FileMood

Download [ DevCourseWeb.com ] Udemy - Advanced Reinforcement Learning in Python - from DQN to SAC

DevCourseWeb com Udemy Advanced Reinforcement Learning in Python from DQN to SAC

Name

[ DevCourseWeb.com ] Udemy - Advanced Reinforcement Learning in Python - from DQN to SAC

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

2.6 GB

Total Files

228

Last Seen

2025-09-09 23:22

Hash

E1676BD24ED4F26DA6DFDB9D5274227B5427AF5C

/

Get Bonus Downloads Here.url

0.2 KB

/01 - Introduction/

001 Introduction.mp4

25.5 MB

001 Introduction_en.vtt

6.3 KB

002 Reinforcement Learning series.html

0.5 KB

003 Google Colab.mp4

6.1 MB

003 Google Colab_en.vtt

1.8 KB

004 Where to begin.mp4

5.3 MB

004 Where to begin_en.vtt

2.0 KB

external-assets-links.txt

0.1 KB

/.../02 - Refresher The Markov Decision Process (MDP)/

001 Module Overview.mp4

2.7 MB

001 Module Overview_en.vtt

1.0 KB

002 Elements common to all control tasks.mp4

40.6 MB

002 Elements common to all control tasks_en.vtt

6.1 KB

003 The Markov decision process (MDP).mp4

26.3 MB

003 The Markov decision process (MDP)_en.vtt

5.8 KB

004 Types of Markov decision process.mp4

9.1 MB

004 Types of Markov decision process_en.vtt

2.3 KB

005 Trajectory vs episode.mp4

5.2 MB

005 Trajectory vs episode_en.vtt

1.1 KB

006 Reward vs Return.mp4

5.5 MB

006 Reward vs Return_en.vtt

1.7 KB

007 Discount factor.mp4

15.5 MB

007 Discount factor_en.vtt

4.1 KB

008 Policy.mp4

7.8 MB

008 Policy_en.vtt

2.2 KB

009 State values v(s) and action values q(s,a).mp4

4.5 MB

009 State values v(s) and action values q(s,a)_en.vtt

1.2 KB

010 Bellman equations.mp4

13.0 MB

010 Bellman equations_en.vtt

3.1 KB

011 Solving a Markov decision process.mp4

14.8 MB

011 Solving a Markov decision process_en.vtt

3.2 KB

external-assets-links.txt

0.1 KB

/.../03 - Refresher Q-Learning/

001 Module overview.mp4

1.6 MB

001 Module overview_en.vtt

0.7 KB

002 Temporal difference methods.mp4

13.2 MB

002 Temporal difference methods_en.vtt

3.6 KB

003 Solving control tasks with temporal difference methods.mp4

15.2 MB

003 Solving control tasks with temporal difference methods_en.vtt

3.7 KB

004 Q-Learning.mp4

11.6 MB

004 Q-Learning_en.vtt

2.5 KB

005 Advantages of temporal difference methods.mp4

3.9 MB

005 Advantages of temporal difference methods_en.vtt

1.2 KB

external-assets-links.txt

0.1 KB

/.../04 - Refresher Brief introduction to Neural Networks/

001 Module overview.mp4

1.9 MB

001 Module overview_en.vtt

0.7 KB

002 Function approximators.mp4

38.1 MB

002 Function approximators_en.vtt

8.7 KB

003 Artificial Neural Networks.mp4

25.5 MB

003 Artificial Neural Networks_en.vtt

3.9 KB

004 Artificial Neurons.mp4

26.9 MB

004 Artificial Neurons_en.vtt

6.0 KB

005 How to represent a Neural Network.mp4

