FileMood

Download [DesireCourse.Net] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science

DesireCourse Net Udemy Machine Learning Hands On Python In Data Science

Name

[DesireCourse.Net] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

6.4 GB

Total Files

575

Hash

EC385DD048F6807C9C5779F6209AF266BA3E74A3

/1. Welcome to the course!/

1. Applications of Machine Learning.mp4

8.4 MB

1. Applications of Machine Learning.srt

5.4 KB

10. Installing R and R Studio (Mac, Linux & Windows).mp4

18.4 MB

10. Installing R and R Studio (Mac, Linux & Windows).srt

9.4 KB

11. BONUS Meet your instructors.html

1.1 KB

12. Some Additional Resources.html

0.6 KB

13. FAQBot!.html

1.8 KB

2. BONUS Learning Paths.html

2.4 KB

3. Why Machine Learning is the Future.mp4

13.4 MB

3. Why Machine Learning is the Future.srt

9.5 KB

4. Important notes, tips & tricks for this course.html

3.3 KB

5. This PDF resource will help you a lot.html

1.5 KB

5.1 Machine_Learning_A_Z_Q_A.pdf.pdf

2.4 MB

6. The whole code folder of the course.html

1.0 KB

6.1 Machine_Learning_A-Z_New.zip.zip

239.5 MB

7. Updates on Udemy Reviews.mp4

55.5 MB

7. Updates on Udemy Reviews.srt

4.1 KB

8. Installing Python and Anaconda (Mac, Linux & Windows).mp4

20.5 MB

8. Installing Python and Anaconda (Mac, Linux & Windows).srt

12.6 KB

9. Update Recommended Anaconda Version.html

1.4 KB

/10. Evaluating Regression Models Performance/

1. R-Squared Intuition.mp4

9.3 MB

1. R-Squared Intuition.srt

7.3 KB

2. Adjusted R-Squared Intuition.mp4

20.2 MB

2. Adjusted R-Squared Intuition.srt

14.8 KB

3. Evaluating Regression Models Performance - Homework's Final Part.mp4

23.0 MB

3. Evaluating Regression Models Performance - Homework's Final Part.srt

13.2 KB

4. Interpreting Linear Regression Coefficients.mp4

25.4 MB

4. Interpreting Linear Regression Coefficients.srt

13.6 KB

5. Conclusion of Part 2 - Regression.html

3.0 KB

/11. -------------------- Part 3 Classification --------------------/

1. Welcome to Part 3 - Classification.html

0.8 KB

/12. Logistic Regression/

1. Logistic Regression Intuition.mp4

30.6 MB

1. Logistic Regression Intuition.srt

24.5 KB

10. Logistic Regression in R - Step 2.mp4

8.2 MB

10. Logistic Regression in R - Step 2.srt

4.5 KB

11. Logistic Regression in R - Step 3.mp4

15.3 MB

11. Logistic Regression in R - Step 3.srt

7.6 KB

12. Logistic Regression in R - Step 4.mp4

7.2 MB

12. Logistic Regression in R - Step 4.srt

4.1 KB

13. Warning - Update.html

1.4 KB

14. Logistic Regression in R - Step 5.mp4

54.2 MB

14. Logistic Regression in R - Step 5.srt

29.8 KB

15. R Classification Template.mp4

13.1 MB

15. R Classification Template.srt

6.9 KB

16. Logistic Regression.html

0.1 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. Logistic Regression in Python - Step 1.mp4

