FileMood

Download [DesireCourse.Com] Udemy - Artificial Intelligence Masterclass

DesireCourse Com Udemy Artificial Intelligence Masterclass

Name

[DesireCourse.Com] Udemy - Artificial Intelligence Masterclass

 DOWNLOAD Copy Link

Total Size

4.9 GB

Total Files

127

Hash

63DDA960206C06F8E234022D2B8161D58E8602D1

/1. Introduction/

1. Introduction + Course Structure + Demo.mp4

164.4 MB

1. Introduction + Course Structure + Demo.vtt

19.6 KB

2. Your Three Best Resources.mp4

150.2 MB

2. Your Three Best Resources.vtt

12.1 KB

3. Download the Resources here.html

3.1 KB

4. Meet your instructors!.html

0.7 KB

/10. Step 9 - Reinforcement Learning/

1. Welcome to Step 9 - Reinforcement Learning.html

0.4 KB

2. What is Reinforcement Learning.mp4

71.9 MB

2. What is Reinforcement Learning.vtt

16.4 KB

3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.mp4

161.7 MB

3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.vtt

24.1 KB

4. Full Code Section.html

0.4 KB

/11. Step 10 - Deep NeuroEvolution/

1. Welcome to Step 10 - Deep NeuroEvolution.html

1.1 KB

/2. Step 1 - Artificial Neural Network/

1. Welcome to Step 1 - Artificial Neural Network.html

0.6 KB

2. Plan of Attack.mp4

12.4 MB

2. Plan of Attack.vtt

3.6 KB

3. The Neuron.mp4

103.6 MB

3. The Neuron.vtt

22.1 KB

4. The Activation Function.mp4

47.6 MB

4. The Activation Function.vtt

10.7 KB

5. How do Neural Networks work.mp4

85.9 MB

5. How do Neural Networks work.vtt

17.2 KB

6. How do Neural Networks learn.mp4

117.6 MB

6. How do Neural Networks learn.vtt

16.9 KB

7. Gradient Descent.mp4

63.6 MB

7. Gradient Descent.vtt

12.6 KB

8. Stochastic Gradient Descent.mp4

70.6 MB

8. Stochastic Gradient Descent.vtt

11.0 KB

9. Backpropagation.mp4

45.2 MB

9. Backpropagation.vtt

6.6 KB

/3. Step 2 - Convolutional Neural Network/

1. Welcome to Step 2 - Convolutional Neural Network.html

0.4 KB

10. Softmax & Cross-Entropy.mp4

123.7 MB

10. Softmax & Cross-Entropy.vtt

22.7 KB

2. Plan of Attack.mp4

16.6 MB

2. Plan of Attack.vtt

4.8 KB

3. What are Convolutional Neural Networks.mp4

113.2 MB

3. What are Convolutional Neural Networks.vtt

19.9 KB

4. Step 1 - The Convolution Operation.mp4

102.7 MB

4. Step 1 - The Convolution Operation.vtt

20.9 KB

5. Step 1 Bis - The ReLU Layer.mp4

56.0 MB

5. Step 1 Bis - The ReLU Layer.vtt

8.4 KB

6. Step 2 - Pooling.mp4

147.0 MB

6. Step 2 - Pooling.vtt

18.8 KB

7. Step 3 - Flattening.mp4

8.3 MB

7. Step 3 - Flattening.vtt

2.3 KB

8. Step 4 - Full Connection.mp4

203.7 MB

8. Step 4 - Full Connection.vtt

25.6 KB

9. Summary.mp4

31.8 MB

9. Summary.vtt

5.5 KB

/4. Step 3 - AutoEncoder/

1. Welcome to Step 3 - AutoEncoder.html

0.4 KB

10. Stacked AutoEncoders.mp4

17.2 MB

10. Stacked AutoEncoders.vtt

2.2 KB

11. Deep AutoEncoders.mp4

12.5 MB

11. Deep AutoEncoders.vtt

2.5 KB

2. Plan of Attack.mp4

12.4 MB

2. Plan of Attack.vtt

2.9 KB

3. What are AutoEncoders.mp4

99.2 MB

3. What are AutoEncoders.vtt

14.7 KB

4. A Note on Biases.mp4

9.0 MB

4. A Note on Biases.vtt

1.8 KB

5. Training an AutoEncoder.mp4

52.7 MB

5. Training an AutoEncoder.vtt

8.6 KB

6. Overcomplete Hidden Layers.mp4

29.4 MB

6. Overcomplete Hidden Layers.vtt

5.1 KB

7. Sparse AutoEncoders.mp4

60.2 MB

7. Sparse AutoEncoders.vtt

8.0 KB

8. Denoising AutoEncoders.mp4

25.3 MB

8. Denoising AutoEncoders.vtt

3.3 KB

9. Contractive AutoEncoders.mp4

