FileMood

Download Deep Learning Specialization

Deep Learning Specialization

Name

Deep Learning Specialization

  DOWNLOAD Copy Link

Total Size

2.8 GB

Total Files

927

Hash

A13500C6031FDC57E81962F06143DDAEC63DCFA1

/.../03_programming-assignments/

01_residual-networks_instructions.html

1.1 KB

/.../02_programming-assignments/

01_car-detection-with-yolov2_instructions.html

1.1 KB

/.../03_programming-assignments/

02_face-recognition-for-the-happy-house_instructions.html

1.1 KB

01_art-generation-with-neural-style-transfer_instructions.html

1.1 KB

/.../02_programming-assignments/

02_convolutional-model-application_instructions.html

1.1 KB

01_convolutional-model-step-by-step_instructions.html

1.1 KB

/.../01_course-notation-sheet/

01__resources.html

1.1 KB

01__deep-learning-notation.pdf

261.8 KB

/.../04_programming-assignments/

03_gradient-checking_instructions.html

1.2 KB

02_regularization_instructions.html

1.2 KB

01_initialization_instructions.html

1.2 KB

/.../03_programming-assignments/

04_logistic-regression-with-a-neural-network-mindset_instructions.html

1.2 KB

03_python-basics-with-numpy-optional_instructions.html

1.2 KB

01_deep-learning-honor-code_instructions.html

1.8 KB

02_programming-assignment-faq_instructions.html

2.1 MB

/.../02_programming-assignment/

01_planar-data-classification-with-a-hidden-layer_instructions.html

1.2 KB

/.../02_programming-assignments/

02_deep-neural-network-application_instructions.html

1.2 KB

01_building-your-deep-neural-network-step-by-step_instructions.html

1.2 KB

/.../02_programming-assignment/

01_optimization_instructions.html

1.2 KB

/.../05_programming-assignment/

01_tensorflow_instructions.html

1.2 KB

/.../01_course-acknowledgments/

01__resources.html

1.6 KB

/.../02_introduction-to-deep-learning/

06_course-resources.zh-TW.txt

1.7 KB

06_course-resources.zh-CN.txt

1.8 KB

06_course-resources.en.txt

2.0 KB

04_about-this-course.zh-TW.txt

2.1 KB

06_course-resources.pt-BR.txt

2.2 KB

04_about-this-course.zh-CN.txt

2.3 KB

04_about-this-course.tr.txt

2.7 KB

06_course-resources.ja.txt

2.7 KB

04_about-this-course.en.txt

2.7 KB

04_about-this-course.pt-BR.txt

3.0 KB

04_about-this-course.ja.txt

3.3 KB

06_course-resources.zh-TW.srt

3.4 KB

06_course-resources.zh-CN.srt

3.6 KB

06_course-resources.en.srt

3.7 KB

04_about-this-course.zh-TW.srt

3.8 KB

06_course-resources.pt-BR.srt

4.0 KB

04_about-this-course.zh-CN.srt

4.0 KB

04_about-this-course.tr.srt

4.4 KB

06_course-resources.ja.srt

4.5 KB

04_about-this-course.en.srt

4.5 KB

04_about-this-course.pt-BR.srt

4.7 KB

04_about-this-course.ja.srt

5.0 KB

01_what-is-a-neural-network.zh-TW.txt

5.1 KB

07_how-to-use-discussion-forums_instructions.html

5.5 KB

01_what-is-a-neural-network.zh-CN.txt

5.9 KB

02_supervised-learning-with-neural-networks.zh-TW.txt

6.0 KB

01_what-is-a-neural-network.en.txt

6.4 KB

05_frequently-asked-questions_instructions.html

6.7 KB

01_what-is-a-neural-network.ja.txt

6.9 KB

02_supervised-learning-with-neural-networks.zh-CN.txt

7.2 KB

03_why-is-deep-learning-taking-off.zh-TW.txt

7.5 KB

02_supervised-learning-with-neural-networks.en.txt

7.8 KB

03_why-is-deep-learning-taking-off.zh-CN.txt

8.1 KB

01_what-is-a-neural-network.zh-TW.srt

8.9 KB

02_supervised-learning-with-neural-networks.ja.txt

9.1 KB

03_why-is-deep-learning-taking-off.en.txt

9.5 KB

01_what-is-a-neural-network.zh-CN.srt

9.6 KB

01_what-is-a-neural-network.en.srt

10.1 KB

02_supervised-learning-with-neural-networks.zh-TW.srt

10.4 KB

01_what-is-a-neural-network.ja.srt

10.6 KB

03_why-is-deep-learning-taking-off.pt-BR.txt

10.8 KB

02_supervised-learning-with-neural-networks.zh-CN.srt

11.5 KB

03_why-is-deep-learning-taking-off.ja.txt

12.1 KB

02_supervised-learning-with-neural-networks.en.srt

12.2 KB

03_why-is-deep-learning-taking-off.zh-TW.srt

13.5 KB

02_supervised-learning-with-neural-networks.ja.srt

13.5 KB

03_why-is-deep-learning-taking-off.zh-CN.srt

14.1 KB

03_why-is-deep-learning-taking-off.pt-BR.srt

16.8 KB

03_why-is-deep-learning-taking-off.ja.srt

18.1 KB

03_why-is-deep-learning-taking-off.en.srt

18.3 KB

04_about-this-course_C1W1L05.pptx

93.6 KB

03_why-is-deep-learning-taking-off_C1W1L04.pptx

243.5 KB

01_what-is-a-neural-network_What_is_Neural_Network.pdf

419.3 KB

03_why-is-deep-learning-taking-off_Why_is_Deep_Learning_Taking_Off.pdf

434.7 KB

02_supervised-learning-with-neural-networks_Supervised_Learning_for_Neural_Network.pdf