13.6 MB

3. Logistic Regression in Python - Step 1.srt

9.0 KB

4. Logistic Regression in Python - Step 2.mp4

8.6 MB

4. Logistic Regression in Python - Step 2.srt

5.0 KB

5. Logistic Regression in Python - Step 3.mp4

6.3 MB

5. Logistic Regression in Python - Step 3.srt

4.2 KB

6. Logistic Regression in Python - Step 4.mp4

10.9 MB

6. Logistic Regression in Python - Step 4.srt

7.3 KB

7. Logistic Regression in Python - Step 5.mp4

44.6 MB

7. Logistic Regression in Python - Step 5.srt

30.4 KB

8. Python Classification Template.mp4

12.7 MB

8. Python Classification Template.srt

6.2 KB

9. Logistic Regression in R - Step 1.mp4

13.2 MB

9. Logistic Regression in R - Step 1.srt

9.1 KB

/13. K-Nearest Neighbors (K-NN)/

1. K-Nearest Neighbor Intuition.mp4

9.7 MB

1. K-Nearest Neighbor Intuition.srt

8.2 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. K-NN in Python.mp4

36.9 MB

3. K-NN in Python.srt

21.7 KB

4. K-NN in R.mp4

43.4 MB

4. K-NN in R.srt

23.9 KB

5. K-Nearest Neighbor.html

0.1 KB

/14. Support Vector Machine (SVM)/

1. SVM Intuition.mp4

18.9 MB

1. SVM Intuition.srt

16.1 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. SVM in Python.mp4

32.7 MB

3. SVM in Python.srt

19.6 KB

4. SVM in R.mp4

33.8 MB

4. SVM in R.srt

18.8 KB

4.1 SVM.zip.zip

8.5 KB

/15. Kernel SVM/

1. Kernel SVM Intuition.mp4

6.1 MB

1. Kernel SVM Intuition.srt

4.5 KB

2. Mapping to a higher dimension.mp4

14.4 MB

2. Mapping to a higher dimension.srt

10.8 KB

3. The Kernel Trick.mp4

30.7 MB

3. The Kernel Trick.srt

16.9 KB

4. Types of Kernel Functions.mp4

12.9 MB

4. Types of Kernel Functions.srt

5.1 KB

5. How to get the dataset.mp4

12.3 MB

5. How to get the dataset.srt

4.9 KB

6. Kernel SVM in Python.mp4

43.6 MB

6. Kernel SVM in Python.srt

28.9 KB

7. Kernel SVM in R.mp4

42.4 MB

7. Kernel SVM in R.srt

26.1 KB

/16. Naive Bayes/

1. Bayes Theorem.mp4

46.0 MB

1. Bayes Theorem.srt

35.3 KB

2. Naive Bayes Intuition.mp4

29.1 MB

2. Naive Bayes Intuition.srt

23.9 KB

3. Naive Bayes Intuition (Challenge Reveal).mp4

13.9 MB

3. Naive Bayes Intuition (Challenge Reveal).srt

9.7 KB

4. Naive Bayes Intuition (Extras).mp4

19.9 MB

4. Naive Bayes Intuition (Extras).srt

16.3 KB

5. How to get the dataset.mp4

12.3 MB

5. How to get the dataset.srt

4.9 KB

6. Naive Bayes in Python.mp4

24.5 MB

6. Naive Bayes in Python.srt

14.1 KB

7. Naive Bayes in R.mp4

39.1 MB

7. Naive Bayes in R.srt

22.4 KB

/17. Decision Tree Classification/

1. Decision Tree Classification Intuition.mp4

19.7 MB

1. Decision Tree Classification Intuition.srt

13.2 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. Decision Tree Classification in Python.mp4

31.2 MB

3. Decision Tree Classification in Python.srt

19.9 KB

4. Decision Tree Classification in R.mp4

53.7 MB

4. Decision Tree Classification in R.srt

29.8 KB

/18. Random Forest Classification/

1. Random Forest Classification Intuition.mp4

20.4 MB

1. Random Forest Classification Intuition.srt

7.2 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. Random Forest Classification in Python.mp4

