/1. Introduction and Outline/
|
1. Introduction and Outline.mp4
|
3.4 MB
|
1. Introduction and Outline.vtt
|
0.4 KB
|
2. Where does this course fit into your deep learning studies.mp4
|
5.4 MB
|
2. Where does this course fit into your deep learning studies.vtt
|
0.4 KB
|
3. How to Succeed in this Course.mp4
|
6.7 MB
|
3. How to Succeed in this Course.vtt
|
0.4 KB
|
4. Where to get the code and data.mp4
|
27.7 MB
|
4. Where to get the code and data.vtt
|
0.4 KB
|
5. Tensorflow or Theano - Your Choice!.mp4
|
19.9 MB
|
5. Tensorflow or Theano - Your Choice!.vtt
|
0.4 KB
|
6. What are the practical applications of unsupervised deep learning.mp4
|
12.2 MB
|
6. What are the practical applications of unsupervised deep learning.vtt
|
0.4 KB
|
/10. Basics Review/
|
1. (Review) Theano Basics.mp4
|
98.0 MB
|
1. (Review) Theano Basics.vtt
|
6.5 KB
|
2. (Review) Theano Neural Network in Code.mp4
|
91.3 MB
|
2. (Review) Theano Neural Network in Code.vtt
|
3.4 KB
|
3. (Review) Tensorflow Basics.mp4
|
85.4 MB
|
3. (Review) Tensorflow Basics.vtt
|
5.2 KB
|
4. (Review) Tensorflow Neural Network in Code.mp4
|
102.1 MB
|
4. (Review) Tensorflow Neural Network in Code.vtt
|
4.9 KB
|
5. (Review) Keras Basics.mp4
|
29.0 MB
|
5. (Review) Keras Basics.vtt
|
8.2 KB
|
6. (Review) Keras in Code pt 1.mp4
|
69.4 MB
|
6. (Review) Keras in Code pt 1.vtt
|
6.6 KB
|
7. (Review) Keras in Code pt 2.mp4
|
40.5 MB
|
7. (Review) Keras in Code pt 2.vtt
|
4.8 KB
|
/11. Optional - Legacy RBM Lectures/
|
1. (Legacy) Restricted Boltzmann Machine Theory.mp4
|
15.1 MB
|
1. (Legacy) Restricted Boltzmann Machine Theory.vtt
|
10.6 KB
|
2. (Legacy) Deriving Conditional Probabilities from Joint Probability.mp4
|
9.8 MB
|
2. (Legacy) Deriving Conditional Probabilities from Joint Probability.vtt
|
5.9 KB
|
3. (Legacy) Contrastive Divergence for RBM Training.mp4
|
5.1 MB
|
3. (Legacy) Contrastive Divergence for RBM Training.vtt
|
3.1 KB
|
4. (Legacy) How to derive the free energy formula.mp4
|
11.4 MB
|
4. (Legacy) How to derive the free energy formula.vtt
|
5.7 KB
|
/12. Appendix/
|
1. What is the Appendix.mp4
|
5.7 MB
|
1. What is the Appendix.vtt
|
3.4 KB
|
10. Python 2 vs Python 3.mp4
|
8.2 MB
|
10. Python 2 vs Python 3.vtt
|
5.5 KB
|
11. Is Theano Dead.mp4
|
18.7 MB
|
11. Is Theano Dead.vtt
|
11.6 KB
|
12. What order should I take your courses in (part 1).mp4
|
30.8 MB
|
12. What order should I take your courses in (part 1).vtt
|
14.4 KB
|
13. What order should I take your courses in (part 2).mp4
|
39.4 MB
|
13. What order should I take your courses in (part 2).vtt
|
20.7 KB
|
2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4
|
4.2 MB
|
2. BONUS Where to get Udemy coupons and FREE deep learning material.vtt
|
3.1 KB
|
3. Windows-Focused Environment Setup 2018.mp4
|
195.4 MB
|
3. Windows-Focused Environment Setup 2018.vtt
|
17.8 KB
|
4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
|
46.0 MB
|
4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt
|
12.7 KB
|
5. How to Code by Yourself (part 1).mp4
|
25.7 MB
|
5. How to Code by Yourself (part 1).vtt
|
20.3 KB
|
6. How to Code by Yourself (part 2).mp4
|
15.5 MB
|