40.0 MB

005 How to represent a Neural Network_en.vtt

7.4 KB

006 Stochastic Gradient Descent.mp4

52.3 MB

006 Stochastic Gradient Descent_en.vtt

6.5 KB

007 Neural Network optimization.mp4

24.5 MB

007 Neural Network optimization_en.vtt

4.5 KB

external-assets-links.txt

0.1 KB

/.../05 - Refresher Deep Q-Learning/

001 Module overview.mp4

1.3 MB

001 Module overview_en.vtt

0.6 KB

002 Deep Q-Learning.mp4

17.0 MB

002 Deep Q-Learning_en.vtt

3.0 KB

003 Experience Replay.mp4

9.4 MB

003 Experience Replay_en.vtt

2.3 KB

004 Target Network.mp4

17.4 MB

004 Target Network_en.vtt

4.0 KB

external-assets-links.txt

0.1 KB

/.../06 - PyTorch Lightning/

001 PyTorch Lightning.mp4

33.6 MB

001 PyTorch Lightning_en.vtt

9.4 KB

002 Link to the code notebook.html

0.3 KB

003 Introduction to PyTorch Lightning.mp4

32.4 MB

003 Introduction to PyTorch Lightning_en.vtt

6.4 KB

004 Create the Deep Q-Network.mp4

24.0 MB

004 Create the Deep Q-Network_en.vtt

5.3 KB

005 Create the policy.mp4

18.9 MB

005 Create the policy_en.vtt

5.2 KB

006 Create the replay buffer.mp4

24.1 MB

006 Create the replay buffer_en.vtt

5.8 KB

007 Create the environment.mp4

33.8 MB

007 Create the environment_en.vtt

7.7 KB

008 Define the class for the Deep Q-Learning algorithm.mp4

57.2 MB

008 Define the class for the Deep Q-Learning algorithm_en.vtt

11.9 KB

009 Define the play_episode() function.mp4

30.5 MB

009 Define the play_episode() function_en.vtt

5.0 KB

010 Prepare the data loader and the optimizer.mp4

31.9 MB

010 Prepare the data loader and the optimizer_en.vtt

4.3 KB

011 Define the train_step() method.mp4

52.2 MB

011 Define the train_step() method_en.vtt

9.5 KB

012 Define the train_epoch_end() method.mp4

33.7 MB

012 Define the train_epoch_end() method_en.vtt

4.1 KB

013 [Important] Lecture correction.html

0.6 KB

014 Train the Deep Q-Learning algorithm.mp4

36.7 MB

014 Train the Deep Q-Learning algorithm_en.vtt

6.6 KB

015 Explore the resulting agent.mp4

21.2 MB

015 Explore the resulting agent_en.vtt

2.9 KB

external-assets-links.txt

0.1 KB

/.../07 - Hyperparameter tuning with Optuna/

001 Hyperparameter tuning with Optuna.mp4

34.0 MB

001 Hyperparameter tuning with Optuna_en.vtt

9.9 KB

002 Link to the code notebook.html

0.3 KB

003 Log average return.mp4

35.3 MB

003 Log average return_en.vtt

4.9 KB

004 Define the objective function.mp4

31.3 MB

004 Define the objective function_en.vtt

5.4 KB

005 Create and launch the hyperparameter tuning job.mp4

19.4 MB

005 Create and launch the hyperparameter tuning job_en.vtt

2.7 KB

006 Explore the best trial.mp4

20.1 MB

006 Explore the best trial_en.vtt

2.7 KB

external-assets-links.txt

0.1 KB

/.../08 - Deep Q-Learning for continuous action spaces (Normalized Advantage Function)/