49.4 MB

3. Random Forest Classification in Python.srt

31.5 KB

4. Random Forest Classification in R.mp4

51.8 MB

4. Random Forest Classification in R.srt

33.2 KB

/19. Evaluating Classification Models Performance/

1. False Positives & False Negatives.mp4

14.3 MB

1. False Positives & False Negatives.srt

11.6 KB

2. Confusion Matrix.mp4

8.6 MB

2. Confusion Matrix.srt

7.7 KB

3. Accuracy Paradox.mp4

4.0 MB

3. Accuracy Paradox.srt

3.3 KB

4. CAP Curve.mp4

19.6 MB

4. CAP Curve.srt

16.6 KB

5. CAP Curve Analysis.mp4

12.1 MB

5. CAP Curve Analysis.srt

9.5 KB

6. Conclusion of Part 3 - Classification.html

3.6 KB

/2. -------------------- Part 1 Data Preprocessing --------------------/

1. Welcome to Part 1 - Data Preprocessing.mp4

3.1 MB

1. Welcome to Part 1 - Data Preprocessing.srt

2.6 KB

10. Feature Scaling.mp4

36.3 MB

10. Feature Scaling.srt

24.0 KB

11. And here is our Data Preprocessing Template!.mp4

20.6 MB

11. And here is our Data Preprocessing Template!.srt

14.5 KB

12. Data Preprocessing.html

0.1 KB

2. Get the dataset.mp4

22.2 MB

2. Get the dataset.srt

10.9 KB

3. Importing the Libraries.mp4

11.6 MB

3. Importing the Libraries.srt

8.3 KB

4. Importing the Dataset.mp4

24.5 MB

4. Importing the Dataset.srt

19.1 KB

5. For Python learners.html

1.8 KB

6. Missing Data.mp4

33.7 MB

6. Missing Data.srt

23.2 KB

6.1 missing_data.py.py

1.0 KB

7. Categorical Data.mp4

42.8 MB

7. Categorical Data.srt

27.7 KB

7.1 categorical_data.py.py

1.7 KB

8. WARNING - Update.html

2.8 KB

9. Splitting the Dataset into the Training set and Test set.mp4

40.9 MB

9. Splitting the Dataset into the Training set and Test set.srt

27.6 KB

/20. -------------------- Part 4 Clustering --------------------/

1. Welcome to Part 4 - Clustering.html

0.7 KB

/21. K-Means Clustering/

1. K-Means Clustering Intuition.mp4

28.2 MB

1. K-Means Clustering Intuition.srt

23.9 KB

2. K-Means Random Initialization Trap.mp4

16.1 MB

2. K-Means Random Initialization Trap.srt

13.3 KB

3. K-Means Selecting The Number Of Clusters.mp4

24.3 MB

3. K-Means Selecting The Number Of Clusters.srt

18.9 KB

4. How to get the dataset.mp4

12.3 MB

4. How to get the dataset.srt

4.9 KB

5. K-Means Clustering in Python.mp4

41.7 MB

5. K-Means Clustering in Python.srt

28.9 KB

6. K-Means Clustering in R.mp4

30.4 MB

6. K-Means Clustering in R.srt

19.9 KB

7. K-Means Clustering.html

0.1 KB

/22. Hierarchical Clustering/

1. Hierarchical Clustering Intuition.mp4

17.3 MB

1. Hierarchical Clustering Intuition.srt

14.9 KB

10. HC in R - Step 1.mp4

7.8 MB

10. HC in R - Step 1.srt

6.5 KB

11. HC in R - Step 2.mp4

11.7 MB

11. HC in R - Step 2.srt

8.3 KB

12. HC in R - Step 3.mp4

8.2 MB

12. HC in R - Step 3.srt

4.8 KB

13. HC in R - Step 4.mp4

7.8 MB

13. HC in R - Step 4.srt

3.9 KB

14. HC in R - Step 5.mp4

7.2 MB

14. HC in R - Step 5.srt

4.1 KB

15. Hierarchical Clustering.html

0.1 KB

16. Conclusion of Part 4 - Clustering.html

0.5 KB

16.1 Clustering-Pros-Cons.pdf.pdf

26.4 KB

2. Hierarchical Clustering How Dendrograms Work.mp4

18.3 MB

2. Hierarchical Clustering How Dendrograms Work.srt

14.7 KB

3. Hierarchical Clustering Using Dendrograms.mp4

23.9 MB

3. Hierarchical Clustering Using Dendrograms.srt

18.0 KB

4. How to get the dataset.mp4

12.3 MB

4. How to get the dataset.srt

4.9 KB

5. HC in Python - Step 1.mp4

11.2 MB

5. HC in Python - Step 1.srt

7.8 KB

6. HC in Python - Step 2.mp4

13.3 MB

6. HC in Python - Step 2.srt

9.7 KB

7. HC in Python - Step 3.mp4

12.9 MB

7. HC in Python - Step 3.srt

7.9 KB

8. HC in Python - Step 4.mp4

12.6 MB

8. HC in Python - Step 4.srt

6.6 KB

9. HC in Python - Step 5.mp4

8.8 MB

9. HC in Python - Step 5.srt

7.0 KB

/23. -------------------- Part 5 Association Rule Learning --------------------/

1. Welcome to Part 5 - Association Rule Learning.html

0.4 KB

/24. Apriori/

1. Apriori Intuition.mp4

36.7 MB

1. Apriori Intuition.srt

26.5 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. Apriori in R - Step 1.mp4

