Edureka Practical Deep Learning With Python |
||
Name |
DOWNLOAD Copy Link | |
Total Size |
2.9 GB |
|
Total Files |
93 |
|
Last Seen |
2025-03-11 23:55 |
|
Hash |
D0FACF94C5D4862B6C9BDC166BDD16DFFCC1D420 |
/.../01-Environment_Set_Up_And_Configuration/ |
|
01-welcome_to_practical_deep_learning_with_python_instructions.html |
7.4 KB |
|
29.3 MB |
|
22.9 MB |
04-system_requirements_and_pre_requisite_for_studying_deep_learning_instructions.html |
4.6 KB |
/.../02-Essentials_Of_Deep_Learning/ |
|
|
35.9 MB |
|
21.3 MB |
|
44.2 MB |
|
25.6 MB |
|
18.6 MB |
|
21.6 MB |
|
32.4 MB |
|
30.7 MB |
|
18.7 MB |
|
24.6 MB |
|
26.0 MB |
|
46.1 MB |
|
80.9 MB |
|
4.0 KB |
/.../03-Building_Perceptron_And_Its_Working/ |
|
|
11.6 MB |
|
12.6 MB |
|
10.8 MB |
|
17.8 MB |
|
42.9 MB |
06-demonstration_understanding_how_backpropagation_has_worked.mp4 |
42.4 MB |
07-demonstration_handwritten_digits_classification_data_preprocessing.mp4 |
43.8 MB |
08-demonstration_handwritten_digits_classification_designing_the_model.mp4 |
76.8 MB |
09-demonstration_handwritten_digits_classification_optimizing_the_model.mp4 |
93.1 MB |
|
27.9 KB |
/.../04-Module_Wrap_Up_And_Assessment/ |
|
|
38.1 MB |
/.../01-Convolutional_Neural_Network/ |
|
|
29.3 MB |
|
22.6 MB |
|
33.1 MB |
|
33.5 MB |
|
33.5 MB |
|
44.1 MB |
|
55.4 MB |
|
39.8 MB |
|
22.5 MB |
|
65.4 MB |
11-demonstration_building_basic_cnn_model_with_new_parameters.mp4 |
82.0 MB |
|
39.2 MB |
|
2.1 KB |
/.../02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn/ |
|
|
31.3 MB |
|
33.0 MB |
|
13.1 MB |
|
30.5 MB |
|
33.7 MB |
06-demonstration_creating_base_variables_and_loading_the_model.mp4 |
38.8 MB |
07-demonstration_training_the_model_and_visualizing_the_predictions.mp4 |
56.2 MB |
|
24.5 MB |
|
4.4 KB |
/.../03-Faster_Rcnn_Recurrent_Convolutional_Neural_Network/ |
|
|
26.1 MB |
|
26.5 MB |
|
21.3 MB |
04-demonstration_object_detection_with_faster_rcnn_pretrained_model_setup.mp4 |
78.3 MB |
05-demonstration_object_detection_with_faster_rcnn_building_the_model.mp4 |
86.9 MB |
|
6.1 KB |
/.../04-Module_Wrap_Up_And_Assessment/ |
|
|
14.0 MB |
|
23.6 MB |
/.../01-Working_Of_Recurrent_Neural_Networks_Rnn/ |
|
|
21.5 MB |
|
23.7 MB |
|
30.3 MB |
|
30.3 MB |
|
65.1 MB |
|
65.4 MB |
07-recurrent_neural_networks_rnns_in_deep_learning_instructions.html |
20.1 KB |
/.../02-Lstm_Architecture/ |
|
|
29.7 MB |
|
25.4 MB |
|
21.9 MB |
|
14.8 MB |
|
24.2 MB |
|
20.1 MB |
07-demonstration_next_word_prediction_processing_the_corpus.mp4 |
52.6 MB |
|
61.8 MB |
09-demonstration_next_word_prediction_model_compilation_and_prediction.mp4 |
101.3 MB |
10-attention_based_lstm_long_short_term_memory_instructions.html |
7.6 KB |
|
4.3 KB |
/.../03-Module_Optimization_And_Compilation/ |
|
|
34.5 MB |
|
22.9 MB |
|
33.5 MB |
|
15.1 MB |
|
28.7 MB |
06-demonstration_model_compilation_preparing_the_dataset.mp4 |
58.2 MB |
|
48.5 MB |
|
47.4 MB |
|
89.4 KB |
/.../04-Module_Wrap_Up_And_Assessment/ |
|
01-summary_of_deep_learning_with_rnn_and_lstm_with_model_optimization.mp4 |
34.5 MB |
/04-Course_Wrap_Up_And_Assessment/ |
|
01-course_summary_for_practical_deep_learning_with_python.mp4 |
24.5 MB |
02-practice_project_mnist_fashion_dataset_analysis_instructions.html |
65.5 KB |
/.../01-Module_3_Datasets/ |
|
|
49.6 KB |
|
0.4 KB |
|
10.2 MB |
/.../02-Module_2_Datasets/ |
|
|
67.3 KB |
Total files 93 |
Copyright © 2025 FileMood.com