001 Continuous action spaces.mp4

31.1 MB

001 Continuous action spaces_en.vtt

6.9 KB

002 The advantage function.mp4

14.1 MB

002 The advantage function_en.vtt

4.9 KB

003 Normalized Advantage Function (NAF).mp4

10.6 MB

003 Normalized Advantage Function (NAF)_en.vtt

3.4 KB

004 Normalized Advantage Function pseudocode.mp4

24.3 MB

004 Normalized Advantage Function pseudocode_en.vtt

5.9 KB

005 Link to the code notebook.html

0.3 KB

006 Hyperbolic tangent.mp4

4.9 MB

006 Hyperbolic tangent_en.vtt

1.6 KB

007 Creating the (NAF) Deep Q-Network 1.mp4

43.4 MB

007 Creating the (NAF) Deep Q-Network 1_en.vtt

7.6 KB

008 Creating the (NAF) Deep Q-Network 2.mp4

15.7 MB

008 Creating the (NAF) Deep Q-Network 2_en.vtt

3.3 KB

009 Creating the (NAF) Deep Q-Network 3.mp4

5.6 MB

009 Creating the (NAF) Deep Q-Network 3_en.vtt

1.1 KB

010 Creating the (NAF) Deep Q-Network 4.mp4

50.2 MB

010 Creating the (NAF) Deep Q-Network 4_en.vtt

9.5 KB

011 Creating the policy.mp4

26.3 MB

011 Creating the policy_en.vtt

5.3 KB

012 Create the environment.mp4

23.6 MB

012 Create the environment_en.vtt

4.7 KB

013 Polyak averaging.mp4

5.1 MB

013 Polyak averaging_en.vtt

1.5 KB

014 Implementing Polyak averaging.mp4

10.9 MB

014 Implementing Polyak averaging_en.vtt

2.3 KB

015 Create the (NAF) Deep Q-Learning algorithm.mp4

45.0 MB

015 Create the (NAF) Deep Q-Learning algorithm_en.vtt

8.1 KB

016 Implement the training step.mp4

13.9 MB

016 Implement the training step_en.vtt

2.5 KB

017 Implement the end-of-epoch logic.mp4

13.1 MB

017 Implement the end-of-epoch logic_en.vtt

2.3 KB

018 Debugging and launching the algorithm.mp4

21.0 MB

018 Debugging and launching the algorithm_en.vtt

2.9 KB

019 Checking the resulting agent.mp4

17.2 MB

019 Checking the resulting agent_en.vtt

2.0 KB

external-assets-links.txt

0.1 KB

/.../09 - Refresher Policy gradient methods/

001 Policy gradient methods.mp4

22.7 MB

001 Policy gradient methods_en.vtt

4.9 KB

002 Policy performance.mp4

8.9 MB

002 Policy performance_en.vtt

2.6 KB

003 Representing policies using neural networks.mp4

29.1 MB

003 Representing policies using neural networks_en.vtt

5.4 KB

004 The policy gradient theorem.mp4

16.7 MB

004 The policy gradient theorem_en.vtt

3.9 KB

005 Entropy Regularization.mp4

24.3 MB

005 Entropy Regularization_en.vtt

6.7 KB

/.../10 - Deep Deterministic Policy Gradient (DDPG)/

001 The Brax Physics engine.mp4

21.0 MB

001 The Brax Physics engine_en.vtt

3.6 KB

002 Deep Deterministic Policy Gradient (DDPG).mp4

33.9 MB

002 Deep Deterministic Policy Gradient (DDPG)_en.vtt

10.2 KB

003 DDPG pseudocode.mp4

21.9 MB

003 DDPG pseudocode_en.vtt

4.0 KB

004 Link to the code notebook.html

0.3 KB

005 Deep Deterministic Policy Gradient (DDPG).mp4

33.4 MB

005 Deep Deterministic Policy Gradient (DDPG)_en.vtt

5.8 KB

006 Create the gradient policy.mp4

45.6 MB

006 Create the gradient policy_en.vtt

10.0 KB

007 Create the Deep Q-Network.mp4

23.9 MB