45.0 MB

3. Apriori in R - Step 1.srt

31.8 KB

4. Apriori in R - Step 2.mp4

32.0 MB

4. Apriori in R - Step 2.srt

23.6 KB

5. Apriori in R - Step 3.mp4

46.0 MB

5. Apriori in R - Step 3.srt

31.9 KB

6. Apriori in Python - Step 1.mp4

39.8 MB

6. Apriori in Python - Step 1.srt

28.6 KB

7. Apriori in Python - Step 2.mp4

31.0 MB

7. Apriori in Python - Step 2.srt

23.1 KB

8. Apriori in Python - Step 3.mp4

28.3 MB

8. Apriori in Python - Step 3.srt

20.1 KB

/25. Eclat/

1. Eclat Intuition.mp4

11.2 MB

1. Eclat Intuition.srt

8.3 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. Eclat in R.mp4

21.7 MB

3. Eclat in R.srt

16.2 KB

3.1 Eclat.zip.zip

49.7 KB

/26. -------------------- Part 6 Reinforcement Learning --------------------/

1. Welcome to Part 6 - Reinforcement Learning.html

1.2 KB

/27. Upper Confidence Bound (UCB)/

1. The Multi-Armed Bandit Problem.mp4

31.7 MB

1. The Multi-Armed Bandit Problem.srt

19.1 MB

10. Upper Confidence Bound in R - Step 3.mp4

49.5 MB

10. Upper Confidence Bound in R - Step 3.srt

25.9 KB

11. Upper Confidence Bound in R - Step 4.mp4

7.8 MB

11. Upper Confidence Bound in R - Step 4.srt

4.5 KB

2. Upper Confidence Bound (UCB) Intuition.mp4

30.7 MB

2. Upper Confidence Bound (UCB) Intuition.srt

22.4 KB

3. How to get the dataset.mp4

12.3 MB

3. How to get the dataset.srt

4.9 KB

4. Upper Confidence Bound in Python - Step 1.mp4

33.1 MB

4. Upper Confidence Bound in Python - Step 1.srt

22.4 KB

5. Upper Confidence Bound in Python - Step 2.mp4

37.2 MB

5. Upper Confidence Bound in Python - Step 2.srt

25.9 KB

6. Upper Confidence Bound in Python - Step 3.mp4

43.1 MB

6. Upper Confidence Bound in Python - Step 3.srt

27.6 KB

7. Upper Confidence Bound in Python - Step 4.mp4

9.6 MB

7. Upper Confidence Bound in Python - Step 4.srt

5.1 KB

8. Upper Confidence Bound in R - Step 1.mp4

29.4 MB

8. Upper Confidence Bound in R - Step 1.srt

21.0 KB

9. Upper Confidence Bound in R - Step 2.mp4

30.4 MB

9. Upper Confidence Bound in R - Step 2.srt

22.7 KB

/28. Thompson Sampling/

1. Thompson Sampling Intuition.mp4

39.1 MB

1. Thompson Sampling Intuition.srt

28.2 KB

2. Algorithm Comparison UCB vs Thompson Sampling.mp4

14.8 MB

2. Algorithm Comparison UCB vs Thompson Sampling.srt

11.4 KB

3. How to get the dataset.mp4

12.3 MB

3. How to get the dataset.srt

4.9 KB

4. Thompson Sampling in Python - Step 1.mp4

45.2 MB

4. Thompson Sampling in Python - Step 1.srt

29.6 KB

5. Thompson Sampling in Python - Step 2.mp4

8.8 MB

5. Thompson Sampling in Python - Step 2.srt

5.9 KB

6. Thompson Sampling in R - Step 1.mp4

42.9 MB

6. Thompson Sampling in R - Step 1.srt

28.5 KB

7. Thompson Sampling in R - Step 2.mp4

7.8 MB

7. Thompson Sampling in R - Step 2.srt

5.4 KB

/29. -------------------- Part 7 Natural Language Processing --------------------/