452.8 KB

06_course-resources.mp4

2.3 MB

04_about-this-course.mp4

3.3 MB

02_supervised-learning-with-neural-networks_C1W1L03.pptx

6.8 MB

01_what-is-a-neural-network.mp4

8.9 MB

02_supervised-learning-with-neural-networks.mp4

11.2 MB

03_why-is-deep-learning-taking-off.mp4

13.9 MB

/.../02_neural-style-transfer/

01_what-is-neural-style-transfer.en.txt

1.7 KB

01_what-is-neural-style-transfer.en.srt

2.6 KB

04_content-cost-function.en.txt

2.9 KB

03_cost-function.en.txt

3.4 KB

04_content-cost-function.en.srt

4.3 KB

03_cost-function.en.srt

5.0 KB

02_what-are-deep-convnets-learning.en.txt

7.1 KB

06_1d-and-3d-generalizations.en.txt

7.4 KB

05_style-cost-function.en.txt

10.1 KB

02_what-are-deep-convnets-learning.en.srt

10.4 KB

06_1d-and-3d-generalizations.en.srt

10.9 KB

05_style-cost-function.en.srt

16.3 KB

04_content-cost-function_C4W4L09_ContentCostFunction.pptx

181.7 KB

05_style-cost-function_C4W4L10_StyleCostFunction.pptx

639.7 KB

06_1d-and-3d-generalizations_C4W4L11_1D3DGeneralizations.pptx

3.1 MB

01_what-is-neural-style-transfer.mp4

3.1 MB

04_content-cost-function.mp4

4.9 MB

03_cost-function.mp4

5.5 MB

02_what-are-deep-convnets-learning.mp4

11.8 MB

06_1d-and-3d-generalizations.mp4

11.9 MB

05_style-cost-function.mp4

17.2 MB

02_what-are-deep-convnets-learning_C4W4L07_WhatAreDeepCNsLearning.pptx

22.2 MB

03_cost-function_C4W4L08_CostFunction.pptx

35.9 MB

01_what-is-neural-style-transfer_C4W4L06_WhatIsNeuralTransferStyle.pptx

40.0 MB

/.../01_logistic-regression-as-a-neural-network/

07_computation-graph.zh-TW.txt

2.1 KB

07_computation-graph.ja.txt

2.6 KB

07_computation-graph.en.txt

2.6 KB

09_logistic-regression-gradient-descent.zh-CN.txt

3.4 KB

02_logistic-regression.zh-TW.txt

3.5 KB

02_logistic-regression.zh-CN.txt

3.9 KB

07_computation-graph.zh-TW.srt

3.9 KB

09_logistic-regression-gradient-descent.zh-TW.txt

4.1 KB

07_computation-graph.ja.srt

4.4 KB

07_computation-graph.en.srt

4.4 KB

02_logistic-regression.en.txt

4.6 KB

05_derivatives.zh-TW.txt

4.6 KB

02_logistic-regression.pt-BR.txt

4.8 KB

10_gradient-descent-on-m-examples.zh-TW.txt

5.3 KB

10_gradient-descent-on-m-examples.zh-CN.txt

5.3 KB

09_logistic-regression-gradient-descent.en.txt

5.4 KB

02_logistic-regression.ja.txt

5.4 KB

01_binary-classification.zh-TW.txt

5.5 KB

01_binary-classification.zh-CN.txt

5.5 KB

03_logistic-regression-cost-function.zh-TW.txt

5.6 KB

09_logistic-regression-gradient-descent.ja.txt

5.6 KB

05_derivatives.ja.txt

6.1 KB

06_more-derivative-examples.zh-TW.txt

6.2 KB

05_derivatives.en.txt

6.5 KB

10_gradient-descent-on-m-examples.en.txt

6.6 KB

02_logistic-regression.zh-TW.srt

6.7 KB

05_derivatives.pt-BR.txt

6.8 KB

01_binary-classification.en.txt

6.8 KB

03_logistic-regression-cost-function.en.txt

7.0 KB

02_logistic-regression.zh-CN.srt

7.0 KB

09_logistic-regression-gradient-descent.zh-CN.srt

7.1 KB

01_binary-classification.ja.txt

7.5 KB

08_derivatives-with-a-computation-graph.zh-CN.txt

7.6 KB

06_more-derivative-examples.ja.txt

7.6 KB

04_gradient-descent.zh-TW.txt

7.6 KB

02_logistic-regression.en.srt

7.7 KB

06_more-derivative-examples.en.txt

7.8 KB

08_derivatives-with-a-computation-graph.zh-TW.txt

7.8 KB

01_binary-classification.pt-BR.txt

7.8 KB

09_logistic-regression-gradient-descent.zh-TW.srt

7.9 KB

02_logistic-regression.pt-BR.srt

8.0 KB

04_gradient-descent.zh-CN.txt

8.2 KB

05_derivatives.zh-TW.srt

8.4 KB

02_logistic-regression.ja.srt

8.6 KB

09_logistic-regression-gradient-descent.en.srt

9.2 KB

09_logistic-regression-gradient-descent.ja.srt

9.4 KB

03_logistic-regression-cost-function.ja.txt

9.4 KB

01_binary-classification.zh-TW.srt

9.5 KB

01_binary-classification.zh-CN.srt

9.5 KB

03_logistic-regression-cost-function.zh-TW.srt

9.8 KB

05_derivatives.ja.srt

9.9 KB

04_gradient-descent.en.txt

10.0 KB

08_derivatives-with-a-computation-graph.en.txt

10.0 KB

08_derivatives-with-a-computation-graph.pt-BR.txt

10.5 KB

05_derivatives.pt-BR.srt

10.6 KB

01_binary-classification.en.srt

10.8 KB

04_gradient-descent.ja.txt

11.2 KB

03_logistic-regression-cost-function.en.srt

11.3 KB

10_gradient-descent-on-m-examples.zh-TW.srt

11.3 KB

10_gradient-descent-on-m-examples.zh-CN.srt

11.4 KB

01_binary-classification.ja.srt

11.5 KB

06_more-derivative-examples.zh-TW.srt

11.6 KB

01_binary-classification.pt-BR.srt

11.8 KB

05_derivatives.en.srt

12.3 KB

10_gradient-descent-on-m-examples.en.srt

12.6 KB

06_more-derivative-examples.ja.srt

13.1 KB

06_more-derivative-examples.en.srt

13.2 KB

04_gradient-descent.zh-TW.srt

13.4 KB

03_logistic-regression-cost-function.ja.srt

13.7 KB

04_gradient-descent.zh-CN.srt

13.9 KB

08_derivatives-with-a-computation-graph.zh-TW.srt

14.5 KB

08_derivatives-with-a-computation-graph.zh-CN.srt

15.3 KB

04_gradient-descent.en.srt

15.7 KB

08_derivatives-with-a-computation-graph.en.srt

16.7 KB

04_gradient-descent.ja.srt

16.9 KB

08_derivatives-with-a-computation-graph.pt-BR.srt

17.2 KB

01_binary-classification_untitled-2.pdf

261.8 KB

02_logistic-regression_C1W2L02.pptx

365.4 KB

07_computation-graph_C1W2L05.pptx

378.6 KB

05_derivatives_C1W2L04.pptx

384.8 KB

09_logistic-regression-gradient-descent_C1W2L06.pptx

449.3 KB

03_logistic-regression-cost-function_Logistic_Regression_Cost_Function.pdf

483.7 KB

02_logistic-regression_Logistic_Regression.pdf

534.7 KB

01_binary-classification_Binary_Classification.pdf

665.2 KB

04_gradient-descent_C1W2L03.pptx

913.7 KB

07_computation-graph.mp4

4.6 MB

01_binary-classification_C1W2L01.pptx

4.7 MB

02_logistic-regression.mp4

7.6 MB

09_logistic-regression-gradient-descent.mp4

8.9 MB

05_derivatives.mp4

10.0 MB

10_gradient-descent-on-m-examples.mp4

10.5 MB

03_logistic-regression-cost-function.mp4

11.1 MB

01_binary-classification.mp4

11.5 MB

06_more-derivative-examples.mp4

13.8 MB

04_gradient-descent.mp4

14.6 MB

08_derivatives-with-a-computation-graph.mp4

19.0 MB

/.../02_course-acknowledgments/

01__resources.html

2.3 KB

/.../01_deep-neural-network/

08_what-does-this-have-to-do-with-the-brain.zh-TW.txt

2.5 KB

08_what-does-this-have-to-do-with-the-brain.en.txt

3.0 KB

01_deep-l-layer-neural-network.zh-TW.txt

3.7 KB

08_what-does-this-have-to-do-with-the-brain.ja.txt

3.9 KB

02_forward-propagation-in-a-deep-network.zh-TW.txt

4.0 KB

01_deep-l-layer-neural-network.zh-CN.txt

4.1 KB

08_what-does-this-have-to-do-with-the-brain.zh-TW.srt

4.2 KB

05_building-blocks-of-deep-neural-networks.zh-TW.txt

4.6 KB

