FileMood

Download Edureka - Practical Deep Learning With Python

Edureka Practical Deep Learning With Python

Name

Edureka - Practical Deep Learning With Python

  DOWNLOAD Copy Link

Total Size

2.9 GB

Total Files

93

Last Seen

2025-03-11 23:55

Hash

D0FACF94C5D4862B6C9BDC166BDD16DFFCC1D420

/.../01-Environment_Set_Up_And_Configuration/

01-welcome_to_practical_deep_learning_with_python_instructions.html

7.4 KB

02-course_introduction.mp4

29.3 MB

03-environment_configuration.mp4

22.9 MB

04-system_requirements_and_pre_requisite_for_studying_deep_learning_instructions.html

4.6 KB

/.../02-Essentials_Of_Deep_Learning/

01-machine_learning_vs_deep_learning.mp4

35.9 MB

02-what_is_deep_learning.mp4

21.3 MB

03-neural_networks.mp4

44.2 MB

04-artificial_neural_network_ann.mp4

25.6 MB

05-ann_types_and_applications.mp4

18.6 MB

06-forward_propagation.mp4

21.6 MB

07-perceptron.mp4

32.4 MB

08-learning_rate.mp4

30.7 MB

09-what_is_activation_function.mp4

18.7 MB

10-activation_function_and_its_types.mp4

24.6 MB

11-importance_of_epoch.mp4

26.0 MB

12-single_layer_perceptron_define_sigmoid_function.mp4

46.1 MB

13-single_layer_perceptron_decision_boundary.mp4

80.9 MB

14-learning_rate_in_deep_learning_instructions.html

4.0 KB

/.../03-Building_Perceptron_And_Its_Working/

01-limitations_of_single_layered_perceptron.mp4

11.6 MB

02-multi_layered_perceptron.mp4

12.6 MB

03-what_is_backpropagation.mp4

10.8 MB

04-backpropagation.mp4

17.8 MB

05-demonstration_building_a_simple_neural_network.mp4

42.9 MB

06-demonstration_understanding_how_backpropagation_has_worked.mp4

42.4 MB

07-demonstration_handwritten_digits_classification_data_preprocessing.mp4

43.8 MB

08-demonstration_handwritten_digits_classification_designing_the_model.mp4

76.8 MB

09-demonstration_handwritten_digits_classification_optimizing_the_model.mp4

93.1 MB

10-hebbian_learning_algorithm_instructions.html

27.9 KB

/.../04-Module_Wrap_Up_And_Assessment/

01-summary_of_deep_learning_components.mp4

38.1 MB

/.../01-Convolutional_Neural_Network/

01-limitations_of_mlp.mp4

29.3 MB

02-mlp_limitations_resolving_the_issue_with_cnn.mp4

22.6 MB

03-visual_cortex_and_cnn.mp4

33.1 MB

04-convolutional_layer.mp4

33.5 MB

05-working_of_convolutional_layer.mp4

33.5 MB

06-demonstration_load_and_preprocess_the_data.mp4

44.1 MB

07-demonstration_designing_the_model.mp4

55.4 MB

08-demonstration_building_the_cnn_model.mp4

39.8 MB

09-demonstration_model_accuracy.mp4

22.5 MB

10-demonstration_adding_more_layers.mp4

65.4 MB

11-demonstration_building_basic_cnn_model_with_new_parameters.mp4

82.0 MB

12-demonstration_pre_trained_model.mp4

39.2 MB

13-why_convolutions_are_important_instructions.html

2.1 KB

/.../02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn/

01-classification_and_object_detection.mp4

31.3 MB

02-introduction_to_rcnn.mp4

33.0 MB

03-r_cnn_bounding_box_regression.mp4

13.1 MB

04-pre_trained_model.mp4

30.5 MB

05-fast_regional_cnn.mp4

33.7 MB

06-demonstration_creating_base_variables_and_loading_the_model.mp4

38.8 MB

07-demonstration_training_the_model_and_visualizing_the_predictions.mp4

56.2 MB

08-demonstration_svm_as_a_classifier.mp4

24.5 MB

09-svm_classifier_in_object_detection_instructions.html

4.4 KB

/.../03-Faster_Rcnn_Recurrent_Convolutional_Neural_Network/

01-fast_rcnn_limitations.mp4

26.1 MB

02-advent_of_faster_r_cnn.mp4

26.5 MB

03-tensorflow_hub.mp4

21.3 MB

04-demonstration_object_detection_with_faster_rcnn_pretrained_model_setup.mp4

78.3 MB

05-demonstration_object_detection_with_faster_rcnn_building_the_model.mp4

86.9 MB

06-faster_r_cnn_architecture_instructions.html

6.1 KB

/.../04-Module_Wrap_Up_And_Assessment/

01-summary_of_cnn_in_deep_learning.mp4

14.0 MB

02-summary_of_faster_rcnn.mp4

23.6 MB

/.../01-Working_Of_Recurrent_Neural_Networks_Rnn/

01-rnn_fundamentals.mp4

21.5 MB

02-rnn_architecture.mp4

23.7 MB

03-rnn_architecture_workflow.mp4

30.3 MB

04-implementing_rnn.mp4

30.3 MB

05-demonstration_rnn_dataset_preparation.mp4

65.1 MB

06-demonstration_rnn_building_the_model.mp4

65.4 MB

07-recurrent_neural_networks_rnns_in_deep_learning_instructions.html

20.1 KB

/.../02-Lstm_Architecture/

01-basics_of_lstm.mp4

29.7 MB

02-lstm_structure.mp4

25.4 MB

03-forget_gate_and_input_gate.mp4

21.9 MB

04-output_gate.mp4

14.8 MB

05-importance_of_lstm_architecture.mp4

24.2 MB

06-types_of_lstm.mp4

20.1 MB

07-demonstration_next_word_prediction_processing_the_corpus.mp4

52.6 MB

08-demonstration_next_word_prediction_layers.mp4

61.8 MB

09-demonstration_next_word_prediction_model_compilation_and_prediction.mp4

101.3 MB

10-attention_based_lstm_long_short_term_memory_instructions.html

7.6 KB

11-capsule_networks_in_deep_learning_instructions.html

4.3 KB

/.../03-Module_Optimization_And_Compilation/

01-improving_a_model.mp4

34.5 MB

02-model_optimization.mp4

22.9 MB

03-using_adam_optimizer.mp4

33.5 MB

04-model_compilation.mp4

15.1 MB

05-model_compilation_with_popular_frameworks.mp4

28.7 MB

06-demonstration_model_compilation_preparing_the_dataset.mp4

58.2 MB

07-demonstration_building_and_compiling_model.mp4

48.5 MB

08-demonstration_from_rmsprop_to_adam.mp4

47.4 MB

09-model_optimizers_beyond_adam_instructions.html

89.4 KB

/.../04-Module_Wrap_Up_And_Assessment/

01-summary_of_deep_learning_with_rnn_and_lstm_with_model_optimization.mp4

34.5 MB

/04-Course_Wrap_Up_And_Assessment/

01-course_summary_for_practical_deep_learning_with_python.mp4

24.5 MB

02-practice_project_mnist_fashion_dataset_analysis_instructions.html

65.5 KB

/.../01-Module_3_Datasets/

deeplearning.txt

49.6 KB

history.p

0.4 KB

next_word_model.keras

10.2 MB

/.../02-Module_2_Datasets/

resources.html

67.3 KB

 

Total files 93


Copyright © 2025 FileMood.com