1. Welcome to Part 7 - Natural Language Processing.html

1.7 KB

10. Natural Language Processing in Python - Step 7.mp4

17.9 MB

10. Natural Language Processing in Python - Step 7.srt

10.0 KB

11. Natural Language Processing in Python - Step 8.mp4

41.4 MB

11. Natural Language Processing in Python - Step 8.srt

24.4 KB

12. Natural Language Processing in Python - Step 9.mp4

14.7 MB

12. Natural Language Processing in Python - Step 9.srt

8.4 KB

13. Natural Language Processing in Python - Step 10.mp4

25.3 MB

13. Natural Language Processing in Python - Step 10.srt

14.7 KB

14. Homework Challenge.html

1.4 KB

15. Natural Language Processing in R - Step 1.mp4

42.3 MB

15. Natural Language Processing in R - Step 1.srt

24.6 KB

16. Natural Language Processing in R - Step 2.mp4

18.3 MB

16. Natural Language Processing in R - Step 2.srt

13.2 KB

17. Natural Language Processing in R - Step 3.mp4

14.2 MB

17. Natural Language Processing in R - Step 3.srt

10.4 KB

18. Natural Language Processing in R - Step 4.mp4

6.8 MB

18. Natural Language Processing in R - Step 4.srt

4.8 KB

19. Natural Language Processing in R - Step 5.mp4

4.8 MB

19. Natural Language Processing in R - Step 5.srt

3.3 KB

2. Natural Language Processing Intuition.mp4

31.1 MB

2. Natural Language Processing Intuition.srt

7.2 KB

20. Natural Language Processing in R - Step 6.mp4

13.3 MB

20. Natural Language Processing in R - Step 6.srt

8.6 KB

21. Natural Language Processing in R - Step 7.mp4

7.9 MB

21. Natural Language Processing in R - Step 7.srt

5.7 KB

22. Natural Language Processing in R - Step 8.mp4

13.9 MB

22. Natural Language Processing in R - Step 8.srt

8.2 KB

23. Natural Language Processing in R - Step 9.mp4

30.4 MB

23. Natural Language Processing in R - Step 9.srt

20.1 KB

24. Natural Language Processing in R - Step 10.mp4

43.2 MB

24. Natural Language Processing in R - Step 10.srt

26.9 KB

25. Homework Challenge.html

1.4 KB

3. How to get the dataset.mp4

12.3 MB

3. How to get the dataset.srt

4.9 KB

4. Natural Language Processing in Python - Step 1.mp4

36.9 MB

4. Natural Language Processing in Python - Step 1.srt

18.8 KB

5. Natural Language Processing in Python - Step 2.mp4

23.0 MB

5. Natural Language Processing in Python - Step 2.srt

16.2 KB

6. Natural Language Processing in Python - Step 3.mp4

3.6 MB

6. Natural Language Processing in Python - Step 3.srt

2.7 KB

7. Natural Language Processing in Python - Step 4.mp4

25.2 MB

7. Natural Language Processing in Python - Step 4.srt

17.9 KB

8. Natural Language Processing in Python - Step 5.mp4

15.6 MB

8. Natural Language Processing in Python - Step 5.srt

10.9 KB

9. Natural Language Processing in Python - Step 6.mp4

6.8 MB

9. Natural Language Processing in Python - Step 6.srt

4.5 KB

/3. -------------------- Part 2 Regression --------------------/

1. Welcome to Part 2 - Regression.html

0.9 KB

/30. -------------------- Part 8 Deep Learning --------------------/

1. Welcome to Part 8 - Deep Learning.html

0.9 KB

2. What is Deep Learning.mp4

32.8 MB

2. What is Deep Learning.srt

18.6 KB

/31. Artificial Neural Networks/

1. Plan of attack.mp4

5.0 MB

1. Plan of attack.srt

4.1 KB

10. Business Problem Description.mp4

17.2 MB

10. Business Problem Description.srt

7.5 KB

11. Installing Keras.html

1.4 KB

12. ANN in Python - Step 1.mp4

30.7 MB

12. ANN in Python - Step 1.srt

20.5 KB

13. ANN in Python - Step 2.mp4

50.4 MB

13. ANN in Python - Step 2.srt

29.6 KB

14. ANN in Python - Step 3.mp4

8.8 MB

14. ANN in Python - Step 3.srt

5.3 KB

15. ANN in Python - Step 4.mp4

6.2 MB

15. ANN in Python - Step 4.srt

4.0 KB

16. ANN in Python - Step 5.mp4

31.0 MB

16. ANN in Python - Step 5.srt

20.0 KB

17. ANN in Python - Step 6.mp4

7.4 MB

17. ANN in Python - Step 6.srt

4.6 KB

18. ANN in Python - Step 7.mp4

9.4 MB

18. ANN in Python - Step 7.srt

5.8 KB

19. ANN in Python - Step 8.mp4

19.0 MB

19. ANN in Python - Step 8.srt

11.3 KB

2. The Neuron.mp4

31.3 MB

2. The Neuron.srt

25.6 KB

20. ANN in Python - Step 9.mp4

17.7 MB

20. ANN in Python - Step 9.srt

