code and dataset ready.html

3.9 KB

002 Step 1 - Convolutional Neural Networks Explained Image Classification Tutorial.mp4

29.2 MB

002 Step 1 - Convolutional Neural Networks Explained Image Classification Tutorial.srt

13.9 KB

003 Step 2 - Deep Learning Preprocessing Scaling --& Transforming Images for CNNs.mp4

70.7 MB

003 Step 2 - Deep Learning Preprocessing Scaling --& Transforming Images for CNNs.srt

31.3 KB

004 Step 3 - Building CNN Architecture Convolutional Layers --& Max Pooling Explained.mp4

71.3 MB

004 Step 3 - Building CNN Architecture Convolutional Layers --& Max Pooling Explained.srt

37.5 KB

005 Step 4 - Train CNN for Image Classification Optimize with Keras --& TensorFlow.mp4

29.3 MB

005 Step 4 - Train CNN for Image Classification Optimize with Keras --& TensorFlow.srt

12.6 KB

006 Step 5 - Deploying a CNN for Real-World Image Recognition.mp4

59.4 MB

006 Step 5 - Deploying a CNN for Real-World Image Recognition.srt

30.2 KB

007 Develop an Image Recognition System Using Convolutional Neural Networks.srt

37.4 KB

Course updated jan 2025.txt

0.0 KB

Direct Download.txt

0.0 KB

/

Direct Download.txt

0.0 KB

Course updated jan 2025.txt

0.0 KB

/01 - Welcome to the course!/

001 Welcome Challenge!.html

5.9 KB

002 Introduction to Deep Learning From Historical Context to Modern Applications.mp4

36.3 MB

002 Introduction to Deep Learning From Historical Context to Modern Applications.srt

21.8 KB

003 Get the codes, datasets and slides here.html

2.8 KB

004 EXTRA Use ChatGPT to Boost your Deep Learning Skills.html

3.3 KB

Course updated jan 2025.txt

0.0 KB

Direct Download.txt

0.0 KB

/02 - --------------------- Part 1 - Artificial Neural Networks ---------------------/

001 Welcome to Part 1 - Artificial Neural Networks.html

2.6 KB

/03 - ANN Intuition/

001 What You'll Need for ANN.html

2.6 KB

002 How Neural Networks Learn Gradient Descent and Backpropagation Explained.mp4

8.5 MB

002 How Neural Networks Learn Gradient Descent and Backpropagation Explained.srt

4.6 KB

003 Understanding Neurons The Building Blocks of Artificial Neural Networks.mp4

59.4 MB

003 Understanding Neurons The Building Blocks of Artificial Neural Networks.srt

30.2 KB

004 Understanding Activation Functions in Neural Networks Sigmoid, ReLU, and More.mp4

33.0 MB

004 Understanding Activation Functions in Neural Networks Sigmoid, ReLU, and More.srt

14.5 KB

005 How Do Neural Networks Work Step-by-Step Guide to Property Valuation Example.mp4

31.1 MB

005 How Do Neural Networks Work Step-by-Step Guide to Property Valuation Example.srt

23.5 KB

006 How Do Neural Networks Learn Understanding Backpropagation and Cost Functions.mp4

51.6 MB

006 How Do Neural Networks Learn Understanding Backpropagation and Cost Functions.srt

22.3 KB

007 Mastering Gradient Descent Key to Efficient Neural Network Training.mp4

35.9 MB

007 Mastering Gradient Descent Key to Efficient Neural Network Training.srt

18.0 KB

008 How to Use Stochastic Gradient Descent for Deep Learning Optimization.mp4

34.8 MB

008 How to Use Stochastic Gradient Descent for Deep Learning Optimization.srt

15.2 KB

009 Understanding Backpropagation Algorithm Key to Optimizing Deep Learning Models.mp4

21.3 MB

009 Understanding Backpropagation Algorithm Key to Optimizing Deep Learning Models.srt

8.8 KB

/04 - Building an ANN/

001 Get the code and dataset ready.html

4.1 KB

002 Step 1 - Data Preprocessing for Deep Learning Preparing Neural Network Dataset.mp4

38.1 MB

002 Step 1 - Data Preprocessing for Deep Learning Preparing Neural Network Dataset.srt

19.2 KB

003 Check out our free course on ANN for Regression.html

2.8 KB

004 Step 2 - Data Preprocessing for Neural Networks Essential Steps and Techniques.mp4

72.5 MB

004 Step 2 - Data Preprocessing for Neural Networks Essential Steps and Techniques.srt

31.6 KB

005 Step 3 - Constructing an Artificial Neural Network Adding Input --& Hidden Layers.mp4

57.5 MB

005 Step 3 - Constructing an Artificial Neural Network Adding Input --& Hidden Layers.srt

25.1 KB

006 Step 4 - Compile and Train Neural Network Optimizers, Loss Functions --& Metrics.mp4

47.6 MB

006 Step 4 - Compile and Train Neural Network Optimizers, Loss Functions --& Metrics.srt

20.8 KB

007 Step 5 - How to Make Predictions and Evaluate Neural Network Model in Python.mp4

64.6 MB

007 Step 5 - How to Make Predictions and Evaluate Neural Network Model in Python.srt

27.2 KB

/05 - -------------------- Part 2 - Convolutional Neural Networks --------------------/