02_forward-propagation-in-a-deep-network.zh-CN.txt

4.7 KB

01_deep-l-layer-neural-network.en.txt

4.8 KB

01_deep-l-layer-neural-network.pt-BR.txt

4.9 KB

03_getting-your-matrix-dimensions-right.zh-TW.txt

5.3 KB

02_forward-propagation-in-a-deep-network.en.txt

5.3 KB

01_deep-l-layer-neural-network.ja.txt

5.3 KB

07_parameters-vs-hyperparameters.zh-TW.txt

5.4 KB

08_what-does-this-have-to-do-with-the-brain.ja.srt

5.7 KB

03_getting-your-matrix-dimensions-right.zh-CN.txt

5.7 KB

08_what-does-this-have-to-do-with-the-brain.en.srt

5.8 KB

05_building-blocks-of-deep-neural-networks.en.txt

5.8 KB

02_forward-propagation-in-a-deep-network.ja.txt

5.9 KB

06_forward-and-backward-propagation.zh-TW.txt

6.3 KB

01_deep-l-layer-neural-network.zh-TW.srt

6.5 KB

01_deep-l-layer-neural-network.zh-CN.srt

6.9 KB

07_parameters-vs-hyperparameters.en.txt

7.0 KB

03_getting-your-matrix-dimensions-right.en.txt

7.1 KB

04_why-deep-representations.zh-TW.txt

7.5 KB

01_deep-l-layer-neural-network.en.srt

7.6 KB

01_deep-l-layer-neural-network.pt-BR.srt

7.7 KB

06_forward-and-backward-propagation.en.txt

8.0 KB

01_deep-l-layer-neural-network.ja.srt

8.1 KB

04_why-deep-representations.zh-CN.txt

8.5 KB

05_building-blocks-of-deep-neural-networks.zh-TW.srt

8.7 KB

02_forward-propagation-in-a-deep-network.zh-TW.srt

8.8 KB

04_why-deep-representations.en.txt

9.5 KB

02_forward-propagation-in-a-deep-network.zh-CN.srt

9.6 KB

03_getting-your-matrix-dimensions-right.zh-TW.srt

9.9 KB

02_forward-propagation-in-a-deep-network.en.srt

10.1 KB

03_getting-your-matrix-dimensions-right.zh-CN.srt

10.3 KB

02_forward-propagation-in-a-deep-network.ja.srt

10.7 KB

04_why-deep-representations.ja.txt

10.9 KB

05_building-blocks-of-deep-neural-networks.en.srt

11.2 KB

03_getting-your-matrix-dimensions-right.en.srt

11.7 KB

07_parameters-vs-hyperparameters.zh-TW.srt

11.7 KB

06_forward-and-backward-propagation.zh-TW.srt

12.1 KB

04_why-deep-representations.zh-TW.srt

12.9 KB

07_parameters-vs-hyperparameters.en.srt

13.3 KB

04_why-deep-representations.zh-CN.srt

13.9 KB

04_why-deep-representations.en.srt

14.9 KB

06_forward-and-backward-propagation.en.srt

15.3 KB

04_why-deep-representations.ja.srt

16.3 KB

07_parameters-vs-hyperparameters_C1W4L05.pptx

257.2 KB

03_getting-your-matrix-dimensions-right_C1W4L02.pptx

338.4 KB

06_forward-and-backward-propagation_C1W4L06_ForwardBackProp_annotated.pdf

517.8 KB

05_building-blocks-of-deep-neural-networks_C1W4L04.pptx

648.9 KB

04_why-deep-representations_C1W4L03.pptx

1.0 MB

08_what-does-this-have-to-do-with-the-brain_C1W4L06.pptx

3.5 MB

08_what-does-this-have-to-do-with-the-brain.mp4

4.6 MB

01_deep-l-layer-neural-network.mp4

8.2 MB

07_parameters-vs-hyperparameters.mp4

9.1 MB

02_forward-propagation-in-a-deep-network.mp4

10.4 MB

05_building-blocks-of-deep-neural-networks.mp4

11.3 MB

04_why-deep-representations.mp4

14.4 MB

06_forward-and-backward-propagation.mp4

14.7 MB

03_getting-your-matrix-dimensions-right.mp4

15.1 MB

/.../01_shallow-neural-network/

01_neural-networks-overview.zh-TW.txt

2.7 KB

07_why-do-you-need-non-linear-activation-functions.zh-TW.txt

3.1 KB

07_why-do-you-need-non-linear-activation-functions.zh-CN.txt

3.3 KB

01_neural-networks-overview.en.txt

3.5 KB

02_neural-network-representation.zh-CN.txt

3.7 KB

02_neural-network-representation.zh-TW.txt

3.9 KB

07_why-do-you-need-non-linear-activation-functions.en.txt

4.2 KB

05_explanation-for-vectorized-implementation.zh-TW.txt

4.2 KB

07_why-do-you-need-non-linear-activation-functions.ja.txt

4.2 KB

08_derivatives-of-activation-functions.zh-TW.txt

4.6 KB

04_vectorizing-across-multiple-examples.zh-TW.txt

4.7 KB

11_random-initialization.zh-TW.txt

5.1 KB

02_neural-network-representation.en.txt

5.2 KB

09_gradient-descent-for-neural-networks.zh-CN.txt

5.3 KB

02_neural-network-representation.ja.txt

5.4 KB

02_neural-network-representation.pt-BR.txt

5.4 KB

05_explanation-for-vectorized-implementation.en.txt

5.5 KB

09_gradient-descent-for-neural-networks.zh-TW.txt

5.6 KB

07_why-do-you-need-non-linear-activation-functions.zh-TW.srt

5.9 KB

01_neural-networks-overview.zh-TW.srt

6.0 KB

07_why-do-you-need-non-linear-activation-functions.zh-CN.srt

6.0 KB

08_derivatives-of-activation-functions.en.txt

6.1 KB

08_derivatives-of-activation-functions.ja.txt

6.2 KB

11_random-initialization.zh-CN.txt

6.2 KB

04_vectorizing-across-multiple-examples.en.txt

6.4 KB

11_random-initialization.en.txt

6.5 KB

11_random-initialization.es.txt

6.5 KB

11_random-initialization.vi.txt

6.5 KB

11_random-initialization.el.txt

6.5 KB

11_random-initialization.it.txt

6.5 KB

02_neural-network-representation.zh-CN.srt

6.7 KB

01_neural-networks-overview.en.srt

6.8 KB

04_vectorizing-across-multiple-examples.ja.txt

6.9 KB

02_neural-network-representation.zh-TW.srt

6.9 KB

07_why-do-you-need-non-linear-activation-functions.ja.srt

6.9 KB

06_activation-functions.zh-TW.txt

7.1 KB

09_gradient-descent-for-neural-networks.en.txt

7.2 KB

11_random-initialization.ja.txt

7.2 KB

03_computing-a-neural-networks-output.zh-TW.txt

7.2 KB

03_computing-a-neural-networks-output.zh-CN.txt

7.4 KB

05_explanation-for-vectorized-implementation.zh-TW.srt

7.6 KB

07_why-do-you-need-non-linear-activation-functions.en.srt

7.9 KB

08_derivatives-of-activation-functions.zh-TW.srt

8.3 KB

02_neural-network-representation.en.srt

8.3 KB

10_backpropagation-intuition-optional.zh-TW.txt

8.3 KB

02_neural-network-representation.ja.srt

8.5 KB

02_neural-network-representation.pt-BR.srt

8.5 KB

04_vectorizing-across-multiple-examples.zh-TW.srt

8.6 KB

03_computing-a-neural-networks-output.en.txt

8.8 KB

10_backpropagation-intuition-optional.zh-CN.txt

8.8 KB

05_explanation-for-vectorized-implementation.en.srt

8.9 KB

06_activation-functions.en.txt

9.1 KB

11_random-initialization.zh-TW.srt

9.2 KB

03_computing-a-neural-networks-output.ja.txt

9.5 KB

03_computing-a-neural-networks-output.pt-BR.txt

9.8 KB

08_derivatives-of-activation-functions.ja.srt

9.9 KB

04_vectorizing-across-multiple-examples.en.srt

10.3 KB

11_random-initialization.zh-CN.srt

10.4 KB

11_random-initialization.en.srt

10.6 KB

11_random-initialization.es.srt

10.6 KB

11_random-initialization.vi.srt

10.6 KB

11_random-initialization.el.srt

10.7 KB

11_random-initialization.it.srt

10.7 KB

10_backpropagation-intuition-optional.en.txt

10.8 KB

04_vectorizing-across-multiple-examples.ja.srt

10.8 KB

10_backpropagation-intuition-optional.ja.txt

11.3 KB

11_random-initialization.ja.srt

11.3 KB

