/1. Getting Started/
|
1. Introduction.mp4
|
62.5 MB
|
1. Introduction.srt
|
4.9 KB
|
10. [Activity] Python Basics, Part 4 [Optional].mp4
|
22.1 MB
|
10. [Activity] Python Basics, Part 4 [Optional].srt
|
6.1 KB
|
11. Introducing the Pandas Library [Optional].mp4
|
129.1 MB
|
11. Introducing the Pandas Library [Optional].srt
|
18.5 KB
|
2. Udemy 101 Getting the Most From This Course.mp4
|
20.7 MB
|
2. Udemy 101 Getting the Most From This Course.srt
|
4.1 KB
|
3. Installation Getting Started.html
|
0.3 KB
|
4. [Activity] WINDOWS Installing and Using Anaconda & Course Materials.mp4
|
107.8 MB
|
4. [Activity] WINDOWS Installing and Using Anaconda & Course Materials.srt
|
19.3 KB
|
5. [Activity] MAC Installing and Using Anaconda & Course Materials.mp4
|
101.2 MB
|
5. [Activity] MAC Installing and Using Anaconda & Course Materials.srt
|
14.8 KB
|
6. [Activity] LINUX Installing and Using Anaconda & Course Materials.mp4
|
84.1 MB
|
6. [Activity] LINUX Installing and Using Anaconda & Course Materials.srt
|
15.0 KB
|
7. Python Basics, Part 1 [Optional].mp4
|
34.6 MB
|
7. Python Basics, Part 1 [Optional].srt
|
7.9 KB
|
8. [Activity] Python Basics, Part 2 [Optional].mp4
|
21.6 MB
|
8. [Activity] Python Basics, Part 2 [Optional].srt
|
7.8 KB
|
9. [Activity] Python Basics, Part 3 [Optional].mp4
|
10.6 MB
|
9. [Activity] Python Basics, Part 3 [Optional].srt
|
4.3 KB
|
/10. Deep Learning and Neural Networks/
|
1. Deep Learning Pre-Requisites.mp4
|
77.8 MB
|
1. Deep Learning Pre-Requisites.srt
|
22.0 KB
|
10. [Activity] Using Keras to Predict Political Affiliations.mp4
|
92.5 MB
|
10. [Activity] Using Keras to Predict Political Affiliations.srt
|
21.6 KB
|
11. Convolutional Neural Networks (CNN's).mp4
|
97.6 MB
|
11. Convolutional Neural Networks (CNN's).srt
|
20.3 KB
|
12. [Activity] Using CNN's for handwriting recognition.mp4
|
72.9 MB
|
12. [Activity] Using CNN's for handwriting recognition.srt
|
14.1 KB
|
13. Recurrent Neural Networks (RNN's).mp4
|
72.5 MB
|
13. Recurrent Neural Networks (RNN's).srt
|
18.9 KB
|
14. [Activity] Using a RNN for sentiment analysis.mp4
|
85.3 MB
|
14. [Activity] Using a RNN for sentiment analysis.srt
|
17.2 KB
|
15. [Activity] Transfer Learning.mp4
|
120.9 MB
|
15. [Activity] Transfer Learning.srt
|
22.0 KB
|
16. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.mp4
|
19.3 MB
|
16. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.srt
|
8.5 KB
|
17. Deep Learning Regularization with Dropout and Early Stopping.mp4
|
35.3 MB
|
17. Deep Learning Regularization with Dropout and Early Stopping.srt
|
12.3 KB
|
18. The Ethics of Deep Learning.mp4
|
134.5 MB
|
18. The Ethics of Deep Learning.srt
|
20.3 KB
|
19. Learning More about Deep Learning.mp4
|
40.5 MB
|
19. Learning More about Deep Learning.srt
|
3.2 KB
|
2. The History of Artificial Neural Networks.mp4
|
83.9 MB
|
2. The History of Artificial Neural Networks.srt
|
19.5 KB
|
3. [Activity] Deep Learning in the Tensorflow Playground.mp4
|
148.5 MB
|
3. [Activity] Deep Learning in the Tensorflow Playground.srt
|
20.1 KB
|
4. Deep Learning Details.mp4
|
67.3 MB
|
4. Deep Learning Details.srt
|
17.2 KB
|
5. Introducing Tensorflow.mp4
|
67.3 MB
|
5. Introducing Tensorflow.srt
|
20.2 KB
|
6. Important note about Tensorflow 2.html
|
0.6 KB
|
7. [Activity] Using Tensorflow, Part 1.mp4