001 Welcome to Part 2 - Convolutional Neural Networks.html

2.6 KB

/06 - CNN Intuition/

001 What You'll Need for CNN.html

2.6 KB

002 Understanding CNN Architecture From Convolution to Fully Connected Layers.mp4

11.2 MB

002 Understanding CNN Architecture From Convolution to Fully Connected Layers.srt

6.2 KB

003 How Do Convolutional Neural Networks Work Understanding CNN Architecture.mp4

57.6 MB

003 How Do Convolutional Neural Networks Work Understanding CNN Architecture.srt

27.0 KB

004 How to Apply Convolution Filters in Neural Networks Feature Detection Explained.mp4

46.6 MB

004 How to Apply Convolution Filters in Neural Networks Feature Detection Explained.srt

28.7 KB

005 Rectified Linear Units --(ReLU--) in Deep Learning Optimizing CNN Performance.mp4

26.4 MB

005 Rectified Linear Units --(ReLU--) in Deep Learning Optimizing CNN Performance.srt

11.2 KB

006 Understanding Spatial Invariance in CNNs Max Pooling Explained for Beginners.mp4

58.4 MB

006 Understanding Spatial Invariance in CNNs Max Pooling Explained for Beginners.srt

25.9 KB

007 How to Flatten Pooled Feature Maps in Convolutional Neural Networks --(CNNs--).mp4

6.4 MB

007 How to Flatten Pooled Feature Maps in Convolutional Neural Networks --(CNNs--).srt

3.3 KB

008 How Do Fully Connected Layers Work in Convolutional Neural Networks --(CNNs--).mp4

55.3 MB

008 How Do Fully Connected Layers Work in Convolutional Neural Networks --(CNNs--).srt

38.4 KB

009 CNN Building Blocks Feature Maps, ReLU, Pooling, and Fully Connected Layers.mp4

17.2 MB

009 CNN Building Blocks Feature Maps, ReLU, Pooling, and Fully Connected Layers.srt

7.0 KB

010 Understanding Softmax Activation and Cross-Entropy Loss in Deep Learning.mp4

70.6 MB

010 Understanding Softmax Activation and Cross-Entropy Loss in Deep Learning.srt

32.8 KB

/08 - ---------------------- Part 3 - Recurrent Neural Networks ----------------------/