08_derivatives-of-activation-functions.en.srt

11.6 KB

09_gradient-descent-for-neural-networks.zh-CN.srt

11.9 KB

03_computing-a-neural-networks-output.zh-TW.srt

12.0 KB

03_computing-a-neural-networks-output.zh-CN.srt

12.2 KB

09_gradient-descent-for-neural-networks.zh-TW.srt

12.3 KB

09_gradient-descent-for-neural-networks.en.srt

13.8 KB

03_computing-a-neural-networks-output.ja.srt

14.2 KB

03_computing-a-neural-networks-output.pt-BR.srt

14.5 KB

06_activation-functions.zh-TW.srt

15.4 KB

10_backpropagation-intuition-optional.zh-TW.srt

15.7 KB

10_backpropagation-intuition-optional.zh-CN.srt

16.2 KB

03_computing-a-neural-networks-output.en.srt

16.9 KB

06_activation-functions.en.srt

17.4 KB

10_backpropagation-intuition-optional.en.srt

18.2 KB

10_backpropagation-intuition-optional.ja.srt

18.7 KB

01_neural-networks-overview_C1W3L01.pptx

171.8 KB

07_why-do-you-need-non-linear-activation-functions_C1W3L05.pptx

218.6 KB

11_random-initialization_C1W3L09.pptx

234.2 KB

09_gradient-descent-for-neural-networks_C1W3L07.pptx

312.1 KB

06_activation-functions_C1W3L04.pptx

338.1 KB

08_derivatives-of-activation-functions_C1W3L06.pptx

379.0 KB

10_backpropagation-intuition-optional_C1W3L08.pptx

513.5 KB

04_vectorizing-across-multiple-examples_C1W3L03.pptx

557.7 KB

02_neural-network-representation_C1W3L02.pptx

582.9 KB

01_neural-networks-overview.mp4

5.9 MB

02_neural-network-representation.mp4

6.9 MB

07_why-do-you-need-non-linear-activation-functions.mp4

7.7 MB

08_derivatives-of-activation-functions.mp4

10.1 MB

05_explanation-for-vectorized-implementation.mp4

10.2 MB

11_random-initialization.mp4

10.3 MB

04_vectorizing-across-multiple-examples.mp4

12.1 MB

09_gradient-descent-for-neural-networks.mp4

13.2 MB

03_computing-a-neural-networks-output.mp4

13.6 MB

06_activation-functions.mp4

15.3 MB

10_backpropagation-intuition-optional.mp4

21.3 MB

/.../01_introduction-to-ml-strategy/

01_why-ml-strategy.en.txt

2.9 KB

01_why-ml-strategy.en.srt

4.6 KB

02_orthogonalization.en.txt

9.8 KB

02_orthogonalization.en.srt

15.3 KB

02_orthogonalization_Orthogonalization.pdf

332.2 KB

01_why-ml-strategy.mp4

4.7 MB

02_orthogonalization_C3W1L02.pptx

8.9 MB

02_orthogonalization.mp4

15.2 MB

01_why-ml-strategy_C3W1L01.pptx

26.3 MB

/.../02_python-and-vectorization/

07_quick-tour-of-jupyter-ipython-notebooks.zh-TW.txt

3.0 KB

07_quick-tour-of-jupyter-ipython-notebooks.zh-CN.txt

3.3 KB

02_more-vectorization-examples.zh-CN.txt

3.5 KB

07_quick-tour-of-jupyter-ipython-notebooks.en.txt

3.6 KB

02_more-vectorization-examples.zh-TW.txt

3.7 KB

03_vectorizing-logistic-regression.zh-TW.txt

4.2 KB

08_explanation-of-logistic-regression-cost-function-optional.zh-TW.txt

4.3 KB

03_vectorizing-logistic-regression.zh-CN.txt

4.5 KB

06_a-note-on-python-numpy-vectors.zh-CN.txt

4.5 KB

01_vectorization.zh-TW.txt

4.6 KB

06_a-note-on-python-numpy-vectors.zh-TW.txt

4.6 KB

02_more-vectorization-examples.en.txt

4.6 KB

07_quick-tour-of-jupyter-ipython-notebooks.ja.txt

4.7 KB

01_vectorization.zh-CN.txt

4.8 KB

04_vectorizing-logistic-regressions-gradient-output.zh-CN.txt

4.9 KB

04_vectorizing-logistic-regressions-gradient-output.zh-TW.txt

4.9 KB

02_more-vectorization-examples.ja.txt

5.1 KB

07_quick-tour-of-jupyter-ipython-notebooks.zh-TW.srt

5.3 KB

08_explanation-of-logistic-regression-cost-function-optional.en.txt

5.4 KB

01_vectorization.en.txt

5.6 KB

03_vectorizing-logistic-regression.en.txt

5.6 KB

02_more-vectorization-examples.pt-BR.txt

5.6 KB

07_quick-tour-of-jupyter-ipython-notebooks.zh-CN.srt

5.7 KB

06_a-note-on-python-numpy-vectors.en.txt

5.8 KB

07_quick-tour-of-jupyter-ipython-notebooks.en.srt

5.9 KB

03_vectorizing-logistic-regression.ja.txt

5.9 KB

01_vectorization.ja.txt

6.0 KB

03_vectorizing-logistic-regression.pt-BR.txt

6.3 KB

06_a-note-on-python-numpy-vectors.ja.txt

6.4 KB

02_more-vectorization-examples.zh-CN.srt

6.5 KB

04_vectorizing-logistic-regressions-gradient-output.en.txt

6.6 KB

05_broadcasting-in-python.zh-CN.txt

6.7 KB

04_vectorizing-logistic-regressions-gradient-output.ja.txt

6.8 KB

02_more-vectorization-examples.zh-TW.srt

7.0 KB

05_broadcasting-in-python.zh-TW.txt

7.0 KB

07_quick-tour-of-jupyter-ipython-notebooks.ja.srt

7.0 KB

02_more-vectorization-examples.en.srt

7.6 KB

04_vectorizing-logistic-regressions-gradient-output.pt-BR.txt

7.6 KB

08_explanation-of-logistic-regression-cost-function-optional.zh-TW.srt

7.6 KB

06_a-note-on-python-numpy-vectors.zh-CN.srt

8.0 KB

02_more-vectorization-examples.ja.srt

8.0 KB

06_a-note-on-python-numpy-vectors.zh-TW.srt

8.0 KB

03_vectorizing-logistic-regression.zh-TW.srt

8.4 KB

08_explanation-of-logistic-regression-cost-function-optional.en.srt

8.7 KB

03_vectorizing-logistic-regression.zh-CN.srt

8.7 KB

05_broadcasting-in-python.en.txt

8.8 KB

01_vectorization.zh-TW.srt

8.9 KB

02_more-vectorization-examples.pt-BR.srt

8.9 KB

05_broadcasting-in-python.ja.txt

8.9 KB

01_vectorization.zh-CN.srt

9.0 KB

04_vectorizing-logistic-regressions-gradient-output.zh-CN.srt

9.2 KB

06_a-note-on-python-numpy-vectors.en.srt

9.3 KB

04_vectorizing-logistic-regressions-gradient-output.zh-TW.srt

9.3 KB

05_broadcasting-in-python.pt-BR.txt

9.8 KB

03_vectorizing-logistic-regression.en.srt

9.8 KB

01_vectorization.en.srt

9.8 KB

06_a-note-on-python-numpy-vectors.ja.srt

9.9 KB

03_vectorizing-logistic-regression.ja.srt

10.2 KB

01_vectorization.ja.srt

10.3 KB

03_vectorizing-logistic-regression.pt-BR.srt

10.5 KB

04_vectorizing-logistic-regressions-gradient-output.en.srt

11.0 KB

04_vectorizing-logistic-regressions-gradient-output.ja.srt

11.1 KB

04_vectorizing-logistic-regressions-gradient-output.pt-BR.srt

12.0 KB

05_broadcasting-in-python.zh-CN.srt

12.3 KB

05_broadcasting-in-python.zh-TW.srt

12.5 KB

05_broadcasting-in-python.en.srt

14.3 KB

05_broadcasting-in-python.ja.srt

14.5 KB

05_broadcasting-in-python.pt-BR.srt

15.3 KB

06_a-note-on-python-numpy-vectors_C1W2L09_2.05.53_PM.pptx

95.5 KB

05_broadcasting-in-python_C1W2L09.pptx

338.6 KB

01_vectorization_C1W2L07.pptx

382.5 KB

03_vectorizing-logistic-regression_C1W2L08.pptx

532.8 KB

07_quick-tour-of-jupyter-ipython-notebooks.mp4

6.2 MB

02_more-vectorization-examples.mp4

8.5 MB

08_explanation-of-logistic-regression-cost-function-optional.mp4

9.2 MB

06_a-note-on-python-numpy-vectors.mp4

9.5 MB

03_vectorizing-logistic-regression.mp4

9.9 MB

01_vectorization.mp4

10.5 MB

04_vectorizing-logistic-regressions-gradient-output.mp4

13.1 MB

