FileMood

Download [ DevCourseWeb.com ] Udemy - Advanced Reinforcement Learning in Python - cutting-edge DQNs

DevCourseWeb com Udemy Advanced Reinforcement Learning in Python cutting edge DQNs

Name

[ DevCourseWeb.com ] Udemy - Advanced Reinforcement Learning in Python - cutting-edge DQNs

 DOWNLOAD Copy Link

Total Size

1.7 GB

Total Files

142

Last Seen

2024-11-02 23:56

Hash

AEEE5EFD07E93D9CDFD0364549553EB4EF7059D7

/

Get Bonus Downloads Here.url

0.2 KB

/1. Introduction/

1. Introduction.mp4

33.9 MB

1. Introduction.mp4.jpg

179.0 KB

1.1 Advanced Reinforcement Learning in Python from DQN to SAC.html

0.1 KB

1.2 Reinforcement Learning beginner to master.html

0.1 KB

2. Reinforcement Learning series.html

0.4 KB

3. Google Colab.mp4

6.1 MB

3. Google Colab.srt

2.0 KB

4. Where to begin.mp4

4.8 MB

4. Where to begin.srt

2.1 KB

/.../10. Prioritized Experience Replay/

1. Prioritized Experience Replay.html

0.1 KB

2. Link to the code notebook.html

0.1 KB

3. DQN for visual inputs.mp4

72.5 MB

3. DQN for visual inputs.srt

15.5 KB

4. Prioritized Experience Repay Buffer.mp4

66.7 MB

4. Prioritized Experience Repay Buffer.srt

15.4 KB

5. Create the environment.mp4

65.6 MB

5. Create the environment.srt

14.3 KB

6. Implement the Deep Q-Learning algorithm with Prioritized Experience Replay.mp4

66.4 MB

6. Implement the Deep Q-Learning algorithm with Prioritized Experience Replay.srt

13.2 KB

7. Launch the training process.mp4

44.6 MB

7. Launch the training process.srt

5.9 KB

8. Check the resulting agent.mp4

17.6 MB

8. Check the resulting agent.srt

2.0 KB

/.../11. Noisy Deep Q-Networks/

1. Noisy Deep Q-Networks.html

0.1 KB

/.../12. N-step Deep Q-Learning/

1. N-step Deep Q-Learning.html

0.1 KB

/.../13. Distributional Deep Q-Networks/

1. Distributional Deep Q-Networks.html

0.1 KB

/.../2. Refresher The Markov Decision Process (MDP)/

1. Module overview.mp4

2.7 MB

1. Module overview.srt

1.2 KB

10. Bellman equations.mp4

13.0 MB

10. Bellman equations.srt

3.5 KB

11. Solving a Markov decision process.mp4

14.8 MB

11. Solving a Markov decision process.srt

3.7 KB

2. Elements common to all control tasks.mp4

40.6 MB

2. Elements common to all control tasks.srt

7.0 KB

3. The Markov decision process (MDP).mp4

26.3 MB

3. The Markov decision process (MDP).srt

6.5 KB

4. Types of Markov decision process.mp4

9.1 MB

4. Types of Markov decision process.srt

2.5 KB

5. Trajectory vs episode.mp4

5.2 MB

5. Trajectory vs episode.srt

1.3 KB

6. Reward vs Return.mp4

5.6 MB

6. Reward vs Return.srt

1.9 KB

7. Discount factor.mp4

15.5 MB

7. Discount factor.srt

4.7 KB

8. Policy.mp4

7.8 MB

8. Policy.srt

2.4 KB

9. State values v(s) and action values q(s,a).mp4

4.5 MB

9. State values v(s) and action values q(s,a).srt

1.3 KB

/3. Refresher Q-Learning/

1. Module overview.mp4

1.6 MB

1. Module overview.srt

0.8 KB

2. Temporal difference methods.mp4

13.2 MB

2. Temporal difference methods.srt

4.2 KB

3. Solving control tasks with temporal difference method.mp4

15.2 MB

3. Solving control tasks with temporal difference method.srt

4.2 KB

4. Q-Learning.mp4

11.6 MB

4. Q-Learning.srt

2.9 KB

5. Advantages of temporal difference methods.mp4

3.9 MB

5. Advantages of temporal difference methods.srt

1.3 KB

/.../4. Refresher Brief introduction to Neural Networks/

1. Module overview.mp4

1.9 MB

1. Module overview.srt

0.9 KB

2. Function approximators.mp4

38.1 MB

2. Function approximators.srt

10.0 KB

3. Artificial Neural Networks.mp4

25.5 MB

3. Artificial Neural Networks.srt

4.5 KB

4. Artificial Neurons.mp4