001 Welcome to Part 3 - Recurrent Neural Networks.html

2.8 KB

/09 - RNN Intuition/

001 What You'll Need for RNN.html

2.6 KB

002 How Do Recurrent Neural Networks --(RNNs--) Work Deep Learning Explained.mp4

7.2 MB

002 How Do Recurrent Neural Networks --(RNNs--) Work Deep Learning Explained.srt

4.1 KB

003 What is a Recurrent Neural Network --(RNN--) Deep Learning for Sequential Data.mp4

45.7 MB

003 What is a Recurrent Neural Network --(RNN--) Deep Learning for Sequential Data.srt

28.6 KB

004 Understanding the Vanishing Gradient Problem in Recurrent Neural Networks --(RNNs--).mp4

57.6 MB

004 Understanding the Vanishing Gradient Problem in Recurrent Neural Networks --(RNNs--).srt

27.2 KB

005 Understanding Long Short-Term Memory --(LSTM--) Architecture for Deep Learning.mp4

78.7 MB

005 Understanding Long Short-Term Memory --(LSTM--) Architecture for Deep Learning.srt

34.4 KB

006 How LSTMs Work in Practice Visualizing Neural Network Predictions.mp4

67.2 MB

006 How LSTMs Work in Practice Visualizing Neural Network Predictions.srt

25.5 KB

007 LSTM Variations Peepholes, Combined Gates, and GRUs in Deep Learning.mp4

14.4 MB

007 LSTM Variations Peepholes, Combined Gates, and GRUs in Deep Learning.srt

6.0 KB

/10 - Building a RNN/

001 Get the code and dataset ready.html

4.6 KB

002 Step 1 - Building a Robust LSTM Neural Network for Stock Price Trend Prediction.mp4

25.8 MB

002 Step 1 - Building a Robust LSTM Neural Network for Stock Price Trend Prediction.srt

13.1 KB

003 Step 2 - Importing Training Data for LSTM Stock Price Prediction Model.mp4

28.1 MB

003 Step 2 - Importing Training Data for LSTM Stock Price Prediction Model.srt

11.5 KB

004 Step 3 - Applying Min-Max Normalization for Time Series Data in Neural Networks.mp4

23.7 MB

004 Step 3 - Applying Min-Max Normalization for Time Series Data in Neural Networks.srt

9.7 KB

005 Step 4 - Building X_train and y_train Arrays for LSTM Time Series Forecasting.mp4

60.6 MB

005 Step 4 - Building X_train and y_train Arrays for LSTM Time Series Forecasting.srt

24.9 KB

006 Step 5 - Preparing Time Series Data for LSTM Neural Network in Stock Forecasting.mp4

43.4 MB

006 Step 5 - Preparing Time Series Data for LSTM Neural Network in Stock Forecasting.srt

20.4 KB

007 Step 6 - Create RNN Architecture Sequential Layers vs Computational Graphs.mp4

11.3 MB

007 Step 6 - Create RNN Architecture Sequential Layers vs Computational Graphs.srt

4.8 KB

008 Step 7 - Adding First LSTM Layer Key Components for Stock Market Prediction.mp4

34.7 MB

008 Step 7 - Adding First LSTM Layer Key Components for Stock Market Prediction.srt

14.5 KB

009 Step 8 - Implementing Dropout Regularization in LSTM Networks for Forecasting.mp4

21.2 MB

009 Step 8 - Implementing Dropout Regularization in LSTM Networks for Forecasting.srt

8.7 KB

010 Step 9 - Finalizing RNN Architecture Dense Layer for Stock Price Forecasting.mp4

13.3 MB

010 Step 9 - Finalizing RNN Architecture Dense Layer for Stock Price Forecasting.srt

5.5 KB

011 Step 10 - Compile RNN with Adam Optimizer for Stock Price Prediction in Python.mp4

17.4 MB

011 Step 10 - Compile RNN with Adam Optimizer for Stock Price Prediction in Python.srt

7.2 KB

012 Step 11 - Optimizing Epochs and Batch Size for LSTM Stock Price Forecasting.mp4

43.5 MB

012 Step 11 - Optimizing Epochs and Batch Size for LSTM Stock Price Forecasting.srt

14.6 KB

013 Step 12 - Visualizing LSTM Predictions Real vs Forecasted Google Stock Prices.mp4

22.3 MB

013 Step 12 - Visualizing LSTM Predictions Real vs Forecasted Google Stock Prices.srt

8.6 KB

014 Step 13 - Preparing Historical Stock Data for LSTM Model Scaling and Reshaping.mp4

67.2 MB

014 Step 13 - Preparing Historical Stock Data for LSTM Model Scaling and Reshaping.srt

26.3 KB

015 Step 14 - Creating 3D Input Structure for LSTM Stock Price Prediction in Python.mp4

33.2 MB

015 Step 14 - Creating 3D Input Structure for LSTM Stock Price Prediction in Python.srt

13.0 KB

016 Step 15 - Visualizing LSTM Predictions Plotting Real vs Predicted Stock Prices.mp4

36.0 MB

016 Step 15 - Visualizing LSTM Predictions Plotting Real vs Predicted Stock Prices.srt

15.6 KB

/11 - Evaluating and Improving the RNN/

001 Evaluating the RNN.html

4.1 KB

002 Improving the RNN.html

3.6 KB

/12 - ------------------------ Part 4 - Self Organizing Maps ------------------------/