05_broadcasting-in-python.mp4

14.1 MB

/.../01_case-studies/

01_why-look-at-case-studies.en.txt

3.2 KB

05_networks-in-networks-and-1x1-convolutions.en.txt

5.1 KB

01_why-look-at-case-studies.en.srt

5.2 KB

03_resnets.en.txt

5.8 KB

07_inception-network.en.txt

7.0 KB

04_why-resnets-work.en.txt

7.3 KB

06_inception-network-motivation.en.txt

7.7 KB

05_networks-in-networks-and-1x1-convolutions.en.srt

8.1 KB

03_resnets.en.srt

9.3 KB

07_inception-network.en.srt

11.3 KB

04_why-resnets-work.en.srt

12.1 KB

06_inception-network-motivation.en.srt

12.7 KB

02_classic-networks.en.txt

15.3 KB

02_classic-networks.en.srt

26.3 KB

01_why-look-at-case-studies_C4W2L01_WhyLookAtCaseStudies.pptx

92.7 KB

03_resnets_C4W2L03_ResNets.pptx

190.0 KB

05_networks-in-networks-and-1x1-convolutions_C4W2L05_NetworkinNetworkand1x1.pptx

224.1 KB

06_inception-network-motivation_C4W2L06_InceptionNetworkMotivation.pptx

235.3 KB

02_classic-networks_C4W2L02_ClassicNetworks.pptx

344.2 KB

07_inception-network_C4W2L07_InceptionNetwork.pptx

4.2 MB

01_why-look-at-case-studies.mp4

4.9 MB

05_networks-in-networks-and-1x1-convolutions.mp4

8.6 MB

03_resnets.mp4

9.4 MB

07_inception-network.mp4

11.9 MB

04_why-resnets-work.mp4

12.5 MB

06_inception-network-motivation.mp4

13.3 MB

02_classic-networks.mp4

23.9 MB

/.../01_optimization-algorithms/

05_bias-correction-in-exponentially-weighted-averages.en.txt

3.3 KB

10_the-problem-of-local-optima.zh-CN.txt

4.0 KB

10_the-problem-of-local-optima.zh-TW.txt

4.2 KB

08_adam-optimization-algorithm.zh-CN.txt

4.4 KB

08_adam-optimization-algorithm.zh-TW.txt

4.6 KB

07_rmsprop.zh-CN.txt

4.9 KB

10_the-problem-of-local-optima.en.txt

5.1 KB

03_exponentially-weighted-averages.en.txt

5.3 KB

05_bias-correction-in-exponentially-weighted-averages.en.srt

5.3 KB

07_rmsprop.zh-TW.txt

5.4 KB

08_adam-optimization-algorithm.en.txt

5.5 KB

09_learning-rate-decay.en.txt

5.6 KB

07_rmsprop.en.txt

6.5 KB

10_the-problem-of-local-optima.zh-CN.srt

7.4 KB

10_the-problem-of-local-optima.zh-TW.srt

7.6 KB

08_adam-optimization-algorithm.zh-CN.srt

7.8 KB

04_understanding-exponentially-weighted-averages.en.txt

7.9 KB

08_adam-optimization-algorithm.zh-TW.srt

8.0 KB

06_gradient-descent-with-momentum.en.txt

8.0 KB

01_mini-batch-gradient-descent.en.txt

8.2 KB

10_the-problem-of-local-optima.en.srt

8.5 KB

07_rmsprop.zh-CN.srt

8.6 KB

08_adam-optimization-algorithm.en.srt

8.8 KB

03_exponentially-weighted-averages.en.srt

9.0 KB

07_rmsprop.zh-TW.srt

9.1 KB

02_understanding-mini-batch-gradient-descent.en.txt

9.1 KB

09_learning-rate-decay.en.srt

9.2 KB

07_rmsprop.en.srt

10.2 KB

06_gradient-descent-with-momentum.en.srt

12.6 KB

01_mini-batch-gradient-descent.en.srt

13.3 KB

04_understanding-exponentially-weighted-averages.en.srt

14.0 KB

02_understanding-mini-batch-gradient-descent.en.srt

14.2 KB

07_rmsprop_C2W2L06.pptx

185.2 KB

09_learning-rate-decay_C2W2L08.pptx

240.8 KB

06_gradient-descent-with-momentum_C2W2L05.pptx

304.4 KB

02_understanding-mini-batch-gradient-descent_C2W2L02.pptx

321.3 KB

01_mini-batch-gradient-descent_C2W2L01.pptx

321.5 KB

05_bias-correction-in-exponentially-weighted-averages_C2W2L04.pptx

433.2 KB

08_adam-optimization-algorithm_C2W2L07.pptx

477.2 KB

04_understanding-exponentially-weighted-averages_C2W2L03b.pptx

635.9 KB

03_exponentially-weighted-averages_c2w2l03.pptx

697.2 KB

10_the-problem-of-local-optima_C2W2L09.pptx

887.4 KB

05_bias-correction-in-exponentially-weighted-averages.mp4

6.3 MB

10_the-problem-of-local-optima.mp4

7.2 MB

03_exponentially-weighted-averages.mp4

8.0 MB

09_learning-rate-decay.mp4

9.8 MB

08_adam-optimization-algorithm.mp4

9.9 MB

07_rmsprop.mp4

10.8 MB

06_gradient-descent-with-momentum.mp4

12.5 MB

04_understanding-exponentially-weighted-averages.mp4

13.1 MB

02_understanding-mini-batch-gradient-descent.mp4

15.1 MB

01_mini-batch-gradient-descent.mp4

15.6 MB

/.../01_detection-algorithms/

06_intersection-over-union.en.txt

3.5 KB

02_landmark-detection.en.txt

4.8 KB

03_object-detection.en.txt

4.9 KB

06_intersection-over-union.en.srt

5.7 KB

09_yolo-algorithm.en.txt

5.9 KB

10_optional-region-proposals.en.txt

6.0 KB

07_non-max-suppression.en.txt

6.9 KB

02_landmark-detection.en.srt

7.0 KB

03_object-detection.en.srt

7.2 KB

08_anchor-boxes.en.txt

7.6 KB

09_yolo-algorithm.en.srt

8.7 KB

10_optional-region-proposals.en.srt

8.8 KB

04_convolutional-implementation-of-sliding-windows.en.txt

8.9 KB

01_object-localization.en.txt

9.2 KB

07_non-max-suppression.en.srt

10.1 KB

08_anchor-boxes.en.srt

11.2 KB

05_bounding-box-predictions.en.txt

12.1 KB

04_convolutional-implementation-of-sliding-windows.en.srt

13.0 KB

01_object-localization.en.srt

13.4 KB

05_bounding-box-predictions.en.srt

17.8 KB

10_optional-region-proposals_C4W3L10_RegionProposals.pptx

845.0 KB

07_non-max-suppression_C4W3L07_NonmaxSuppression.pptx

2.0 MB

06_intersection-over-union_C4W3L06_InstersecOverUnion.pptx

4.5 MB

09_yolo-algorithm_C4W3L09_YOLOAlgorithm.pptx

5.2 MB

06_intersection-over-union.mp4

5.7 MB

08_anchor-boxes_C4W3L08_AnchorBoxes.pptx

6.0 MB

03_object-detection.mp4

7.6 MB

02_landmark-detection.mp4

8.6 MB

01_object-localization_C4W3L01_ObjectLocalization.pptx

9.0 MB

10_optional-region-proposals.mp4

9.2 MB

09_yolo-algorithm.mp4

9.5 MB

07_non-max-suppression.mp4

10.6 MB

08_anchor-boxes.mp4

14.1 MB

04_convolutional-implementation-of-sliding-windows.mp4

15.1 MB

01_object-localization.mp4

16.1 MB

04_convolutional-implementation-of-sliding-windows_C4W3L04_ConvImpSlidingWindows.pptx

18.4 MB

05_bounding-box-predictions.mp4

20.5 MB

02_landmark-detection_C4W3L02_LandmarkDetection.pptx

21.2 MB

03_object-detection_C4W3L03_ObjectDetection.pptx

24.9 MB

/.../01_face-recognition/

03_siamese-network.en.txt

3.8 KB

01_what-is-face-recognition.en.txt

3.9 KB

02_one-shot-learning.en.txt

4.1 KB

05_face-verification-and-binary-classification.en.txt

5.0 KB

03_siamese-network.en.srt

5.6 KB

01_what-is-face-recognition.en.srt

5.7 KB

02_one-shot-learning.en.srt

6.1 KB

05_face-verification-and-binary-classification.en.srt

7.4 KB

04_triplet-loss.en.txt

13.1 KB

04_triplet-loss.en.srt

19.3 KB

02_one-shot-learning.mp4

6.2 MB

03_siamese-network.mp4

6.4 MB

05_face-verification-and-binary-classification.mp4

8.3 MB

01_what-is-face-recognition.mp4

8.8 MB

03_siamese-network_C4W4L03_SiameseNetwork.pptx

9.0 MB

04_triplet-loss.mp4

20.7 MB

05_face-verification-and-binary-classification_C4W4L05_FaceVerifABinaryClass.pptx