21.6 MB

9. Contractive AutoEncoders.vtt

3.2 KB

/5. Step 4 - Variational AutoEncoder/

1. Welcome to Step 4 - Variational AutoEncoder.html

0.4 KB

2. Introduction to the VAE.mp4

108.7 MB

2. Introduction to the VAE.vtt

9.9 KB

3. Variational AutoEncoders.mp4

27.6 MB

3. Variational AutoEncoders.vtt

5.6 KB

4. Reparameterization Trick.mp4

27.7 MB

4. Reparameterization Trick.vtt

5.9 KB

/6. Step 5 - Implementing the CNN-VAE/

1. Welcome to Step 5 - Implementing the CNN-VAE.html

2.4 KB

2. Introduction to Step 5.mp4

61.7 MB

2. Introduction to Step 5.vtt

9.6 KB

3. Initializing all the parameters and variables of the CNN-VAE class.mp4

75.2 MB

3. Initializing all the parameters and variables of the CNN-VAE class.vtt

15.2 KB

4. Building the Encoder part of the VAE.mp4

140.1 MB

4. Building the Encoder part of the VAE.vtt

23.3 KB

5. Building the V part of the VAE.mp4

84.2 MB

5. Building the V part of the VAE.vtt

12.1 KB

6. Building the Decoder part of the VAE.mp4

97.4 MB

6. Building the Decoder part of the VAE.vtt

11.7 KB

7. Implementing the Training operations.mp4

196.1 MB

7. Implementing the Training operations.vtt

20.9 KB

8. Full Code Section.html

4.1 KB

/7. Step 6 - Recurrent Neural Network/

1. Welcome to Step 6 - Recurrent Neural Network.html

0.5 KB

2. Plan of Attack.mp4

11.0 MB

2. Plan of Attack.vtt

3.1 KB

3. What are Recurrent Neural Networks.mp4

127.0 MB

3. What are Recurrent Neural Networks.vtt

21.3 KB

4. The Vanishing Gradient Problem.mp4

116.6 MB

4. The Vanishing Gradient Problem.vtt

18.7 KB

5. LSTMs.mp4

143.2 MB

5. LSTMs.vtt

25.2 KB

6. LSTM Practical Intuition.mp4

196.5 MB

6. LSTM Practical Intuition.vtt

18.8 KB

7. LSTM Variations.mp4

21.1 MB

7. LSTM Variations.vtt

4.4 KB

/8. Step 7 - Mixture Density Network/

1. Welcome to Step 7 - Mixture Density Network.html

0.5 KB

/9. Step 8 - Implementing the MDN-RNN/

1. Welcome to Step 8 - Implementing the MDN-RNN.html

2.9 KB

10. Implementing the Training operations (Part 2).mp4

170.8 MB

10. Implementing the Training operations (Part 2).vtt

16.8 KB

11. Full Code Section.html

11.1 KB

2. Initializing all the parameters and variables of the MDN-RNN class.mp4

104.3 MB

2. Initializing all the parameters and variables of the MDN-RNN class.vtt

16.2 KB

3. Building the RNN - Gathering the parameters.mp4

80.3 MB

3. Building the RNN - Gathering the parameters.vtt

11.6 KB

4. Building the RNN - Creating an LSTM cell with Dropout.mp4

133.3 MB

4. Building the RNN - Creating an LSTM cell with Dropout.vtt

19.7 KB

5. Building the RNN - Setting up the Input, Target, and Output of the RNN.mp4

137.5 MB

5. Building the RNN - Setting up the Input, Target, and Output of the RNN.vtt

18.1 KB

6. Building the RNN - Getting the Deterministic Output of the RNN.mp4

131.6 MB

6. Building the RNN - Getting the Deterministic Output of the RNN.vtt

14.7 KB

7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.mp4

154.1 MB

7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.vtt

15.0 KB

8. Building the MDN - Getting the MDN parameters.mp4

114.8 MB

8. Building the MDN - Getting the MDN parameters.vtt

13.1 KB

9. Implementing the Training operations (Part 1).mp4

186.1 MB

9. Implementing the Training operations (Part 1).vtt

18.2 KB

/

[DesireCourse.Com].txt

0.8 KB

[DesireCourse.Com].url

0.1 KB

 

Total files 127


Copyright © 2024 FileMood.com