FileMood

Download [DesireCourse.Net] Udemy - Machine Learning Basics Classification models in Python

DesireCourse Net Udemy Machine Learning Basics Classification models in Python

Name

[DesireCourse.Net] Udemy - Machine Learning Basics Classification models in Python

 DOWNLOAD Copy Link

Total Size

2.3 GB

Total Files

152

Last Seen

2024-11-14 23:47

Hash

863D6437E156CBFAD6DAD218E677A6A171F2B964

/1. Introduction/

1. Welcome to the course!.mp4

18.5 MB

1. Welcome to the course!.vtt

3.4 KB

1.1 00_Introduction_01_py.pdf.pdf

483.5 KB

/2. Introduction to Machine Learning/

1. Introduction to Machine Learning.mp4

129.8 MB

1. Introduction to Machine Learning.vtt

16.7 KB

1.1 Lecture_machineLearning.pdf.pdf

1.0 MB

2. Building a Machine Learning model.mp4

47.5 MB

2. Building a Machine Learning model.vtt

8.8 KB

/3. Basics of Statistics/

1. Types of Data.mp4

27.1 MB

1. Types of Data.vtt

4.4 KB

1.1 01_01_Lecture_TypesOfData.pdf.pdf

182.0 KB

2. Types of Statistics.mp4

13.9 MB

2. Types of Statistics.vtt

2.7 KB

2.1 01_02_Lecture_TypesOfStatistics.pdf.pdf

175.9 KB

3. Describing data Graphically.mp4

86.2 MB

3. Describing data Graphically.vtt

11.6 KB

3.1 01_03_Lecture_DataSummaryandGraph.pdf.pdf

325.5 KB

4. Measures of Centers.mp4

47.9 MB

4. Measures of Centers.vtt

6.6 KB

4.1 01_04_Lecture_Centers.pdf.pdf

320.5 KB

5. Practice Exercise 1.html

0.4 KB

5.1 Exercise-1.pdf.pdf

567.1 KB

6. Measures of Dispersion.mp4

29.8 MB

6. Measures of Dispersion.vtt

4.8 KB

6.1 01_05_Lecture_Dispersion.pdf.pdf

215.6 KB

7. Practice Exercise 2.html

0.3 KB

7.1 Exercise-2.pdf.pdf

481.2 KB

/4. Setting up Python and Jupyter Notebook/

1. Installing Python and Anaconda.mp4

19.5 MB

1. Installing Python and Anaconda.vtt

2.3 KB

2. Opening Jupyter Notebook.mp4

76.6 MB

2. Opening Jupyter Notebook.vtt

8.2 KB

3. Introduction to Jupyter.mp4

53.8 MB

3. Introduction to Jupyter.vtt

11.0 KB

4. Arithmetic operators in Python Python Basics.mp4

16.7 MB

4. Arithmetic operators in Python Python Basics.vtt

3.6 KB

5. Strings in Python Python Basics.mp4

84.5 MB

5. Strings in Python Python Basics.vtt

14.6 KB

6. Lists, Tuples and Directories Python Basics.mp4

77.2 MB

6. Lists, Tuples and Directories Python Basics.vtt

15.0 KB

7. Working with Numpy Library of Python.mp4

56.7 MB

7. Working with Numpy Library of Python.vtt

9.3 KB

8. Working with Pandas Library of Python.mp4

59.1 MB

8. Working with Pandas Library of Python.vtt

7.4 KB

9. Working with Seaborn Library of Python.mp4

51.2 MB

9. Working with Seaborn Library of Python.vtt

6.7 KB

/5. Data Preprocessing/

1. Gathering Business Knowledge.mp4

26.3 MB

1. Gathering Business Knowledge.vtt

3.5 KB

1.1 03_01_PDE_Business_knowledge.pdf.pdf

157.6 KB

10. Outlier treatment in Python.mp4

61.3 MB

10. Outlier treatment in Python.vtt

7.1 KB

11. Project Exercise 3.html

0.2 KB

12. Missing Value Imputation.mp4

28.9 MB

12. Missing Value Imputation.vtt

3.7 KB

12.1 04_05_PDE_Missing_value.pdf.pdf

323.3 KB

13. Missing Value Imputation in Python.mp4

29.0 MB

13. Missing Value Imputation in Python.vtt

3.7 KB

14. Project Exercise 4.html

0.2 KB

15. Seasonality in Data.mp4

21.9 MB

15. Seasonality in Data.vtt

3.4 KB

15.1 04_07_PDE_Seasonality.pdf.pdf

372.8 KB

16. Variable Transformation.mp4

16.0 MB

16. Variable Transformation.vtt

1.2 KB

16.1 04_07_Variable_Transformation.pdf.pdf

467.1 KB

17. Variable transformation and Deletion in Python.mp4

37.3 MB

17. Variable transformation and Deletion in Python.vtt

3.5 KB

18. Project Exercise 5.html

0.2 KB

19. Dummy variable creation Handling qualitative data.mp4

42.6 MB

19. Dummy variable creation Handling qualitative data.vtt

4.4 KB

19.1 04_11_Dummy_Var.pdf.pdf