001 Welcome to Part 4 - Self Organizing Maps.html

2.7 KB

/13 - SOMs Intuition/

001 How Do Self-Organizing Maps Work Understanding SOM in Deep Learning.mp4

10.0 MB

001 How Do Self-Organizing Maps Work Understanding SOM in Deep Learning.srt

5.4 KB

002 Self-Organizing Maps --(SOM--) Unsupervised Deep Learning for Dimensionality Reduct.mp4

34.1 MB

002 Self-Organizing Maps --(SOM--) Unsupervised Deep Learning for Dimensionality Reduct.srt

15.2 KB

003 Why K-Means Clustering is Essential for Understanding Self-Organizing Maps.mp4

7.5 MB

003 Why K-Means Clustering is Essential for Understanding Self-Organizing Maps.srt

4.0 KB

004 Self-Organizing Maps Tutorial Dimensionality Reduction in Machine Learning.mp4

56.4 MB

004 Self-Organizing Maps Tutorial Dimensionality Reduction in Machine Learning.srt

26.7 KB

005 How Self-Organizing Maps --(SOMs--) Learn Unsupervised Deep Learning Explained.mp4

40.8 MB

005 How Self-Organizing Maps --(SOMs--) Learn Unsupervised Deep Learning Explained.srt

25.4 KB

006 How to Create a Self-Organizing Map --(SOM--) in DL Step-by-Step Tutorial.mp4

26.6 MB

006 How to Create a Self-Organizing Map --(SOM--) in DL Step-by-Step Tutorial.srt

16.8 KB

007 Interpreting SOM Clusters Unsupervised Learning Techniques for Data Analysis.mp4

17.8 MB

007 Interpreting SOM Clusters Unsupervised Learning Techniques for Data Analysis.srt

7.8 KB

008 Understanding K-Means Clustering Intuitive Explanation with Visual Examples.mp4

57.3 MB

008 Understanding K-Means Clustering Intuitive Explanation with Visual Examples.srt

25.0 KB

009 K-Means Clustering Avoiding the Random Initialization Trap in Machine Learning.mp4

31.1 MB

009 K-Means Clustering Avoiding the Random Initialization Trap in Machine Learning.srt

14.4 KB

010 How to Find the Optimal Number of Clusters in K-Means WCSS and Elbow Method.mp4

45.3 MB

010 How to Find the Optimal Number of Clusters in K-Means WCSS and Elbow Method.srt

20.9 KB

/14 - Building a SOM/

001 Get the code and dataset ready.html

4.5 KB

002 Step 1 - Implementing Self-Organizing Maps --(SOMs--) for Fraud Detection in Python.mp4

54.5 MB

002 Step 1 - Implementing Self-Organizing Maps --(SOMs--) for Fraud Detection in Python.srt

28.4 KB

003 Step 2 - SOM Weight Initialization and Training Tutorial for Anomaly Detection.mp4

38.4 MB

003 Step 2 - SOM Weight Initialization and Training Tutorial for Anomaly Detection.srt

16.4 KB

004 Step 3 - SOM Visualization Techniques Colorbar --& Markers for Outlier Detection.mp4

67.4 MB

004 Step 3 - SOM Visualization Techniques Colorbar --& Markers for Outlier Detection.srt

29.9 KB

005 Step 4 - Catching Cheaters with SOMs Mapping Winning Nodes to Customer Data.mp4

47.0 MB

005 Step 4 - Catching Cheaters with SOMs Mapping Winning Nodes to Customer Data.srt

22.3 KB

Course updated jan 2025.txt

0.0 KB

Direct Download.txt

0.0 KB

/15 - Mega Case Study/

001 Get the code and dataset ready.html

4.5 KB

002 Step 1 - Building a Hybrid Deep Learning Model for Credit Card Fraud Detection.mp4

11.3 MB

002 Step 1 - Building a Hybrid Deep Learning Model for Credit Card Fraud Detection.srt

5.3 KB

003 Step 2 - Developing a Fraud Detection System Using Self-Organizing Maps.mp4

18.6 MB

003 Step 2 - Developing a Fraud Detection System Using Self-Organizing Maps.srt

7.6 KB

004 Step 3 - Building a Hybrid Model From Unsupervised to Supervised Deep Learning.mp4

58.4 MB

004 Step 3 - Building a Hybrid Model From Unsupervised to Supervised Deep Learning.srt

30.9 KB

005 Step 4 - Implementing Fraud Detection with SOM A Deep Learning Approach.mp4

37.1 MB

005 Step 4 - Implementing Fraud Detection with SOM A Deep Learning Approach.srt

19.4 KB

/16 - ------------------------- Part 5 - Boltzmann Machines -------------------------/