26.9 MB

4. Artificial Neurons.srt

6.7 KB

5. How to represent a Neural Network.mp4

40.0 MB

5. How to represent a Neural Network.srt

8.4 KB

6. Stochastic Gradient Descent.mp4

52.3 MB

6. Stochastic Gradient Descent.srt

7.4 KB

7. Neural Network optimization.mp4

24.5 MB

7. Neural Network optimization.srt

5.1 KB

/.../5. Refresher Deep Q-Learning/

1. Module overview.mp4

1.3 MB

1. Module overview.srt

0.6 KB

2. Deep Q-Learning.mp4

17.0 MB

2. Deep Q-Learning.srt

3.4 KB

3. Experience replay.mp4

9.4 MB

3. Experience replay.srt

2.6 KB

4. Target Network.mp4

17.4 MB

4. Target Network.srt

4.7 KB

/6. PyTorch Lightning/

1. PyTorch Lightning.mp4

33.6 MB

1. PyTorch Lightning.srt

10.7 KB

10. Prepare the data loader and the optimizer.mp4

31.9 MB

10. Prepare the data loader and the optimizer.srt

5.0 KB

11. Define the train_step() method.mp4

52.2 MB

11. Define the train_step() method.srt

11.1 KB

12. Define the train_epoch_end() method.mp4

33.7 MB

12. Define the train_epoch_end() method.srt

4.8 KB

13. Train the Deep Q-Learning algorithm.mp4

36.8 MB

13. Train the Deep Q-Learning algorithm.srt

7.7 KB

14. Explore the resulting agent.mp4

21.3 MB

14. Explore the resulting agent.srt

3.7 KB

2. Link to the code notebook.html

0.2 KB

2.1 Google colab.html

0.2 KB

3. Introduction to PyTorch Lightning.mp4

32.4 MB

3. Introduction to PyTorch Lightning.srt

7.1 KB

4. Create the Deep Q-Network.mp4

24.0 MB

4. Create the Deep Q-Network.srt

6.1 KB

5. Create the policy.mp4

18.9 MB

5. Create the policy.srt

5.9 KB

6. Create the replay buffer.mp4

24.1 MB

6. Create the replay buffer.srt

6.7 KB

7. Create the environment.mp4

33.8 MB

7. Create the environment.srt

9.1 KB

8. Define the class for the Deep Q-Learning algorithm.mp4

57.2 MB

8. Define the class for the Deep Q-Learning algorithm.srt

14.0 KB

9. Define the play_episode() function.mp4

30.5 MB

9. Define the play_episode() function.srt

5.6 KB

/.../7. Hyperparameter tuning with Optuna/

1. Hyperparameter tuning with Optuna.mp4

34.0 MB

1. Hyperparameter tuning with Optuna.srt

11.2 KB

2. Link to the code notebook.html

0.2 KB

2.1 Google colab.html

0.2 KB

3. Log average return.mp4

35.3 MB

3. Log average return.srt

5.7 KB

4. Define the objective function.mp4

31.3 MB

4. Define the objective function.srt

6.3 KB

5. Create and launch the hyperparameter tuning job.mp4

19.4 MB

5. Create and launch the hyperparameter tuning job.srt

3.3 KB

6. Explore the best trial.mp4

20.1 MB

6. Explore the best trial.srt

3.1 KB

/.../8. Double Deep Q-Learning/

1. Maximization bias and Double Deep Q-Learning.mp4

14.5 MB

2. Link to the code notebook.html

0.2 KB

2.1 Google colab.html

0.2 KB

3. Create the Double Deep Q-Learning algorithm.mp4

52.4 MB

3. Create the Double Deep Q-Learning algorithm.srt

8.7 KB

4. Check the resulting agent.mp4

9.6 MB

4. Check the resulting agent.srt

1.8 KB

/.../9. Dueling Deep Q-Networks/

1. Dueling Deep Q-Networks.html

0.1 KB

2. Link to the code notebook.html

0.2 KB

2.1 Google colab.html

0.2 KB

3. Create the dueling DQN.mp4

57.0 MB

3. Create the dueling DQN.srt

11.9 KB

4. Create the environment - Part 1.mp4

43.3 MB

4. Create the environment - Part 1.srt

9.2 KB

5. Create the environment - Part 2.mp4

38.4 MB

5. Create the environment - Part 2.srt

6.8 KB

6. Implement Deep Q-Learning.mp4

38.2 MB

6. Implement Deep Q-Learning.srt

6.8 KB

7. Check the resulting agent.mp4

22.0 MB

7. Check the resulting agent.srt

2.8 KB

/~Get Your Files Here !/

Bonus Resources.txt

0.4 KB

 

Total files 142


Copyright © 2024 FileMood.com