9.7 KB

21. ANN in Python - Step 10.mp4

17.9 MB

21. ANN in Python - Step 10.srt

10.6 KB

22. ANN in R - Step 1.mp4

40.4 MB

22. ANN in R - Step 1.srt

27.4 KB

23. ANN in R - Step 2.mp4

14.9 MB

23. ANN in R - Step 2.srt

10.4 KB

24. ANN in R - Step 3.mp4

30.3 MB

24. ANN in R - Step 3.srt

19.3 KB

25. ANN in R - Step 4 (Last step).mp4

35.1 MB

25. ANN in R - Step 4 (Last step).srt

21.2 KB

3. The Activation Function.mp4

15.5 MB

3. The Activation Function.srt

12.3 KB

4. How do Neural Networks work.mp4

24.7 MB

4. How do Neural Networks work.srt

19.6 KB

5. How do Neural Networks learn.mp4

27.8 MB

5. How do Neural Networks learn.srt

19.4 KB

6. Gradient Descent.mp4

19.4 MB

6. Gradient Descent.srt

14.4 KB

7. Stochastic Gradient Descent.mp4

17.6 MB

7. Stochastic Gradient Descent.srt

12.4 KB

8. Backpropagation.mp4

11.5 MB

8. Backpropagation.srt

7.3 KB

9. How to get the dataset.mp4

12.3 MB

9. How to get the dataset.srt

4.9 KB

/32. Convolutional Neural Networks/

1. Plan of attack.mp4

6.2 MB

1. Plan of attack.srt

5.4 KB

10. How to get the dataset.mp4

12.3 MB

10. How to get the dataset.srt

4.9 KB

11. Installing Keras.html

0.9 KB

12. CNN in Python - Step 1.mp4

26.1 MB

12. CNN in Python - Step 1.srt

18.8 KB

13. CNN in Python - Step 2.mp4

6.1 MB

13. CNN in Python - Step 2.srt

4.6 KB

14. CNN in Python - Step 3.mp4

2.3 MB

14. CNN in Python - Step 3.srt

1.8 KB

15. CNN in Python - Step 4.mp4

28.5 MB

15. CNN in Python - Step 4.srt

19.7 KB

16. CNN in Python - Step 5.mp4

10.4 MB

16. CNN in Python - Step 5.srt

7.7 KB

17. CNN in Python - Step 6.mp4

10.2 MB

17. CNN in Python - Step 6.srt

7.8 KB

18. CNN in Python - Step 7.mp4

13.6 MB

18. CNN in Python - Step 7.srt

9.3 KB

19. CNN in Python - Step 8.mp4

7.1 MB

19. CNN in Python - Step 8.srt

4.7 KB

2. What are convolutional neural networks.mp4

30.9 MB

2. What are convolutional neural networks.srt

22.6 KB

20. CNN in Python - Step 9.mp4

49.1 MB

20. CNN in Python - Step 9.srt

30.1 KB

21. CNN in Python - Step 10.mp4

21.6 MB

21. CNN in Python - Step 10.srt

13.3 KB

22. CNN in R.html

2.4 KB

3. Step 1 - Convolution Operation.mp4

32.5 MB

3. Step 1 - Convolution Operation.srt

23.8 KB

4. Step 1(b) - ReLU Layer.mp4

14.8 MB

4. Step 1(b) - ReLU Layer.srt

9.4 KB

5. Step 2 - Pooling.mp4

42.2 MB

5. Step 2 - Pooling.srt

21.5 KB

6. Step 3 - Flattening.mp4

3.4 MB

6. Step 3 - Flattening.srt

2.6 KB

7. Step 4 - Full Connection.mp4

44.8 MB

7. Step 4 - Full Connection.srt

29.3 KB

8. Summary.mp4

8.3 MB

8. Summary.srt

6.2 KB

9. Softmax & Cross-Entropy.mp4

34.8 MB

9. Softmax & Cross-Entropy.srt

25.9 KB

/33. -------------------- Part 9 Dimensionality Reduction --------------------/

1. Welcome to Part 9 - Dimensionality Reduction.html

1.3 KB

/34. Principal Component Analysis (PCA)/

1. Principal Component Analysis (PCA) Intuition.mp4

33.7 MB

1. Principal Component Analysis (PCA) Intuition.srt

5.2 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. PCA in Python - Step 1.mp4

33.5 MB

3. PCA in Python - Step 1.srt

18.1 KB

4. PCA in Python - Step 2.mp4

23.1 MB

4. PCA in Python - Step 2.srt

12.1 KB

5. PCA in Python - Step 3.mp4

26.7 MB

5. PCA in Python - Step 3.srt

15.2 KB

6. PCA in R - Step 1.mp4

32.1 MB

6. PCA in R - Step 1.srt

19.1 KB

7. PCA in R - Step 2.mp4

30.4 MB

7. PCA in R - Step 2.srt

17.3 KB

8. PCA in R - Step 3.mp4

38.5 MB

8. PCA in R - Step 3.srt

20.2 KB

/35. Linear Discriminant Analysis (LDA)/

1. Linear Discriminant Analysis (LDA) Intuition.mp4

28.3 MB

1. Linear Discriminant Analysis (LDA) Intuition.srt

5.2 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. LDA in Python.mp4

47.6 MB

3. LDA in Python.srt

27.1 KB

4. LDA in R.mp4

53.8 MB

4. LDA in R.srt

30.4 KB

/36. Kernel PCA/

1. How to get the dataset.mp4

12.3 MB

1. How to get the dataset.srt

4.9 KB

2. Kernel PCA in Python.mp4

35.0 MB

2. Kernel PCA in Python.srt

22.0 KB

3. Kernel PCA in R.mp4

59.3 MB

3. Kernel PCA in R.srt

31.5 KB

/37. -------------------- Part 10 Model Selection & Boosting --------------------/