30.7 MB

02_one-shot-learning_C4W4L02_OneShotLearning.pptx

33.8 MB

04_triplet-loss_C4W4L04_TripletLoss.pptx

62.4 MB

01_what-is-face-recognition_C4W4L01_WhatIsFaceRecog.pptx

144.4 MB

/.../03_comparing-to-human-level-performance/

05_improving-your-model-performance.en.txt

4.0 KB

01_why-human-level-performance.en.txt

5.3 KB

04_surpassing-human-level-performance.en.txt

5.5 KB

02_avoidable-bias.en.txt

6.0 KB

05_improving-your-model-performance.en.srt

6.2 KB

01_why-human-level-performance.en.srt

8.2 KB

04_surpassing-human-level-performance.en.srt

9.1 KB

02_avoidable-bias.en.srt

9.5 KB

03_understanding-human-level-performance.en.txt

10.0 KB

03_understanding-human-level-performance.en.srt

15.4 KB

01_why-human-level-performance_C3W1L08.pptx

150.1 KB

05_improving-your-model-performance_C3W1L11.pptx

152.2 KB

04_surpassing-human-level-performance_C3W1L10.pptx

194.7 KB

02_avoidable-bias_Avoidable_bias.pdf

345.4 KB

05_improving-your-model-performance_Improving_your_model_performance.pdf

356.9 KB

01_why-human-level-performance_Why_human_level_performance.pdf

359.1 KB

04_surpassing-human-level-performance_Surpassing_human_level_performance.pdf

367.5 KB

03_understanding-human-level-performance_Understanding_human_level_performance.pdf

375.4 KB

03_understanding-human-level-performance_C3W1L09.pptx

5.7 MB

01_why-human-level-performance.mp4

8.1 MB

04_surpassing-human-level-performance.mp4

8.4 MB

05_improving-your-model-performance.mp4

8.6 MB

02_avoidable-bias.mp4

9.1 MB

02_avoidable-bias_C3W1L08B.pptx

10.9 MB

03_understanding-human-level-performance.mp4

15.2 MB

/.../03_setting-up-your-optimization-problem/

06_gradient-checking-implementation-notes.zh-TW.txt

4.1 KB

04_numerical-approximation-of-gradients.zh-CN.txt

4.4 KB

04_numerical-approximation-of-gradients.zh-TW.txt

4.4 KB

06_gradient-checking-implementation-notes.zh-CN.txt

4.5 KB

05_gradient-checking.zh-TW.txt

4.5 KB

05_gradient-checking.zh-CN.txt

4.6 KB

02_vanishing-exploding-gradients.en.txt

4.9 KB

01_normalizing-inputs.en.txt

4.9 KB

03_weight-initialization-for-deep-networks.en.txt

5.1 KB

06_gradient-checking-implementation-notes.en.txt

5.1 KB

05_gradient-checking.en.txt

5.9 KB

04_numerical-approximation-of-gradients.en.txt

5.9 KB

06_gradient-checking-implementation-notes.zh-TW.srt

7.0 KB

06_gradient-checking-implementation-notes.zh-CN.srt

7.3 KB

04_numerical-approximation-of-gradients.zh-CN.srt

7.6 KB

04_numerical-approximation-of-gradients.zh-TW.srt

7.6 KB

01_normalizing-inputs.en.srt

7.7 KB

05_gradient-checking.zh-TW.srt

8.0 KB

06_gradient-checking-implementation-notes.en.srt

8.0 KB

05_gradient-checking.zh-CN.srt

8.1 KB

03_weight-initialization-for-deep-networks.en.srt

8.2 KB

02_vanishing-exploding-gradients.en.srt

8.4 KB

04_numerical-approximation-of-gradients.en.srt

9.2 KB

05_gradient-checking.en.srt

9.4 KB

02_vanishing-exploding-gradients_C2W1L07.pptx

309.2 KB

04_numerical-approximation-of-gradients_C2W1L08.pptx

311.7 KB

05_gradient-checking_C2W1L09.pptx

321.5 KB

01_normalizing-inputs_C2W1L06.pptx

3.5 MB

06_gradient-checking-implementation-notes.mp4

7.2 MB

01_normalizing-inputs.mp4

7.3 MB

03_weight-initialization-for-deep-networks.mp4

8.3 MB

05_gradient-checking.mp4

8.5 MB

02_vanishing-exploding-gradients.mp4

8.6 MB

04_numerical-approximation-of-gradients.mp4

8.7 MB

/.../04_introduction-to-programming-frameworks/

01_deep-learning-frameworks.en.txt

4.2 KB

01_deep-learning-frameworks.en.srt

6.6 KB

02_tensorflow.en.txt

12.6 KB

02_tensorflow.en.srt

20.5 KB

01_deep-learning-frameworks_C2W3L08.pptx

90.2 KB

02_tensorflow_C2W3L09.pptx

177.6 KB

01_deep-learning-frameworks.mp4

6.7 MB

02_tensorflow.mp4

22.4 MB

/.../01_welcome-to-the-deep-learning-specialization/

01_welcome.zh-TW.txt

4.3 KB

01_welcome.zh-CN.txt

4.5 KB

01_welcome.en.txt

5.4 KB

01_welcome.ja.txt

6.3 KB

01_welcome.zh-TW.srt

8.0 KB

01_welcome.zh-CN.srt

8.2 KB

01_welcome.en.srt

9.0 KB

01_welcome.ja.srt

9.9 KB

01_welcome.th.txt

10.7 KB

01_welcome.th.srt

14.3 KB

01_welcome.mp4

7.7 MB

/.../02_practical-advices-for-using-convnets/

01_using-open-source-implementation.en.txt

4.4 KB

01_using-open-source-implementation.en.srt

7.1 KB

02_transfer-learning.en.txt

7.6 KB

03_data-augmentation.en.txt

7.6 KB

04_state-of-computer-vision.en.txt

11.4 KB

02_transfer-learning.en.srt

11.9 KB

03_data-augmentation.en.srt

12.5 KB

04_state-of-computer-vision.en.srt

17.8 KB

01_using-open-source-implementation.mp4

8.5 MB

02_transfer-learning.mp4

12.1 MB

03_data-augmentation.mp4

13.0 MB

04_state-of-computer-vision.mp4

16.2 MB

/.../02_setting-up-your-goal/

04_size-of-the-dev-and-test-sets.en.txt

4.8 KB

02_satisficing-and-optimizing-metric.en.txt

5.0 KB

01_single-number-evaluation-metric.en.txt

6.3 KB

03_train-dev-test-distributions.en.txt

6.9 KB

04_size-of-the-dev-and-test-sets.en.srt

8.1 KB

02_satisficing-and-optimizing-metric.en.srt

8.2 KB

05_when-to-change-dev-test-sets-and-metrics.en.txt

9.7 KB

01_single-number-evaluation-metric.en.srt

9.9 KB

03_train-dev-test-distributions.en.srt

11.3 KB

05_when-to-change-dev-test-sets-and-metrics.en.srt

15.5 KB

02_satisficing-and-optimizing-metric_C3W1L04.pptx

197.3 KB

04_size-of-the-dev-and-test-sets_C3W1L06.pptx

220.3 KB

01_single-number-evaluation-metric_C3W1L03.pptx

229.3 KB

03_train-dev-test-distributions_Training_development_and_test_distributions.pdf

324.2 KB

04_size-of-the-dev-and-test-sets_Size_of_the_development_and_test_sets.pdf

371.5 KB

02_satisficing-and-optimizing-metric_Satisficing_and_optimizing_metric.pdf

462.9 KB

05_when-to-change-dev-test-sets-and-metrics_When_to_change_develpment_test_sets_and_metrics.pdf