007 Create the Deep Q-Network_en.vtt

4.4 KB

008 Create the DDPG class.mp4

40.7 MB

008 Create the DDPG class_en.vtt

7.5 KB

009 Define the play method.mp4

13.9 MB

009 Define the play method_en.vtt

2.2 KB

010 Setup the optimizers and dataloader.mp4

23.3 MB

010 Setup the optimizers and dataloader_en.vtt

3.3 KB

011 Define the training step.mp4

60.7 MB

011 Define the training step_en.vtt

10.1 KB

012 Launch the training process.mp4

35.9 MB

012 Launch the training process_en.vtt

4.0 KB

013 Check the resulting agent.mp4

31.7 MB

013 Check the resulting agent_en.vtt

1.7 KB

external-assets-links.txt

0.2 KB

/.../11 - Twin Delayed DDPG (TD3)/

001 Twin Delayed DDPG (TD3).mp4

35.6 MB

001 Twin Delayed DDPG (TD3)_en.vtt

11.7 KB

002 TD3 pseudocode.mp4

21.0 MB

002 TD3 pseudocode_en.vtt

4.4 KB

003 Link to code notebook.html

0.3 KB

004 Twin Delayed DDPG (TD3).mp4

20.9 MB

004 Twin Delayed DDPG (TD3)_en.vtt

3.3 KB

005 Clipped double Q-Learning.mp4

33.1 MB

005 Clipped double Q-Learning_en.vtt

4.0 KB

006 Delayed policy updates.mp4

12.7 MB

006 Delayed policy updates_en.vtt

2.1 KB

007 Target policy smoothing.mp4

32.5 MB

007 Target policy smoothing_en.vtt

4.2 KB

008 Check the resulting agent.mp4

32.6 MB

008 Check the resulting agent_en.vtt

2.3 KB

external-assets-links.txt

0.1 KB

/.../12 - Soft Actor-Critic (SAC)/

001 Soft Actor-Critic (SAC).mp4

25.1 MB

001 Soft Actor-Critic (SAC)_en.vtt

7.7 KB

002 SAC pseudocode.mp4

10.0 MB

002 SAC pseudocode_en.vtt

2.1 KB

003 Create the robotics task.mp4

77.6 MB

003 Create the robotics task_en.vtt

11.7 KB

004 Create the Deep Q-Network.mp4

19.9 MB

004 Create the Deep Q-Network_en.vtt

3.6 KB

005 Create the gradient policy.mp4

56.4 MB

005 Create the gradient policy_en.vtt

12.9 KB

006 Implement the Soft Actor-Critic algorithm - Part 1.mp4

42.0 MB

006 Implement the Soft Actor-Critic algorithm - Part 1_en.vtt

7.3 KB

007 Implement the Soft Actor-Critic algorithm - Part 2.mp4

69.9 MB

007 Implement the Soft Actor-Critic algorithm - Part 2_en.vtt

9.5 KB

008 Check the results.mp4

12.7 MB

008 Check the results_en.vtt

2.2 KB

/.../13 - Hindsight Experience Replay/

001 Hindsight Experience Replay (HER).mp4

17.9 MB

001 Hindsight Experience Replay (HER)_en.vtt

4.4 KB

002 Implement Hindsight Experience Replay (HER) - Part 1.mp4

35.6 MB

002 Implement Hindsight Experience Replay (HER) - Part 1_en.vtt

5.3 KB

003 Implement Hindsight Experience Replay (HER) - Part 2.mp4

22.7 MB

003 Implement Hindsight Experience Replay (HER) - Part 2_en.vtt

3.0 KB

004 Implement Hindsight Experience Replay (HER) - Part 3.mp4

77.3 MB

004 Implement Hindsight Experience Replay (HER) - Part 3_en.vtt

10.1 KB

005 Check the results.mp4

7.8 MB

005 Check the results_en.vtt

1.0 KB

/.../14 - Final steps/

001 Next steps.mp4

18.1 MB

001 Next steps_en.vtt

2.2 KB

002 Next steps.html

0.5 KB

/~Get Your Files Here !/

Bonus Resources.txt

0.4 KB

 

Total files 228


Copyright © 2025 FileMood.com