001 Welcome to Part 5 - Boltzmann Machines.html

3.7 KB

/17 - Boltzmann Machine Intuition/

001 Understanding Boltzmann Machines Deep Learning Fundamentals for AI Enthusiasts.mp4

6.8 MB

001 Understanding Boltzmann Machines Deep Learning Fundamentals for AI Enthusiasts.srt

4.7 KB

002 Boltzmann Machines vs. Neural Networks Key Differences in Deep Learning.mp4

57.1 MB

002 Boltzmann Machines vs. Neural Networks Key Differences in Deep Learning.srt

24.9 KB

003 Deep Learning Fundamentals Energy-Based Models --& Their Role in Neural Networks.mp4

42.4 MB

003 Deep Learning Fundamentals Energy-Based Models --& Their Role in Neural Networks.srt

18.3 KB

004 How to Edit Wikipedia Adding Boltzmann Distribution in Deep Learning.mp4

14.0 MB

004 How to Edit Wikipedia Adding Boltzmann Distribution in Deep Learning.srt

6.6 KB

005 How Restricted Boltzmann Machines Work Deep Learning for Recommender Systems.mp4

49.9 MB

005 How Restricted Boltzmann Machines Work Deep Learning for Recommender Systems.srt

32.3 KB

006 How Energy-Based Models Work Deep Dive into Contrastive Divergence Algorithm.mp4

62.1 MB

006 How Energy-Based Models Work Deep Dive into Contrastive Divergence Algorithm.srt

29.6 KB

007 Deep Belief Networks Understanding RBM Stacking in Deep Learning Models.mp4

21.5 MB

007 Deep Belief Networks Understanding RBM Stacking in Deep Learning Models.srt

9.0 KB

008 Deep Boltzmann Machines vs Deep Belief Networks Key Differences Explained.mp4

11.7 MB

008 Deep Boltzmann Machines vs Deep Belief Networks Key Differences Explained.srt

5.1 KB

Course updated jan 2025.txt

0.0 KB

Direct Download.txt

0.0 KB

/18 - Building a Boltzmann Machine/

001 Get the code and dataset ready.html

4.9 KB

002 Step 0 - Building a Movie Recommender System with RBMs Data Preprocessing Guide.mp4

36.5 MB

002 Step 0 - Building a Movie Recommender System with RBMs Data Preprocessing Guide.srt

17.1 KB

003 Same Data Preprocessing in Parts 5 and 6.html

2.7 KB

004 Step 1 - Importing Movie Datasets for RBM-Based Recommender Systems in Python.mp4

36.8 MB

004 Step 1 - Importing Movie Datasets for RBM-Based Recommender Systems in Python.srt

16.3 KB

005 Step 2 - Preparing Training and Test Sets for Restricted Boltzmann Machine.mp4

38.5 MB

005 Step 2 - Preparing Training and Test Sets for Restricted Boltzmann Machine.srt

16.6 KB

006 Step 3 - Preparing Data for RBM Calculating Total Users and Movies in Python.mp4

33.4 MB

006 Step 3 - Preparing Data for RBM Calculating Total Users and Movies in Python.srt

16.8 KB

007 Step 4 - Convert Training --& Test Sets to RBM-Ready Arrays in Python.mp4

83.2 MB

007 Step 4 - Convert Training --& Test Sets to RBM-Ready Arrays in Python.srt

36.0 KB

008 Step 5 - Converting NumPy Arrays to PyTorch Tensors for Deep Learning Models.mp4

20.3 MB

008 Step 5 - Converting NumPy Arrays to PyTorch Tensors for Deep Learning Models.srt

9.1 KB

009 Step 6 - RBM Data Preprocessing Transforming Movie Ratings for Neural Networks.mp4

30.5 MB

009 Step 6 - RBM Data Preprocessing Transforming Movie Ratings for Neural Networks.srt

13.3 KB

010 Step 7 - Implementing Restricted Boltzmann Machine Class Structure in PyTorch.mp4

40.8 MB

010 Step 7 - Implementing Restricted Boltzmann Machine Class Structure in PyTorch.srt

18.1 KB

011 Step 8 - RBM Hidden Layer Sampling Bernoulli Distribution in PyTorch Tutorial.mp4

50.7 MB

011 Step 8 - RBM Hidden Layer Sampling Bernoulli Distribution in PyTorch Tutorial.srt

24.7 KB

012 Step 9 - RBM Visible Node Sampling Bernoulli Distribution in Deep Learning.mp4

25.0 MB

012 Step 9 - RBM Visible Node Sampling Bernoulli Distribution in Deep Learning.srt

10.9 KB

013 Step 10 - RBM Training Function Updating Weights and Biases with Gibbs Sampling.mp4

46.5 MB

013 Step 10 - RBM Training Function Updating Weights and Biases with Gibbs Sampling.srt

19.4 KB

014 Step 11 - How to Set Up an RBM Model Choosing NV, NH, and Batch Size Parameters.mp4

28.3 MB

014 Step 11 - How to Set Up an RBM Model Choosing NV, NH, and Batch Size Parameters.srt

11.9 KB

015 Step 12 - RBM Training Loop Epoch Setup and Loss Function Implementation.mp4

53.5 MB

015 Step 12 - RBM Training Loop Epoch Setup and Loss Function Implementation.srt

21.8 KB

016 Step 13 - RBM Training Updating Weights and Biases with Contrastive Divergence.mp4

77.3 MB

016 Step 13 - RBM Training Updating Weights and Biases with Contrastive Divergence.srt

30.6 KB

017 Step 14 - Optimizing RBM Models From Training to Test Set Performance Analysis.mp4

68.3 MB

017 Step 14 - Optimizing RBM Models From Training to Test Set Performance Analysis.srt

30.2 KB

018 Evaluating the Boltzmann Machine.html

6.2 KB

/19 - ---------------------------- Part 6 - AutoEncoders ----------------------------/