1. Welcome to Part 10 - Model Selection & Boosting.html

0.9 KB

/38. Model Selection/

1. How to get the dataset.mp4

12.3 MB

1. How to get the dataset.srt

4.9 KB

2. k-Fold Cross Validation in Python.mp4

34.4 MB

2. k-Fold Cross Validation in Python.srt

20.7 KB

3. k-Fold Cross Validation in R.mp4

45.8 MB

3. k-Fold Cross Validation in R.srt

28.6 KB

4. Grid Search in Python - Step 1.mp4

40.1 MB

4. Grid Search in Python - Step 1.srt

22.6 KB

5. Grid Search in Python - Step 2.mp4

30.9 MB

5. Grid Search in Python - Step 2.srt

15.7 KB

6. Grid Search in R.mp4

37.3 MB

6. Grid Search in R.srt

21.4 KB

/39. XGBoost/

1. How to get the dataset.mp4

12.3 MB

1. How to get the dataset.srt

12.3 MB

2. XGBoost in Python - Step 1.mp4

22.4 MB

2. XGBoost in Python - Step 1.srt

14.0 KB

3. XGBoost in Python - Step 2.mp4

33.5 MB

3. XGBoost in Python - Step 2.srt

19.3 KB

4. XGBoost in R.mp4

49.6 MB

4. XGBoost in R.srt

26.6 KB

5. THANK YOU bonus video.mp4

54.8 MB

5. THANK YOU bonus video.srt

2.4 KB

/4. Simple Linear Regression/

1. How to get the dataset.mp4

12.3 MB

1. How to get the dataset.srt

4.9 KB

10. Simple Linear Regression in R - Step 2.mp4

15.0 MB

10. Simple Linear Regression in R - Step 2.srt

9.1 KB

11. Simple Linear Regression in R - Step 3.mp4

9.1 MB

11. Simple Linear Regression in R - Step 3.srt

5.6 KB

12. Simple Linear Regression in R - Step 4.mp4

39.2 MB

12. Simple Linear Regression in R - Step 4.srt

24.5 KB

13. Simple Linear Regression.html

0.1 KB

2. Dataset + Business Problem Description.mp4

7.0 MB

2. Dataset + Business Problem Description.srt

4.2 KB

3. Simple Linear Regression Intuition - Step 1.mp4

9.9 MB

3. Simple Linear Regression Intuition - Step 1.srt

8.5 KB

4. Simple Linear Regression Intuition - Step 2.mp4

5.6 MB

4. Simple Linear Regression Intuition - Step 2.srt

4.4 KB

5. Simple Linear Regression in Python - Step 1.mp4

22.8 MB

5. Simple Linear Regression in Python - Step 1.srt

15.8 KB

6. Simple Linear Regression in Python - Step 2.mp4

19.7 MB

6. Simple Linear Regression in Python - Step 2.srt

12.6 KB

7. Simple Linear Regression in Python - Step 3.mp4

16.4 MB

7. Simple Linear Regression in Python - Step 3.srt

10.1 KB

8. Simple Linear Regression in Python - Step 4.mp4

32.3 MB

8. Simple Linear Regression in Python - Step 4.srt

23.0 KB

9. Simple Linear Regression in R - Step 1.mp4

10.0 MB

9. Simple Linear Regression in R - Step 1.srt

7.9 KB

/40. Bonus Lectures/

1. YOUR SPECIAL BONUS.html

4.8 KB

/5. Multiple Linear Regression/

1. How to get the dataset.mp4

12.3 MB

1. How to get the dataset.srt

4.9 KB

10. Multiple Linear Regression in Python - Step 2.mp4

7.6 MB

10. Multiple Linear Regression in Python - Step 2.srt

4.2 KB

11. Multiple Linear Regression in Python - Step 3.mp4

15.0 MB

11. Multiple Linear Regression in Python - Step 3.srt

8.5 KB

12. Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4

25.0 MB

12. Multiple Linear Regression in Python - Backward Elimination - Preparation.srt

15.3 KB

13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.mp4

34.2 MB

13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.srt

20.2 KB

14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4

28.5 MB

14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.srt

14.5 KB

15. Multiple Linear Regression in Python - Automatic Backward Elimination.html

2.2 KB

16. Multiple Linear Regression in R - Step 1.mp4

18.8 MB

16. Multiple Linear Regression in R - Step 1.srt

12.1 KB

17. Multiple Linear Regression in R - Step 2.mp4

27.2 MB

17. Multiple Linear Regression in R - Step 2.srt

15.8 KB

18. Multiple Linear Regression in R - Step 3.mp4

10.9 MB

18. Multiple Linear Regression in R - Step 3.srt

7.2 KB