468.7 KB

01_single-number-evaluation-metric_Single_number_evaluation_metric-2.pdf

475.2 KB

03_train-dev-test-distributions_C3W1L05.pptx

915.8 KB

04_size-of-the-dev-and-test-sets.mp4

8.0 MB

03_train-dev-test-distributions.mp4

8.8 MB

02_satisficing-and-optimizing-metric.mp4

8.9 MB

01_single-number-evaluation-metric.mp4

10.2 MB

05_when-to-change-dev-test-sets-and-metrics_C3W1L07.pptx

14.3 MB

05_when-to-change-dev-test-sets-and-metrics.mp4

15.4 MB

/.../02_batch-normalization/

04_batch-norm-at-test-time.en.txt

5.0 KB

01_normalizing-activations-in-a-network.en.txt

7.2 KB

04_batch-norm-at-test-time.en.srt

8.0 KB

02_fitting-batch-norm-into-a-neural-network.en.txt

9.7 KB

03_why-does-batch-norm-work.en.txt

10.0 KB

01_normalizing-activations-in-a-network.en.srt

11.4 KB

02_fitting-batch-norm-into-a-neural-network.en.srt

16.0 KB

03_why-does-batch-norm-work.en.srt

16.8 KB

04_batch-norm-at-test-time_C2W3L07.pptx

210.5 KB

01_normalizing-activations-in-a-network_C2W3L04.pptx

281.1 KB

02_fitting-batch-norm-into-a-neural-network_C2W3L05.pptx

397.4 KB

04_batch-norm-at-test-time.mp4

8.0 MB

01_normalizing-activations-in-a-network.mp4

12.4 MB

03_why-does-batch-norm-work.mp4

17.3 MB

02_fitting-batch-norm-into-a-neural-network.mp4

17.4 MB

03_why-does-batch-norm-work_C2W3L06.pptx

66.2 MB

/.../01_setting-up-your-machine-learning-application/

03_basic-recipe-for-machine-learning.zh-TW.txt

5.1 KB

03_basic-recipe-for-machine-learning.zh-CN.txt

5.7 KB

03_basic-recipe-for-machine-learning.en.txt

6.4 KB

02_bias-variance.en.txt

8.3 KB

03_basic-recipe-for-machine-learning.zh-TW.srt

9.4 KB

03_basic-recipe-for-machine-learning.zh-CN.srt

10.0 KB

03_basic-recipe-for-machine-learning.en.srt

10.7 KB

01_train-dev-test-sets.en.txt

11.3 KB

02_bias-variance.en.srt

14.0 KB

01_train-dev-test-sets.en.srt

17.6 KB

03_basic-recipe-for-machine-learning_C2W1L03_BasicRecipeML_annotated.pdf

228.8 KB

01_train-dev-test-sets_C2W1L01.pptx

287.7 KB

03_basic-recipe-for-machine-learning.mp4

8.4 MB

02_bias-variance_C2W1L02.pptx

11.0 MB

02_bias-variance.mp4

11.3 MB

01_train-dev-test-sets.mp4

15.1 MB

/.../01_error-analysis/

03_build-your-first-system-quickly-then-iterate.en.txt

5.4 KB

03_build-your-first-system-quickly-then-iterate.en.srt

8.6 KB

01_carrying-out-error-analysis.en.txt

9.6 KB

02_cleaning-up-incorrectly-labeled-data.en.txt

12.0 KB

01_carrying-out-error-analysis.en.srt

15.5 KB

02_cleaning-up-incorrectly-labeled-data.en.srt

19.6 KB

03_build-your-first-system-quickly-then-iterate_C3W2L03.pptx

118.8 KB

03_build-your-first-system-quickly-then-iterate_Build_System_Quickly.pdf

336.2 KB

01_carrying-out-error-analysis_C3W2L01.pptx

1.1 MB

03_build-your-first-system-quickly-then-iterate.mp4

8.7 MB

01_carrying-out-error-analysis.mp4

14.6 MB

02_cleaning-up-incorrectly-labeled-data.mp4

19.2 MB

02_cleaning-up-incorrectly-labeled-data_C3W2L02.pptx

34.0 MB

/.../01_convolutional-neural-networks/

01_computer-vision.en.txt

5.6 KB

08_simple-convolutional-network-example.en.txt

6.2 KB

03_more-edge-detection.en.txt

6.8 KB

05_strided-convolutions.en.txt

6.9 KB

04_padding.en.txt

7.5 KB

11_why-convolutions.en.txt

8.1 KB

06_convolutions-over-volume.en.txt

8.3 KB

09_pooling-layers.en.txt

8.5 KB

02_edge-detection-example.en.txt

8.8 KB

01_computer-vision.en.srt

9.1 KB

10_cnn-example.en.txt

10.0 KB

08_simple-convolutional-network-example.en.srt

10.1 KB

03_more-edge-detection.en.srt

10.7 KB

05_strided-convolutions.en.srt

11.4 KB

07_one-layer-of-a-convolutional-network.en.txt

12.1 KB

11_why-convolutions.en.srt

12.7 KB

04_padding.en.srt

12.9 KB

09_pooling-layers.en.srt

13.6 KB

06_convolutions-over-volume.en.srt

13.9 KB

02_edge-detection-example.en.srt

14.2 KB

10_cnn-example.en.srt

16.2 KB

07_one-layer-of-a-convolutional-network.en.srt

19.5 KB

09_pooling-layers_C4W1L09_PoolingLayers.pptx

160.4 KB

08_simple-convolutional-network-example_C4W1L08_SimpleCNNExample.pptx

178.4 KB

10_cnn-example_C4W1L10_CNNExample.pptx

183.4 KB

03_more-edge-detection_C4W1L03_MoreEdgeDetection.pptx

194.1 KB

04_padding_C4W1L04_Padding.pptx

204.3 KB

05_strided-convolutions_C4W1L05_StridedConv.pptx

206.1 KB

06_convolutions-over-volume_C4W1L06_ConvolutionsOverVolumes.pptx

228.7 KB

11_why-convolutions_C4W1L11_WhyConvs.pptx

4.8 MB

01_computer-vision_C4W1L01_ComputerVision.pptx

6.0 MB

02_edge-detection-example_C4W1L02_EdgeDetectionExample.pptx

6.9 MB

01_computer-vision.mp4

8.0 MB

03_more-edge-detection.mp4

10.3 MB

08_simple-convolutional-network-example.mp4

10.9 MB

05_strided-convolutions.mp4

11.5 MB

04_padding.mp4

12.5 MB

09_pooling-layers.mp4

12.7 MB

11_why-convolutions.mp4

12.9 MB

06_convolutions-over-volume.mp4

13.5 MB

02_edge-detection-example.mp4

14.6 MB

10_cnn-example.mp4

16.7 MB

07_one-layer-of-a-convolutional-network.mp4

21.0 MB

/.../02_regularizing-your-neural-network/

01_regularization.zh-CN.txt

5.7 KB

02_why-regularization-reduces-overfitting.en.txt

6.1 KB

05_other-regularization-methods.zh-TW.txt

6.3 KB

01_regularization.zh-TW.txt

6.3 KB

05_other-regularization-methods.zh-CN.txt

6.5 KB

04_understanding-dropout.en.txt

6.8 KB

01_regularization.en.txt

7.8 KB

05_other-regularization-methods.en.txt

8.1 KB

03_dropout-regularization.en.txt

8.3 KB

02_why-regularization-reduces-overfitting.en.srt

10.1 KB

01_regularization.zh-CN.srt

10.6 KB

05_other-regularization-methods.zh-TW.srt

11.0 KB

04_understanding-dropout.en.srt

11.1 KB

01_regularization.zh-TW.srt

11.2 KB

05_other-regularization-methods.zh-CN.srt

11.3 KB

01_regularization.en.srt

12.7 KB

05_other-regularization-methods.en.srt

12.9 KB

03_dropout-regularization.en.srt

14.2 KB

02_why-regularization-reduces-overfitting_C2W1L03b.pptx

233.1 KB

03_dropout-regularization_C2W1L04.pptx

341.5 KB

01_regularization_C2W1L03.pptx

446.2 KB

05_other-regularization-methods_C2W1L05.pptx

7.4 MB

02_why-regularization-reduces-overfitting.mp4

9.3 MB

04_understanding-dropout.mp4