001 Welcome to Part 6 - AutoEncoders.html

3.2 KB

Course updated jan 2025.txt

0.0 KB

Direct Download.txt

0.0 KB

/20 - AutoEncoders Intuition/

001 Deep Learning Autoencoders Types, Architecture, and Training Explained.mp4

8.7 MB

001 Deep Learning Autoencoders Types, Architecture, and Training Explained.srt

3.9 KB

002 Autoencoders in Machine Learning Applications and Architecture Overview.mp4

26.9 MB

002 Autoencoders in Machine Learning Applications and Architecture Overview.srt

19.9 KB

003 Autoencoder Bias in Deep Learning Improving Neural Network Performance.mp4

5.0 MB

003 Autoencoder Bias in Deep Learning Improving Neural Network Performance.srt

2.4 KB

004 How to Train an Autoencoder Step-by-Step Guide for Deep Learning Beginners.mp4

24.6 MB

004 How to Train an Autoencoder Step-by-Step Guide for Deep Learning Beginners.srt

11.5 KB

005 How to Use Overcomplete Hidden Layers in Autoencoders for Feature Extraction.mp4

15.5 MB

005 How to Use Overcomplete Hidden Layers in Autoencoders for Feature Extraction.srt

6.7 KB

006 Sparse Autoencoders in Deep Learning Preventing Overfitting in Neural Networks.mp4

24.8 MB

006 Sparse Autoencoders in Deep Learning Preventing Overfitting in Neural Networks.srt

10.4 KB

007 Denoising Autoencoders Deep Learning Regularization Technique Explained.mp4

10.1 MB

007 Denoising Autoencoders Deep Learning Regularization Technique Explained.srt

4.4 KB

008 What are Contractive Autoencoders Deep Learning Regularization Techniques.mp4

9.5 MB

008 What are Contractive Autoencoders Deep Learning Regularization Techniques.srt

4.0 KB

009 What are Stacked Autoencoders in Deep Learning Architecture and Applications.mp4

7.6 MB

009 What are Stacked Autoencoders in Deep Learning Architecture and Applications.srt

2.9 KB

010 Deep Autoencoders vs Stacked Autoencoders Key Differences in Neural Networks.mp4

7.4 MB

010 Deep Autoencoders vs Stacked Autoencoders Key Differences in Neural Networks.srt

3.1 KB

/21 - Building an AutoEncoder/

001 Get the code and dataset ready.html

4.9 KB

002 Same Data Preprocessing in Parts 5 and 6.html

2.6 KB

003 Step 1 - Building a Movie Recommendation System with AutoEncoders Data Import.mp4

43.6 MB

003 Step 1 - Building a Movie Recommendation System with AutoEncoders Data Import.srt

21.4 KB

004 Step 2 - Preparing Training and Test Sets for Autoencoder Recommendation System.mp4

42.6 MB

004 Step 2 - Preparing Training and Test Sets for Autoencoder Recommendation System.srt

20.5 KB

005 Step 3 - Preparing Data for Recommendation Systems User --& Movie Count in Python.mp4

30.3 MB

005 Step 3 - Preparing Data for Recommendation Systems User --& Movie Count in Python.srt

16.8 KB

006 Homework Challenge - Coding Exercise.html

3.9 KB

007 Step 4 - Prepare Data for Autoencoder Creating User-Movie Rating Matrices.mp4

75.7 MB

007 Step 4 - Prepare Data for Autoencoder Creating User-Movie Rating Matrices.srt

35.9 KB

008 Step 5 - Convert Training and Test Sets to PyTorch Tensors for Deep Learning.mp4

18.4 MB

008 Step 5 - Convert Training and Test Sets to PyTorch Tensors for Deep Learning.srt

9.1 KB

009 Step 6 - Building Autoencoder Architecture Class Creation for Neural Networks.mp4

61.3 MB

009 Step 6 - Building Autoencoder Architecture Class Creation for Neural Networks.srt

30.1 KB

010 Step 7 - Python Autoencoder Tutorial Implementing Activation Functions --& Layers.mp4

50.1 MB

010 Step 7 - Python Autoencoder Tutorial Implementing Activation Functions --& Layers.srt

28.1 KB

011 Step 8 - PyTorch Techniques for Efficient Autoencoder Training on Large Datasets.mp4

54.4 MB

011 Step 8 - PyTorch Techniques for Efficient Autoencoder Training on Large Datasets.srt

32.8 KB

012 Step 9 - Implementing Stochastic Gradient Descent in Autoencoder Architecture.mp4

48.9 MB

012 Step 9 - Implementing Stochastic Gradient Descent in Autoencoder Architecture.srt

28.3 KB

013 Step 10 - Machine Learning Metrics Interpreting Loss in Autoencoder Training.mp4

16.0 MB

013 Step 10 - Machine Learning Metrics Interpreting Loss in Autoencoder Training.srt

8.3 KB

014 Step 11 - How to Evaluate Recommender System Performance Using Test Set Loss.mp4

42.1 MB

014 Step 11 - How to Evaluate Recommender System Performance Using Test Set Loss.srt

20.8 KB

015 THANK YOU Video.mp4

9.6 MB

015 THANK YOU Video.srt

2.9 KB

/22 - ------------------- Annex - Get the Machine Learning Basics -------------------/

