FileMood

Download [FreeAllCourse.Com] Udemy - Complete Machine Learning and Data Science Zero to Mastery

FreeAllCourse Com Udemy Complete Machine Learning and Data Science Zero to Mastery

Name

[FreeAllCourse.Com] Udemy - Complete Machine Learning and Data Science Zero to Mastery

 DOWNLOAD Copy Link

Total Size

20.6 GB

Total Files

821

Hash

EFB18A1509C7236ABBCA990BC7B38E5C3269F8D0

/1. Introduction/

1. Course Outline.mp4

81.0 MB

1. Course Outline.srt

9.4 KB

2. Join Our Online Classroom!.html

2.2 KB

3. Exercise Meet The Community.html

2.6 KB

4. Your First Day.mp4

29.3 MB

4. Your First Day.srt

5.4 KB

/10. Supervised Learning Classification + Regression/

1. Milestone Projects!.html

0.7 KB

/11. Milestone Project 1 Supervised Learning (Classification)/

1. Section Overview.mp4

10.7 MB

1. Section Overview.srt

3.2 KB

10. Preparing Our Data For Machine Learning.mp4

76.1 MB

10. Preparing Our Data For Machine Learning.srt

12.3 KB

11. Choosing The Right Models.mp4

101.1 MB

11. Choosing The Right Models.srt

13.3 KB

12. Experimenting With Machine Learning Models.mp4

58.0 MB

12. Experimenting With Machine Learning Models.srt

9.9 KB

13. TuningImproving Our Model.mp4

107.8 MB

13. TuningImproving Our Model.srt

18.1 KB

14. Tuning Hyperparameters.mp4

113.2 MB

14. Tuning Hyperparameters.srt

16.0 KB

15. Tuning Hyperparameters 2.mp4

109.2 MB

15. Tuning Hyperparameters 2.srt

15.5 KB

16. Tuning Hyperparameters 3.mp4

66.1 MB

16. Tuning Hyperparameters 3.srt

10.2 KB

17. Evaluating Our Model.mp4

75.1 MB

17. Evaluating Our Model.srt

15.5 KB

18. Evaluating Our Model 2.mp4

43.6 MB

18. Evaluating Our Model 2.srt

7.6 KB

19. Evaluating Our Model 3.mp4

68.0 MB

19. Evaluating Our Model 3.srt

11.8 KB

2. Project Overview.mp4

36.1 MB

2. Project Overview.srt

10.3 KB

2.1 Structured Data Projects on GitHub.html

0.2 KB

2.2 End-to-end Heart Disease Classification Notebook (with annotations).html

0.2 KB

2.3 End-to-end Heart Disease Classification Notebook (same as in videos).html

0.2 KB

20. Finding The Most Important Features.mp4

133.7 MB

20. Finding The Most Important Features.srt

22.9 KB

21. Reviewing The Project.mp4

90.3 MB

21. Reviewing The Project.srt

14.1 KB

21.1 End-to-end Heart Disease Classification Notebook (same as in videos).html

0.2 KB

21.2 End-to-end Heart Disease Classification Notebook (with annotations).html

0.2 KB

3. Project Environment Setup.mp4

105.7 MB

3. Project Environment Setup.srt

14.7 KB

4. Step 1~4 Framework Setup.mp4

110.6 MB

4. Step 1~4 Framework Setup.srt

17.0 KB

5. Getting Our Tools Ready.mp4

83.2 MB

5. Getting Our Tools Ready.srt

13.1 KB

6. Exploring Our Data.mp4

70.1 MB

6. Exploring Our Data.srt

11.7 KB

6.1 heart-disease.csv

11.3 KB

7. Finding Patterns.mp4

66.4 MB

7. Finding Patterns.srt

13.7 KB

8. Finding Patterns 2.mp4

104.8 MB

8. Finding Patterns 2.srt

22.9 KB

9. Finding Patterns 3.mp4

144.6 MB

9. Finding Patterns 3.srt

19.3 KB

/12. Milestone Project 2 Supervised Learning (Time Series Data)/

1. Section Overview.mp4

9.4 MB

1. Section Overview.srt

1.9 KB

10. Filling Missing Categorical Values.mp4

70.2 MB

10. Filling Missing Categorical Values.srt

11.5 KB

11. Fitting A Machine Learning Model.mp4

58.2 MB

11. Fitting A Machine Learning Model.srt

10.7 KB

12. Splitting Data.mp4

86.7 MB

12. Splitting Data.srt

13.8 KB

13. Custom Evaluation Function.mp4

108.4 MB

13. Custom Evaluation Function.srt

16.5 KB

14. Reducing Data.mp4

98.0 MB

14. Reducing Data.srt

15.0 KB

15. RandomizedSearchCV.mp4

90.0 MB

15. RandomizedSearchCV.srt

13.0 KB

16. Improving Hyperparameters.mp4

83.1 MB

16. Improving Hyperparameters.srt

11.3 KB

17. Preproccessing Our Data.mp4

146.1 MB

17. Preproccessing Our Data.srt

18.2 KB

18. Making Predictions.mp4

83.1 MB

18. Making Predictions.srt

11.6 KB

19. Feature Importance.mp4

149.2 MB

19. Feature Importance.srt

17.7 KB

19.1 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html

0.2 KB

19.2 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html

0.2 KB