9.4 MB

05_other-regularization-methods.mp4

10.4 MB

03_dropout-regularization.mp4

11.9 MB

01_regularization.mp4

12.5 MB

/.../01_hyperparameter-tuning/

01_tuning-process.en.txt

6.8 KB

02_using-an-appropriate-scale-to-pick-hyperparameters.en.txt

7.1 KB

03_hyperparameters-tuning-in-practice-pandas-vs-caviar.en.txt

7.1 KB

03_hyperparameters-tuning-in-practice-pandas-vs-caviar.en.srt

11.1 KB

01_tuning-process.en.srt

11.1 KB

02_using-an-appropriate-scale-to-pick-hyperparameters.en.srt

11.3 KB

01_tuning-process_C2W3L01.pptx

209.2 KB

02_using-an-appropriate-scale-to-pick-hyperparameters_C2W3L02.pptx

265.4 KB

03_hyperparameters-tuning-in-practice-pandas-vs-caviar_C2W3L03.pptx

9.0 MB

03_hyperparameters-tuning-in-practice-pandas-vs-caviar.mp4

9.2 MB

01_tuning-process.mp4

9.5 MB

02_using-an-appropriate-scale-to-pick-hyperparameters.mp4

12.2 MB

/.../03_multi-class-classification/

01_softmax-regression.zh-CN.txt

6.9 KB

02_training-a-softmax-classifier.zh-TW.txt

7.5 KB

01_softmax-regression.zh-TW.txt

7.7 KB

02_training-a-softmax-classifier.en.txt

8.8 KB

01_softmax-regression.en.txt

9.4 KB

02_training-a-softmax-classifier.zh-TW.srt

12.5 KB

01_softmax-regression.zh-CN.srt

12.6 KB

01_softmax-regression.zh-TW.srt

13.5 KB

02_training-a-softmax-classifier.en.srt

13.8 KB

01_softmax-regression.en.srt

15.1 KB

02_training-a-softmax-classifier_softmax2-new.pptx

92.7 KB

02_training-a-softmax-classifier.mp4

12.7 MB

01_softmax-regression.mp4

15.4 MB

01_softmax-regression_softmax-new.pptx

39.5 MB

/.../03_heroes-of-deep-learning-optional/

01_yuanqing-lin-interview.zh-CN.txt

8.9 KB

01_yuanqing-lin-interview.en.txt

10.5 KB

01_yuanqing-lin-interview.zh-CN.srt

16.3 KB

01_yuanqing-lin-interview.en.srt

17.8 KB

01_yuanqing-lin-interview.mp4

28.4 MB

/.../04_end-to-end-deep-learning/

02_whether-to-use-end-to-end-deep-learning.en.txt

9.1 KB

01_what-is-end-to-end-deep-learning.en.txt

11.7 KB

02_whether-to-use-end-to-end-deep-learning.en.srt

14.6 KB

01_what-is-end-to-end-deep-learning.en.srt

19.4 KB

01_what-is-end-to-end-deep-learning_What_is_end_to_end_deep_learning.pdf

338.2 KB

02_whether-to-use-end-to-end-deep-learning_Whether_to_use_end_to_end_deep_learning.pdf

366.5 KB

02_whether-to-use-end-to-end-deep-learning_C3W2L10.pptx

5.7 MB

01_what-is-end-to-end-deep-learning_C3W2L09.pptx

6.0 MB

02_whether-to-use-end-to-end-deep-learning.mp4

13.8 MB

01_what-is-end-to-end-deep-learning.mp4

15.7 MB

/.../02_mismatched-training-and-dev-test-set/

03_addressing-data-mismatch.en.txt

9.3 KB

01_training-and-testing-on-different-distributions.en.txt

9.3 KB

01_training-and-testing-on-different-distributions.en.srt

14.6 KB

03_addressing-data-mismatch.en.srt

14.9 KB

02_bias-and-variance-with-mismatched-data-distributions.en.txt

14.9 KB

02_bias-and-variance-with-mismatched-data-distributions.en.srt

23.7 KB

03_addressing-data-mismatch_Adressing_data_mismatch.pdf

338.0 KB

01_training-and-testing-on-different-distributions_Training_and_testing_on_different_distributions.pdf

350.3 KB

02_bias-and-variance-with-mismatched-data-distributions_C3W2L05.pptx

365.9 KB

02_bias-and-variance-with-mismatched-data-distributions_Bias_and_variance_with_mismatched_data_distributions.pdf

368.2 KB

03_addressing-data-mismatch_C3W2L06.pptx

9.8 MB

03_addressing-data-mismatch.mp4

13.8 MB

01_training-and-testing-on-different-distributions_C3W2L04.pptx

13.8 MB

01_training-and-testing-on-different-distributions.mp4

15.0 MB

02_bias-and-variance-with-mismatched-data-distributions.mp4

23.8 MB

/.../03_learning-from-multiple-tasks/

01_transfer-learning.en.txt

10.4 KB

02_multi-task-learning.en.txt

12.3 KB

01_transfer-learning.en.srt

17.0 KB

02_multi-task-learning.en.srt

19.2 KB

01_transfer-learning_C3W2L07.pptx

223.6 KB

01_transfer-learning_Transfer_Learning.pdf

517.5 KB

02_multi-task-learning_Multi_Task_Learning.pdf

578.4 KB

02_multi-task-learning_C3W2L08.pptx

1.5 MB

01_transfer-learning.mp4

16.3 MB

02_multi-task-learning.mp4

19.7 MB

/.../03_heroes-of-deep-learning-optional/

01_ian-goodfellow-interview.zh-TW.txt

10.8 KB

01_ian-goodfellow-interview.en.txt

14.5 KB

01_ian-goodfellow-interview.ja.txt

17.4 KB

01_ian-goodfellow-interview.zh-TW.srt

20.0 KB

01_ian-goodfellow-interview.en.srt

23.6 KB

01_ian-goodfellow-interview.ja.srt

26.6 KB

01_ian-goodfellow-interview.mp4

26.0 MB

/.../04_heroes-of-deep-learning-optional/

01_pieter-abbeel-interview.zh-TW.txt

12.1 KB

01_pieter-abbeel-interview.en.txt

16.6 KB

01_pieter-abbeel-interview.pt-BR.txt

18.8 KB

01_pieter-abbeel-interview.ja.txt

19.5 KB

01_pieter-abbeel-interview.zh-TW.srt

23.1 KB

01_pieter-abbeel-interview.en.srt

27.5 KB

01_pieter-abbeel-interview.pt-BR.srt

29.7 KB

01_pieter-abbeel-interview.ja.srt

30.5 KB

01_pieter-abbeel-interview.mp4

37.3 MB

/.../05_heroes-of-deep-learning-optional/

01_ruslan-salakhutdinov-interview.en.txt

15.6 KB

01_ruslan-salakhutdinov-interview.en.srt

24.6 KB

01_ruslan-salakhutdinov-interview.mp4

46.9 MB

/.../05_heroes-of-deep-learning-optional/

01_andrej-karpathy-interview.en.txt

17.3 KB

01_andrej-karpathy-interview.en.srt

27.6 KB

01_andrej-karpathy-interview.mp4

38.3 MB

/.../05_heroes-of-deep-learning-optional/

01_yoshua-bengio-interview.zh-CN.txt

19.0 KB

01_yoshua-bengio-interview.en.txt

21.9 KB

01_yoshua-bengio-interview.zh-CN.srt

32.1 KB

01_yoshua-bengio-interview.en.srt

35.0 KB

01_yoshua-bengio-interview.mp4

57.8 MB

/.../03_heroes-of-deep-learning-optional/

01_geoffrey-hinton-interview.zh-TW.txt

28.3 KB

01_geoffrey-hinton-interview.en.txt

36.5 KB

01_geoffrey-hinton-interview.ja.txt

42.1 KB

01_geoffrey-hinton-interview.zh-TW.srt

50.6 KB

01_geoffrey-hinton-interview.en.srt

58.9 KB

01_geoffrey-hinton-interview.ja.srt

64.4 KB

01_geoffrey-hinton-interview.mp4

88.6 MB

/.../04_machine-learning-flight-simulator/

01_machine-learning-flight-simulator_instructions.html

2.5 MB

 

Total files 927


Copyright © 2025 FileMood.com