|
124.0 MB
|
7. [Activity] Using Tensorflow, Part 1.srt
|
23.6 KB
|
8. [Activity] Using Tensorflow, Part 2.mp4
|
109.6 MB
|
8. [Activity] Using Tensorflow, Part 2.srt
|
21.7 KB
|
9. [Activity] Introducing Keras.mp4
|
96.5 MB
|
9. [Activity] Introducing Keras.srt
|
24.3 KB
|
/11. Final Project/
|
1. Your final project assignment.mp4
|
54.1 MB
|
1. Your final project assignment.srt
|
11.8 KB
|
2. Final project review.mp4
|
103.3 MB
|
2. Final project review.srt
|
25.1 KB
|
/12. You made it!/
|
1. More to Explore.mp4
|
67.2 MB
|
1. More to Explore.srt
|
7.4 KB
|
2. Don't Forget to Leave a Rating!.html
|
0.6 KB
|
3. Bonus Lecture More courses to explore!.html
|
7.5 KB
|
/2. Statistics and Probability Refresher, and Python Practice/
|
1. Types of Data.mp4
|
81.0 MB
|
1. Types of Data.srt
|
16.6 KB
|
10. [Activity] Covariance and Correlation.mp4
|
122.4 MB
|
10. [Activity] Covariance and Correlation.srt
|
26.5 KB
|
11. [Exercise] Conditional Probability.mp4
|
131.2 MB
|
11. [Exercise] Conditional Probability.srt
|
29.1 KB
|
12. Exercise Solution Conditional Probability of Purchase by Age.mp4
|
23.1 MB
|
12. Exercise Solution Conditional Probability of Purchase by Age.srt
|
4.1 KB
|
13. Bayes' Theorem.mp4
|
61.8 MB
|
13. Bayes' Theorem.srt
|
11.8 KB
|
2. Mean, Median, Mode.mp4
|
58.9 MB
|
2. Mean, Median, Mode.srt
|
13.3 KB
|
3. [Activity] Using mean, median, and mode in Python.mp4
|
64.9 MB
|
3. [Activity] Using mean, median, and mode in Python.srt
|
15.4 KB
|
4. [Activity] Variation and Standard Deviation.mp4
|
116.2 MB
|
4. [Activity] Variation and Standard Deviation.srt
|
26.5 KB
|
5. Probability Density Function; Probability Mass Function.mp4
|
31.5 MB
|
5. Probability Density Function; Probability Mass Function.srt
|
7.8 KB
|
6. Common Data Distributions.mp4
|
79.0 MB
|
6. Common Data Distributions.srt
|
16.5 KB
|
7. [Activity] Percentiles and Moments.mp4
|
119.6 MB
|
7. [Activity] Percentiles and Moments.srt
|
29.0 KB
|
8. [Activity] A Crash Course in matplotlib.mp4
|
135.6 MB
|
8. [Activity] A Crash Course in matplotlib.srt
|
29.3 KB
|
9. [Activity] Advanced Visualization with Seaborn.mp4
|
155.0 MB
|
9. [Activity] Advanced Visualization with Seaborn.srt
|
30.7 KB
|
/3. Predictive Models/
|
1. [Activity] Linear Regression.mp4
|
105.3 MB
|
1. [Activity] Linear Regression.srt
|
26.3 KB
|
2. [Activity] Polynomial Regression.mp4
|
70.0 MB
|
2. [Activity] Polynomial Regression.srt
|
18.0 KB
|
3. [Activity] Multiple Regression, and Predicting Car Prices.mp4
|
77.4 MB
|
3. [Activity] Multiple Regression, and Predicting Car Prices.srt
|
21.6 KB
|
4. Multi-Level Models.mp4
|
49.8 MB
|
4. Multi-Level Models.srt
|
10.9 KB
|
/4. Machine Learning with Python/
|
1. Supervised vs. Unsupervised Learning, and TrainTest.mp4
|
103.4 MB
|
1. Supervised vs. Unsupervised Learning, and TrainTest.srt
|
21.4 KB
|
10. [Activity] LINUX Installing Graphviz.mp4
|
7.4 MB
|
10. [Activity] LINUX Installing Graphviz.srt
|
1.1 KB
|
11. Decision Trees Concepts.mp4
|
90.7 MB
|
11. Decision Trees Concepts.srt
|
21.6 KB
|
12. [Activity] Decision Trees Predicting Hiring Decisions.mp4
|
100.6 MB
|
12. [Activity] Decision Trees Predicting Hiring Decisions.srt
|
23.0 KB
|
13. Ensemble Learning.mp4
|
68.4 MB
|
13. Ensemble Learning.srt
|
14.9 KB
|
14. [Activity] XGBoost.mp4
|