001 Annex - Get the Machine Learning Basics.html

3.2 KB

/23 - Regression & Classification Intuition/

001 What You Need for Regression & Classification.html

2.6 KB

002 Simple Linear Regression Understanding Y = B0 + B1X in Machine Learning.mp4

17.1 MB

002 Simple Linear Regression Understanding Y = B0 + B1X in Machine Learning.srt

9.8 KB

003 Linear Regression Explained Finding the Best Fitting Line for Data Analysis.mp4

11.4 MB

003 Linear Regression Explained Finding the Best Fitting Line for Data Analysis.srt

5.1 KB

004 Multiple Linear Regression - Understanding Dependent --& Independent Variables.mp4

3.5 MB

004 Multiple Linear Regression - Understanding Dependent --& Independent Variables.srt

1.7 KB

005 Understanding Logistic Regression Intuition and Probability in Classification.mp4

60.8 MB

005 Understanding Logistic Regression Intuition and Probability in Classification.srt

29.0 KB

/24 - Data Preprocessing/

001 Data Preprocessing.html

2.8 KB

002 How to Scale Features in Machine Learning Normalization vs Standardization.mp4

5.5 MB

002 How to Scale Features in Machine Learning Normalization vs Standardization.srt

2.8 KB

003 Machine Learning Basics Using Train-Test Split to Evaluate Model Performance.mp4

7.4 MB

003 Machine Learning Basics Using Train-Test Split to Evaluate Model Performance.srt

3.4 KB

004 Machine Learning Workflow Data Splitting, Feature Scaling, and Model Training.mp4

17.3 MB

004 Machine Learning Workflow Data Splitting, Feature Scaling, and Model Training.srt

11.0 KB

/25 - Data Preprocessing in Python/

001 Step 1 - Data Preprocessing in Python Essential Tools for ML Models.mp4

19.3 MB

001 Step 1 - Data Preprocessing in Python Essential Tools for ML Models.srt

9.2 KB

002 Step 2 - How to Handle Missing Data in Python Data Preprocessing Techniques.mp4

19.3 MB

002 Step 2 - How to Handle Missing Data in Python Data Preprocessing Techniques.srt

11.7 KB

003 Step 1 - Importing Essential Python Libraries for Data Preprocessing --& Analysis.mp4

12.8 MB

003 Step 1 - Importing Essential Python Libraries for Data Preprocessing --& Analysis.srt

6.4 KB

004 Step 1 - Creating a DataFrame from CSV Python Data Preprocessing Basics.mp4

18.8 MB

004 Step 1 - Creating a DataFrame from CSV Python Data Preprocessing Basics.srt

9.0 KB

005 Step 2 - Pandas DataFrame Indexing Building Feature Matrix X with iloc Method.mp4

17.0 MB

005 Step 2 - Pandas DataFrame Indexing Building Feature Matrix X with iloc Method.srt

8.2 KB

006 Step 3 - Preprocessing Data Extracting Features and Target Variables in Python.mp4

20.8 MB

006 Step 3 - Preprocessing Data Extracting Features and Target Variables in Python.srt

10.3 KB

007 For Python learners, summary of Object-oriented programming classes & objects.html

3.8 KB

008 Step 1 - Handling Missing Data in Python SimpleImputer for Data Preprocessing.mp4

21.4 MB

008 Step 1 - Handling Missing Data in Python SimpleImputer for Data Preprocessing.srt

10.0 KB

009 Step 2 - Preprocessing Datasets Fit and Transform to Handle Missing Values.mp4

21.5 MB

009 Step 2 - Preprocessing Datasets Fit and Transform to Handle Missing Values.srt

9.7 KB

010 Step 1 - Preprocessing Categorical Variables One-Hot Encoding in Python.mp4

15.9 MB

010 Step 1 - Preprocessing Categorical Variables One-Hot Encoding in Python.srt

7.2 KB

011 Step 2 - Using fit_transform Method for Efficient Data Preprocessing in Python.mp4

21.3 MB

011 Step 2 - Using fit_transform Method for Efficient Data Preprocessing in Python.srt

10.3 KB

012 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.mp4

16.8 MB

012 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.srt

7.9 KB

013 Step 1 - Machine Learning Data Prep Splitting Dataset Before Feature Scaling.mp4

14.1 MB

013 Step 1 - Machine Learning Data Prep Splitting Dataset Before Feature Scaling.srt

6.4 KB

014 Step 2 - Split Data into Train --& Test Sets with Scikit-learn--'s train_test_split.mp4

21.6 MB

014 Step 2 - Split Data into Train --& Test Sets with Scikit-learn--'s train_test_split.srt

10.1 KB

015 Step 3 - Preparing Data for ML Splitting Datasets with Python and Scikit-learn.mp4

14.0 MB

015 Step 3 - Preparing Data for ML Splitting Datasets with Python and Scikit-learn.srt

6.2 KB