19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4

41.7 MB

19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.srt

28.1 KB

2. Dataset + Business Problem Description.mp4

10.5 MB

2. Dataset + Business Problem Description.srt

5.8 KB

20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4

18.1 MB

20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.srt

12.1 KB

21. Multiple Linear Regression in R - Automatic Backward Elimination.html

0.7 KB

22. Multiple Linear Regression.html

0.1 KB

3. Multiple Linear Regression Intuition - Step 1.mp4

1.9 MB

3. Multiple Linear Regression Intuition - Step 1.srt

1.6 KB

4. Multiple Linear Regression Intuition - Step 2.mp4

1.9 MB

4. Multiple Linear Regression Intuition - Step 2.srt

1.5 KB

5. Multiple Linear Regression Intuition - Step 3.mp4

15.0 MB

5. Multiple Linear Regression Intuition - Step 3.srt

11.0 KB

6. Multiple Linear Regression Intuition - Step 4.mp4

4.7 MB

6. Multiple Linear Regression Intuition - Step 4.srt

3.6 KB

7. Prerequisites What is the P-Value.html

0.7 KB

8. Multiple Linear Regression Intuition - Step 5.mp4

30.2 MB

8. Multiple Linear Regression Intuition - Step 5.srt

24.1 KB

9. Multiple Linear Regression in Python - Step 1.mp4

41.5 MB

9. Multiple Linear Regression in Python - Step 1.srt

25.0 KB

/6. Polynomial Regression/

1. Polynomial Regression Intuition.mp4

9.9 MB

1. Polynomial Regression Intuition.srt

8.0 KB

10. Polynomial Regression in R - Step 3.mp4

45.4 MB

10. Polynomial Regression in R - Step 3.srt

31.6 KB

11. Polynomial Regression in R - Step 4.mp4

23.4 MB

11. Polynomial Regression in R - Step 4.srt

15.8 KB

12. R Regression Template.mp4

26.6 MB

12. R Regression Template.srt

19.1 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. Polynomial Regression in Python - Step 1.mp4

26.1 MB

3. Polynomial Regression in Python - Step 1.srt

17.9 KB

4. Polynomial Regression in Python - Step 2.mp4

28.4 MB

4. Polynomial Regression in Python - Step 2.srt

17.6 KB

5. Polynomial Regression in Python - Step 3.mp4

45.1 MB

5. Polynomial Regression in Python - Step 3.srt

32.2 KB

6. Polynomial Regression in Python - Step 4.mp4

14.2 MB

6. Polynomial Regression in Python - Step 4.srt

8.9 KB

7. Python Regression Template.mp4

28.8 MB

7. Python Regression Template.srt

16.8 KB

8. Polynomial Regression in R - Step 1.mp4

18.7 MB

8. Polynomial Regression in R - Step 1.srt

14.5 KB

9. Polynomial Regression in R - Step 2.mp4

25.0 MB

9. Polynomial Regression in R - Step 2.srt

15.6 KB

/7. Support Vector Regression (SVR)/

1. How to get the dataset.mp4

12.3 MB

1. How to get the dataset.srt

4.9 KB

2. SVR Intuition.mp4

48.9 MB

2. SVR Intuition.srt

11.6 KB

3. SVR in Python.mp4

48.4 MB

3. SVR in Python.srt

31.6 KB

4. SVR in R.mp4

27.1 MB

4. SVR in R.srt

27.2 MB

/8. Decision Tree Regression/

1. Decision Tree Regression Intuition.mp4

23.8 MB

1. Decision Tree Regression Intuition.srt

17.5 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. Decision Tree Regression in Python.mp4

35.2 MB

3. Decision Tree Regression in Python.srt

24.3 KB

4. Decision Tree Regression in R.mp4

46.5 MB

4. Decision Tree Regression in R.srt

32.9 KB

/9. Random Forest Regression/

1. Random Forest Regression Intuition.mp4

14.5 MB

1. Random Forest Regression Intuition.srt

10.5 KB

2. How to get the dataset.mp4

12.3 MB

2. How to get the dataset.srt

4.9 KB

3. Random Forest Regression in Python.mp4

41.4 MB

3. Random Forest Regression in Python.srt

28.2 KB

4. Random Forest Regression in R.mp4

42.3 MB

4. Random Forest Regression in R.srt

28.8 KB

/

[CourseClub.Me].url

0.0 KB

[DesireCourse.Net].url

0.1 KB

[FreeCourseWorld.Com].url

0.1 KB

 

Total files 575


Copyright © 2025 FileMood.com