107.0 MB
|
14. [Activity] XGBoost.srt
|
29.4 KB
|
15. Support Vector Machines (SVM) Overview.mp4
|
46.9 MB
|
15. Support Vector Machines (SVM) Overview.srt
|
10.1 KB
|
16. [Activity] Using SVM to cluster people using scikit-learn.mp4
|
49.0 MB
|
16. [Activity] Using SVM to cluster people using scikit-learn.srt
|
17.0 KB
|
2. [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression.mp4
|
61.0 MB
|
2. [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression.srt
|
13.4 KB
|
3. Bayesian Methods Concepts.mp4
|
42.7 MB
|
3. Bayesian Methods Concepts.srt
|
9.0 KB
|
4. [Activity] Implementing a Spam Classifier with Naive Bayes.mp4
|
93.4 MB
|
4. [Activity] Implementing a Spam Classifier with Naive Bayes.srt
|
17.8 KB
|
5. K-Means Clustering.mp4
|
75.4 MB
|
5. K-Means Clustering.srt
|
17.6 KB
|
6. [Activity] Clustering people based on income and age.mp4
|
60.1 MB
|
6. [Activity] Clustering people based on income and age.srt
|
11.8 KB
|
7. Measuring Entropy.mp4
|
36.7 MB
|
7. Measuring Entropy.srt
|
7.1 KB
|
8. [Activity] WINDOWS Installing Graphviz.mp4
|
2.2 MB
|
8. [Activity] WINDOWS Installing Graphviz.srt
|
0.7 KB
|
9. [Activity] MAC Installing Graphviz.mp4
|
15.5 MB
|
9. [Activity] MAC Installing Graphviz.srt
|
1.3 KB
|
/5. Recommender Systems/
|
1. User-Based Collaborative Filtering.mp4
|
90.6 MB
|
1. User-Based Collaborative Filtering.srt
|
19.8 KB
|
2. Item-Based Collaborative Filtering.mp4
|
78.6 MB
|
2. Item-Based Collaborative Filtering.srt
|
20.5 KB
|
3. [Activity] Finding Movie Similarities.mp4
|
113.1 MB
|
3. [Activity] Finding Movie Similarities.srt
|
20.6 KB
|
4. [Activity] Improving the Results of Movie Similarities.mp4
|
99.5 MB
|
4. [Activity] Improving the Results of Movie Similarities.srt
|
17.2 KB
|
5. [Activity] Making Movie Recommendations to People.mp4
|
139.0 MB
|
5. [Activity] Making Movie Recommendations to People.srt
|
23.2 KB
|
6. [Exercise] Improve the recommender's results.mp4
|
88.3 MB
|
6. [Exercise] Improve the recommender's results.srt
|
13.5 KB
|
/6. More Data Mining and Machine Learning Techniques/
|
1. K-Nearest-Neighbors Concepts.mp4
|
42.2 MB
|
1. K-Nearest-Neighbors Concepts.srt
|
9.2 KB
|
2. [Activity] Using KNN to predict a rating for a movie.mp4
|
149.0 MB
|
2. [Activity] Using KNN to predict a rating for a movie.srt
|
29.2 KB
|
3. Dimensionality Reduction; Principal Component Analysis.mp4
|
71.0 MB
|
3. Dimensionality Reduction; Principal Component Analysis.srt
|
12.6 KB
|
4. [Activity] PCA Example with the Iris data set.mp4
|
115.1 MB
|
4. [Activity] PCA Example with the Iris data set.srt
|
21.7 KB
|
5. Data Warehousing Overview ETL and ELT.mp4
|
108.4 MB
|
5. Data Warehousing Overview ETL and ELT.srt
|
20.2 KB
|
6. Reinforcement Learning.mp4
|
138.7 MB
|
6. Reinforcement Learning.srt
|
29.2 KB
|
6.1 Pac-Man Example.html
|
0.1 KB
|
6.2 Cat and Mouse Example.html
|
0.1 KB
|
6.3 Python Markov Decision Process Toolbox.html
|
0.1 KB
|
7. [Activity] Reinforcement Learning & Q-Learning with Gym.mp4
|
81.7 MB
|
7. [Activity] Reinforcement Learning & Q-Learning with Gym.srt
|
23.0 KB
|
8. Understanding a Confusion Matrix.mp4
|
15.5 MB
|
8. Understanding a Confusion Matrix.srt
|
9.9 KB
|
9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).mp4
|
27.0 MB
|
9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).srt