016 Step 1 - How to Apply Feature Scaling for Preprocessing Machine Learning Data.mp4

21.4 MB

016 Step 1 - How to Apply Feature Scaling for Preprocessing Machine Learning Data.srt

10.3 KB

017 Step 2 - Feature Scaling in Machine Learning When to Apply StandardScaler.mp4

17.1 MB

017 Step 2 - Feature Scaling in Machine Learning When to Apply StandardScaler.srt

8.1 KB

018 Step 3 - Normalizing Data with Fit and Transform Methods in Scikit-learn.mp4

13.7 MB

018 Step 3 - Normalizing Data with Fit and Transform Methods in Scikit-learn.srt

6.4 KB

019 Step 4 - How to Apply Feature Scaling to Training --& Test Sets in ML.mp4

21.2 MB

019 Step 4 - How to Apply Feature Scaling to Training --& Test Sets in ML.srt

10.3 KB

/26 - Logistic Regression/

001 Understanding the Logistic Regression Equation A Step-by-Step Guide.mp4

17.7 MB

001 Understanding the Logistic Regression Equation A Step-by-Step Guide.srt

8.3 KB

002 How to Calculate Maximum Likelihood in Logistic Regression Step-by-Step Guide.mp4

10.1 MB

002 How to Calculate Maximum Likelihood in Logistic Regression Step-by-Step Guide.srt

6.2 KB

003 Step 1a - Machine Learning Classification Logistic Regression in Python.mp4

20.6 MB

003 Step 1a - Machine Learning Classification Logistic Regression in Python.srt

9.3 KB

004 Step 1b - Logistic Regression Analysis Importing Libraries and Splitting Data.mp4

14.4 MB

004 Step 1b - Logistic Regression Analysis Importing Libraries and Splitting Data.srt

7.2 KB

005 Step 2a - Data Preprocessing for Logistic Regression Importing and Splitting.mp4

21.1 MB

005 Step 2a - Data Preprocessing for Logistic Regression Importing and Splitting.srt

10.2 KB

006 Step 2b - Data Preprocessing Feature Scaling for Machine Learning in Python.mp4

21.5 MB

006 Step 2b - Data Preprocessing Feature Scaling for Machine Learning in Python.srt

10.3 KB

007 Step 3a - Implementing Logistic Regression for Classification with Scikit-Learn.mp4

14.3 MB

007 Step 3a - Implementing Logistic Regression for Classification with Scikit-Learn.srt

6.8 KB

008 Step 3b - Predicting Purchase Decisions with Logistic Regression in Python.mp4

12.6 MB

008 Step 3b - Predicting Purchase Decisions with Logistic Regression in Python.srt

5.7 KB

009 Step 4a - Using Classifier Objects to Make Predictions in Machine Learning.mp4

21.6 MB

009 Step 4a - Using Classifier Objects to Make Predictions in Machine Learning.srt

9.4 KB

010 Step 4b - Evaluating Logistic Regression Model Predicted vs Real Outcomes.mp4

6.6 MB

010 Step 4b - Evaluating Logistic Regression Model Predicted vs Real Outcomes.srt

3.2 KB

011 Step 5 - Evaluating Machine Learning Models Confusion Matrix and Accuracy.mp4

21.4 MB

011 Step 5 - Evaluating Machine Learning Models Confusion Matrix and Accuracy.srt

12.5 KB

012 Step 6a - Creating a Confusion Matrix for Machine Learning Model Evaluation.mp4

21.2 MB

012 Step 6a - Creating a Confusion Matrix for Machine Learning Model Evaluation.srt

10.2 KB

013 Step 6b - Visualizing Machine Learning Results Training vs Test Set Comparison.mp4

12.0 MB

013 Step 6b - Visualizing Machine Learning Results Training vs Test Set Comparison.srt

5.8 KB

014 Step 7a - Visualizing Logistic Regression 2D Plots for Classification Models.mp4

21.3 MB

014 Step 7a - Visualizing Logistic Regression 2D Plots for Classification Models.srt

9.4 KB

015 Step 7b - Visualizing Logistic Regression Interpreting Classification Results.mp4

13.5 MB

015 Step 7b - Visualizing Logistic Regression Interpreting Classification Results.srt

6.2 KB

016 Step 7c - Visualizing Test Results Assessing Machine Learning Model Accuracy.mp4

12.0 MB

016 Step 7c - Visualizing Test Results Assessing Machine Learning Model Accuracy.srt

5.5 KB

017 Logistic Regression in Python - Step 7 (Colour-blind friendly image).html

3.0 KB

018 Machine Learning Regression and Classification EXTRA.html

3.1 KB

019 EXTRA CONTENT Logistic Regression Practical Case Study.html

2.9 KB

Course updated jan 2025.txt

0.0 KB

Direct Download.txt

0.0 KB

/27 - Congratulations!! Don't forget your Prize )/

001 Huge Congrats for completing the challenge!.html

7.2 KB

002 Bonus How To UNLOCK Top Salaries (Live Training).html

4.1 KB

Course updated jan 2025.txt

0.0 KB

Direct Download.txt

0.0 KB

 

Total files 359


Copyright © 2025 FileMood.com