6. How to Code by Yourself (part 2).vtt
|
11.9 KB
|
7. How to Succeed in this Course (Long Version).mp4
|
19.2 MB
|
7. How to Succeed in this Course (Long Version).vtt
|
13.1 KB
|
8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
|
40.8 MB
|
8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt
|
28.4 KB
|
9. Proof that using Jupyter Notebook is the same as not using it.mp4
|
82.1 MB
|
9. Proof that using Jupyter Notebook is the same as not using it.vtt
|
82.1 MB
|
/2. Principal Components Analysis/
|
1. What does PCA do.mp4
|
29.1 MB
|
1. What does PCA do.vtt
|
5.1 KB
|
10. SVD (Singular Value Decomposition).mp4
|
44.5 MB
|
10. SVD (Singular Value Decomposition).vtt
|
10.6 KB
|
2. How does PCA work.mp4
|
53.4 MB
|
2. How does PCA work.vtt
|
12.7 KB
|
3. Why does PCA work (PCA derivation).mp4
|
53.8 MB
|
3. Why does PCA work (PCA derivation).vtt
|
0.4 KB
|
4. PCA only rotates.mp4
|
17.2 MB
|
4. PCA only rotates.vtt
|
0.4 KB
|
5. MNIST visualization, finding the optimal number of principal components.mp4
|
9.8 MB
|
5. MNIST visualization, finding the optimal number of principal components.vtt
|
3.4 KB
|
6. PCA implementation.mp4
|
33.6 MB
|
6. PCA implementation.vtt
|
0.4 KB
|
7. PCA for NLP.mp4
|
17.4 MB
|
7. PCA for NLP.vtt
|
4.0 KB
|
8. PCA objective function.mp4
|
3.9 MB
|
8. PCA objective function.vtt
|
2.3 KB
|
9. PCA Application Naive Bayes.mp4
|
56.3 MB
|
9. PCA Application Naive Bayes.vtt
|
11.0 KB
|
/3. t-SNE (t-distributed Stochastic Neighbor Embedding)/
|
1. t-SNE Theory.mp4
|
8.3 MB
|
1. t-SNE Theory.vtt
|
4.9 KB
|
2. t-SNE Visualization.mp4
|
13.7 MB
|
2. t-SNE Visualization.vtt
|
4.9 KB
|
3. t-SNE on the Donut.mp4
|
15.8 MB
|
3. t-SNE on the Donut.vtt
|
2.3 KB
|
4. t-SNE on XOR.mp4
|
9.8 MB
|
4. t-SNE on XOR.vtt
|
3.7 KB
|
5. t-SNE on MNIST.mp4
|
4.6 MB
|
5. t-SNE on MNIST.vtt
|
1.6 KB
|
/4. Autoencoders/
|
1. Autoencoders.mp4
|
6.1 MB
|
1. Autoencoders.vtt
|
4.0 KB
|
10. Deep Autoencoder Visualization Description.mp4
|
2.6 MB
|
10. Deep Autoencoder Visualization Description.vtt
|
2.0 KB
|
11. Deep Autoencoder Visualization in Code.mp4
|
29.2 MB
|
11. Deep Autoencoder Visualization in Code.vtt
|
6.8 KB
|
12. An Autoencoder in 1 Line of Code.mp4
|
26.1 MB
|
12. An Autoencoder in 1 Line of Code.vtt
|
5.2 KB
|
2. Denoising Autoencoders.mp4
|
3.6 MB
|
2. Denoising Autoencoders.vtt
|
2.3 KB
|
3. Stacked Autoencoders.mp4
|
6.9 MB
|
3. Stacked Autoencoders.vtt
|
4.3 KB
|
4. Writing the autoencoder class in code (Theano).mp4
|
40.4 MB
|
4. Writing the autoencoder class in code (Theano).vtt
|
6.2 KB
|
5. Testing our Autoencoder (Theano).mp4
|
11.9 MB
|
5. Testing our Autoencoder (Theano).vtt
|
2.7 KB
|
6. Writing the deep neural network class in code (Theano).mp4
|
44.0 MB
|
6. Writing the deep neural network class in code (Theano).vtt
|
6.5 KB
|
7. Autoencoder in Code (Tensorflow).mp4
|
25.6 MB
|
7. Autoencoder in Code (Tensorflow).vtt
|
8.4 KB
|
8. Testing greedy layer-wise autoencoder training vs. pure backpropagation.mp4
|
19.4 MB
|
8. Testing greedy layer-wise autoencoder training vs. pure backpropagation.vtt
|
1.9 KB
|
9. Cross Entropy vs. KL Divergence.mp4
|
7.8 MB
|