|
11.1 KB
|
/7. Dealing with Real-World Data/
|
1. BiasVariance Tradeoff.mp4
|
69.5 MB
|
1. BiasVariance Tradeoff.srt
|
14.7 KB
|
10. Binning, Transforming, Encoding, Scaling, and Shuffling.mp4
|
50.2 MB
|
10. Binning, Transforming, Encoding, Scaling, and Shuffling.srt
|
14.6 KB
|
2. [Activity] K-Fold Cross-Validation to avoid overfitting.mp4
|
107.3 MB
|
2. [Activity] K-Fold Cross-Validation to avoid overfitting.srt
|
25.1 KB
|
3. Data Cleaning and Normalization.mp4
|
82.6 MB
|
3. Data Cleaning and Normalization.srt
|
17.5 KB
|
4. [Activity] Cleaning web log data.mp4
|
135.7 MB
|
4. [Activity] Cleaning web log data.srt
|
24.4 KB
|
5. Normalizing numerical data.mp4
|
40.1 MB
|
5. Normalizing numerical data.srt
|
7.8 KB
|
6. [Activity] Detecting outliers.mp4
|
38.1 MB
|
6. [Activity] Detecting outliers.srt
|
11.7 KB
|
7. Feature Engineering and the Curse of Dimensionality.mp4
|
43.7 MB
|
7. Feature Engineering and the Curse of Dimensionality.srt
|
12.1 KB
|
8. Imputation Techniques for Missing Data.mp4
|
51.4 MB
|
8. Imputation Techniques for Missing Data.srt
|
14.7 KB
|
9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.mp4
|
38.1 MB
|
9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.srt
|
10.1 KB
|
/8. Apache Spark Machine Learning on Big Data/
|
1. Warning about Java 11 and Spark 3!.html
|
0.6 KB
|
10. TF IDF.mp4
|
72.2 MB
|
10. TF IDF.srt
|
14.4 KB
|
11. [Activity] Searching Wikipedia with Spark.mp4
|
108.0 MB
|
11. [Activity] Searching Wikipedia with Spark.srt
|
13.2 KB
|
12. [Activity] Using the Spark 2.0 DataFrame API for MLLib.mp4
|
110.8 MB
|
12. [Activity] Using the Spark 2.0 DataFrame API for MLLib.srt
|
14.2 KB
|
2. Spark installation notes for MacOS and Linux users.html
|
3.7 KB
|
3. [Activity] Installing Spark - Part 1.mp4
|
87.7 MB
|
3. [Activity] Installing Spark - Part 1.srt
|
12.3 KB
|
3.1 winutils.exe.html
|
0.1 KB
|
4. [Activity] Installing Spark - Part 2.mp4
|
117.4 MB
|
4. [Activity] Installing Spark - Part 2.srt
|
10.8 KB
|
4.1 winutils.exe.html
|
0.1 KB
|
5. Spark Introduction.mp4
|
94.2 MB
|
5. Spark Introduction.srt
|
21.7 KB
|
6. Spark and the Resilient Distributed Dataset (RDD).mp4
|
103.3 MB
|
6. Spark and the Resilient Distributed Dataset (RDD).srt
|
25.0 KB
|
7. Introducing MLLib.mp4
|
57.4 MB
|
7. Introducing MLLib.srt
|
11.7 KB
|
8. Introduction to Decision Trees in Spark.mp4
|
140.5 MB
|
8. Introduction to Decision Trees in Spark.srt
|
28.8 KB
|
9. [Activity] K-Means Clustering in Spark.mp4
|
123.6 MB
|
9. [Activity] K-Means Clustering in Spark.srt
|
18.2 KB
|
/9. Experimental Design ML in the Real World/
|
1. Deploying Models to Real-Time Systems.mp4
|
34.6 MB
|
1. Deploying Models to Real-Time Systems.srt
|
15.8 KB
|
2. AB Testing Concepts.mp4
|
102.2 MB
|
2. AB Testing Concepts.srt
|
20.7 KB
|
3. T-Tests and P-Values.mp4
|
68.1 MB
|
3. T-Tests and P-Values.srt
|
13.5 KB
|
4. [Activity] Hands-on With T-Tests.mp4
|
85.6 MB
|
4. [Activity] Hands-on With T-Tests.srt
|
14.0 KB
|
5. Determining How Long to Run an Experiment.mp4
|
36.5 MB
|
5. Determining How Long to Run an Experiment.srt
|
8.5 KB
|
6. AB Test Gotchas.mp4
|
100.8 MB
|
6. AB Test Gotchas.srt
|
22.4 KB
|
/
|
[CourseClub.Me].url
|
0.0 KB
|
[DesireCourse.Net].url
|
0.1 KB
|
[FreeCourseWorld.Com].url
|
0.1 KB
|
Total files 224
|