166.9 KB

2. Data Exploration.mp4

24.5 MB

2. Data Exploration.vtt

3.3 KB

2.1 03_02_PDE_Data_exploration.pdf.pdf

330.7 KB

20. Dummy variable creation in Python.mp4

35.5 MB

20. Dummy variable creation in Python.vtt

4.8 KB

21. Project Exercise 6.html

0.2 KB

3. The Dataset and the Data Dictionary.mp4

91.9 MB

3. The Dataset and the Data Dictionary.vtt

7.6 KB

4. Data Import in Python.mp4

26.7 MB

4. Data Import in Python.vtt

4.0 KB

5. Project Exercise 1.html

0.5 KB

5.1 Movie_collection.csv.csv

57.1 KB

6. Univariate analysis and EDD.mp4

28.6 MB

6. Univariate analysis and EDD.vtt

3.2 KB

6.1 03_04_PDE_Univariate_Analysis_Uni.pdf.pdf

341.4 KB

7. EDD in Python.mp4

101.8 MB

7. EDD in Python.vtt

14.7 KB

8. Project Exercise 2.html

0.2 KB

9. Outlier Treatment.mp4

29.1 MB

9. Outlier Treatment.vtt

4.1 KB

9.1 04_06_PDE_Outlier_Treatment.pdf.pdf

363.7 KB

/6. Classification Models/

1. Three Classifiers and the problem statement.mp4

24.0 MB

1. Three Classifiers and the problem statement.vtt

3.4 KB

1.1 01_INtro.pdf.pdf

194.9 KB

10. Confusion Matrix.mp4

27.9 MB

10. Confusion Matrix.vtt

3.8 KB

10.1 06_Confusion matrix.pdf.pdf

227.7 KB

11. Making Confusion Matrix in Python.mp4

67.9 MB

11. Making Confusion Matrix in Python.vtt

9.0 KB

12. Evaluating performance of model.mp4

44.9 MB

12. Evaluating performance of model.vtt

7.7 KB

12.1 08_ROC.pdf.pdf

187.4 KB

13. Evaluating model performance in Python.mp4

12.3 MB

13. Evaluating model performance in Python.vtt

2.1 KB

14. Project Exercise 9.html

0.2 KB

15. Linear Discriminant Analysis.mp4

51.0 MB

15. Linear Discriminant Analysis.vtt

9.9 KB

15.1 07_LDA.pdf.pdf

187.4 KB

16. LDA in Python.mp4

15.1 MB

16. LDA in Python.vtt

2.1 KB

17. Project Exercise 10.html

0.2 KB

18. Test-Train Split.mp4

47.9 MB

18. Test-Train Split.vtt

9.1 KB

18.1 10_Test_Train.pdf.pdf

244.5 KB

19. Test-Train Split in Python.mp4

45.2 MB

19. Test-Train Split in Python.vtt

6.3 KB

2. Why can't we use Linear Regression.mp4

21.4 MB

2. Why can't we use Linear Regression.vtt

4.6 KB

2.1 02_whynot_linear.pdf.pdf

159.1 KB

20. Project Exercise 11.html

0.2 KB

21. K-Nearest Neighbors classifier.mp4

87.6 MB

21. K-Nearest Neighbors classifier.vtt

8.5 KB

21.1 09_KNN.pdf.pdf

242.4 KB

22. K-Nearest Neighbors in Python Part 1.mp4

48.1 MB

22. K-Nearest Neighbors in Python Part 1.vtt

5.0 KB

23. K-Nearest Neighbors in Python Part 2.mp4

54.5 MB

23. K-Nearest Neighbors in Python Part 2.vtt

6.0 KB

24. Project Exercise 12.html

0.2 KB

25. Understanding the results of classification models.mp4

48.2 MB

25. Understanding the results of classification models.vtt

6.4 KB

25.1 11_results.pdf.pdf

175.0 KB

26. Summary of the three models.mp4

26.5 MB

26. Summary of the three models.vtt

4.9 KB

26.1 12_steps.pdf.pdf

151.7 KB

27. The Final Exercise!.html

1.8 KB

28. Course Conclusion.html

1.0 KB

3. Logistic Regression.mp4

41.0 MB

3. Logistic Regression.vtt

7.4 KB

3.1 03_logistic.pdf.pdf

361.2 KB

4. Training a Simple Logistic Model in Python.mp4

64.2 MB

4. Training a Simple Logistic Model in Python.vtt

8.8 KB

5. Project Exercise 7.html

0.3 KB

6. Result of Simple Logistic Regression.mp4

32.7 MB

6. Result of Simple Logistic Regression.vtt

4.9 KB

6.1 04_P_value.pdf.pdf

233.5 KB

7. Logistic with multiple predictors.mp4

10.5 MB

7. Logistic with multiple predictors.vtt

2.5 KB

7.1 05_Multiple_predictors.pdf.pdf

154.9 KB

8. Training multiple predictor Logistic model in Python.mp4

35.7 MB

8. Training multiple predictor Logistic model in Python.vtt

5.0 KB

9. Project Exercise 8.html

0.3 KB

/

[CourseClub.Me].url

0.0 KB

[DesireCourse.Net].url

0.1 KB

 

Total files 152


Copyright © 2024 FileMood.com