9. Cross Entropy vs. KL Divergence.vtt
|
5.6 KB
|
/5. Restricted Boltzmann Machines/
|
1. Basic Outline for RBMs.mp4
|
34.6 MB
|
1. Basic Outline for RBMs.vtt
|
5.8 KB
|
10. RBM in Code (Theano) with Greedy Layer-Wise Training on MNIST.mp4
|
50.1 MB
|
10. RBM in Code (Theano) with Greedy Layer-Wise Training on MNIST.vtt
|
6.9 KB
|
11. RBM in Code (Tensorflow).mp4
|
14.4 MB
|
11. RBM in Code (Tensorflow).vtt
|
0.4 KB
|
2. Introduction to RBMs.mp4
|
41.4 MB
|
2. Introduction to RBMs.vtt
|
0.4 KB
|
3. Motivation Behind RBMs.mp4
|
35.6 MB
|
3. Motivation Behind RBMs.vtt
|
0.4 KB
|
4. Intractability.mp4
|
13.5 MB
|
4. Intractability.vtt
|
0.4 KB
|
5. Neural Network Equations.mp4
|
33.2 MB
|
5. Neural Network Equations.vtt
|
7.6 KB
|
6. Training an RBM (part 1).mp4
|
51.5 MB
|
6. Training an RBM (part 1).vtt
|
12.0 KB
|
7. Training an RBM (part 2).mp4
|
28.7 MB
|
7. Training an RBM (part 2).vtt
|
6.6 KB
|
8. Training an RBM (part 3) - Free Energy.mp4
|
28.9 MB
|
8. Training an RBM (part 3) - Free Energy.vtt
|
7.2 KB
|
9. RBM Greedy Layer-Wise Pretraining.mp4
|
24.8 MB
|
9. RBM Greedy Layer-Wise Pretraining.vtt
|
5.3 KB
|
/6. The Vanishing Gradient Problem/
|
1. The Vanishing Gradient Problem Description.mp4
|
5.5 MB
|
1. The Vanishing Gradient Problem Description.vtt
|
0.4 KB
|
2. The Vanishing Gradient Problem Demo in Code.mp4
|
32.8 MB
|
2. The Vanishing Gradient Problem Demo in Code.vtt
|
0.4 KB
|
/7. Extras + Visualizing what features a neural network has learned/
|
1. Exercises on feature visualization and interpretation.mp4
|
3.9 MB
|
1. Exercises on feature visualization and interpretation.vtt
|
0.4 KB
|
/8. Applications to NLP (Natural Language Processing)/
|
1. Application of PCA and SVD to NLP (Natural Language Processing).mp4
|
4.1 MB
|
1. Application of PCA and SVD to NLP (Natural Language Processing).vtt
|
0.4 KB
|
2. Latent Semantic Analysis in Code.mp4
|
26.9 MB
|
2. Latent Semantic Analysis in Code.vtt
|
0.4 KB
|
3. Application of t-SNE + K-Means Finding Clusters of Related Words.mp4
|
27.2 MB
|
3. Application of t-SNE + K-Means Finding Clusters of Related Words.vtt
|
0.4 KB
|
/9. Applications to Recommender Systems/
|
1. Recommender Systems Section Introduction.mp4
|
71.5 MB
|
1. Recommender Systems Section Introduction.vtt
|
0.4 KB
|
10. Recommender RBM Code Speedup.mp4
|
87.0 MB
|
10. Recommender RBM Code Speedup.vtt
|
87.0 MB
|
2. Why Autoencoders and RBMs work.mp4
|
40.0 MB
|
2. Why Autoencoders and RBMs work.vtt
|
0.4 KB
|
3. Data Preparation and Logistics.mp4
|
22.2 MB
|
3. Data Preparation and Logistics.vtt
|
0.4 KB
|
4. AutoRec.mp4
|
51.3 MB
|
4. AutoRec.vtt
|
0.4 KB
|
5. AutoRec in Code.mp4
|
107.3 MB
|
5. AutoRec in Code.vtt
|
12.9 KB
|
6. Categorical RBM for Recommender System Ratings.mp4
|
49.9 MB
|
6. Categorical RBM for Recommender System Ratings.vtt
|
12.3 KB
|
7. Recommender RBM Code pt 1.mp4
|
73.8 MB
|
7. Recommender RBM Code pt 1.vtt
|
8.9 KB
|
8. Recommender RBM Code pt 2.mp4
|
41.5 MB
|
8. Recommender RBM Code pt 2.vtt
|
4.7 KB
|
9. Recommender RBM Code pt 3.mp4
|
134.8 MB
|
9. Recommender RBM Code pt 3.vtt
|
12.3 KB
|
/
|
[DesireCourse.Com].url
|
0.1 KB
|
Total files 169
|