2. Project Overview.mp4

34.5 MB

2. Project Overview.srt

6.8 KB

2.1 Kaggle Bluebook for Bulldozers Competition.html

0.1 KB

2.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html

0.2 KB

2.3 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html

0.2 KB

2.4 Structured Data Projects on GitHub.html

0.2 KB

3. Project Environment Setup.mp4

106.2 MB

3. Project Environment Setup.srt

16.3 KB

4. Step 1~4 Framework Setup.mp4

89.8 MB

4. Step 1~4 Framework Setup.srt

12.7 KB

5. Exploring Our Data.mp4

144.5 MB

5. Exploring Our Data.srt

20.5 KB

6. Exploring Our Data 2.mp4

54.6 MB

6. Exploring Our Data 2.srt

8.8 KB

7. Feature Engineering.mp4

166.9 MB

7. Feature Engineering.srt

22.7 KB

8. Turning Data Into Numbers.mp4

153.3 MB

8. Turning Data Into Numbers.srt

22.9 KB

9. Filling Missing Numerical Values.mp4

111.5 MB

9. Filling Missing Numerical Values.srt

17.3 KB

9.1 Pandas Categorical Datatype Documentation.html

0.1 KB

/13. Data Engineering/

1. Data Engineering Introduction.mp4

14.2 MB

1. Data Engineering Introduction.srt

4.4 KB

10. Optional Learn SQL.html

0.4 KB

11. Hadoop, HDFS and MapReduce.mp4

10.6 MB

11. Hadoop, HDFS and MapReduce.srt

4.8 KB

12. Apache Spark and Apache Flink.mp4

6.0 MB

12. Apache Spark and Apache Flink.srt

2.4 KB

13. Kafka and Stream Processing.mp4

20.2 MB

13. Kafka and Stream Processing.srt

5.2 KB

2. What Is Data.mp4

44.3 MB

2. What Is Data.srt

7.8 KB

2.1 Kaggle.html

0.1 KB

3. What Is A Data Engineer.mp4

15.9 MB

3. What Is A Data Engineer.srt

5.0 KB

4. What Is A Data Engineer 2.mp4

25.4 MB

4. What Is A Data Engineer 2.srt

6.5 KB

5. What Is A Data Engineer 3.mp4

25.5 MB

5. What Is A Data Engineer 3.srt

5.5 KB

6. What Is A Data Engineer 4.mp4

15.7 MB

6. What Is A Data Engineer 4.srt

4.0 KB

7. Types Of Databases.mp4

34.1 MB

7. Types Of Databases.srt

8.6 KB

7.1 A Primer on ACID Transactions.html

0.1 KB

7.2 OLTP vs OLAP.html

0.1 KB

8. Quick Note Upcoming Video.html

0.5 KB

9. Optional OLTP Databases.mp4

83.6 MB

9. Optional OLTP Databases.srt

12.4 KB

/14. Neural Networks Deep Learning/

1. Section Overview.mp4

12.8 MB

1. Section Overview.srt

2.8 KB

10. Optional TensorFlow 2.0 Default Issue.mp4

29.5 MB

10. Optional TensorFlow 2.0 Default Issue.srt

4.6 KB

10.1 Loading TensorFlow 2.0 into a Colab Notebook (if it isn't the default).html

0.1 KB

11. Using A GPU.mp4

84.5 MB

11. Using A GPU.srt

12.4 KB

11.1 Google Colab example GPU usage.html

0.1 KB

12. Optional GPU and Google Colab.mp4

48.1 MB

12. Optional GPU and Google Colab.srt

6.1 KB

12.1 Google Colab Example of GPU speed up versus CPU.html

0.1 KB

12.2 Introduction to Google Colab example notebook.html

0.1 KB

13. Optional Reloading Colab Notebook.mp4

93.0 MB

13. Optional Reloading Colab Notebook.srt

8.0 KB

14. Loading Our Data Labels.mp4

120.4 MB

14. Loading Our Data Labels.srt

16.5 KB

14.1 Documentation on how many images Google recommends for image problems.html

0.1 KB

15. Preparing The Images.mp4

140.4 MB

15. Preparing The Images.srt

15.5 KB

16. Turning Data Labels Into Numbers.mp4

112.7 MB

16. Turning Data Labels Into Numbers.srt

14.1 KB

17. Creating Our Own Validation Set.mp4

69.7 MB

17. Creating Our Own Validation Set.srt

11.6 KB

17.1 Blog post by Rachel Thomas (of fast.ai) on how and why you should create a validation set.html

0.1 KB

18. Preprocess Images.mp4

94.5 MB

18. Preprocess Images.srt

13.2 KB

18.1 TensorFlow guidelines for loading all kinds of data (turning your data into Tensors).html

0.1 KB

18.2 Documentation for loading images in TensorFlow.html

0.1 KB

19. Preprocess Images 2.mp4

110.2 MB

19. Preprocess Images 2.srt

13.2 KB

2. Deep Learning and Unstructured Data.mp4

107.0 MB

2. Deep Learning and Unstructured Data.srt

20.7 KB

20. Turning Data Into Batches.mp4

92.0 MB

20. Turning Data Into Batches.srt

11.9 KB

21. Turning Data Into Batches 2.mp4

156.6 MB

21. Turning Data Into Batches 2.srt

20.6 KB

21.1 Yann LeCun's (OG of deep learning) Tweet on Batch Sizes.html

0.1 KB

22. Visualizing Our Data.mp4

127.9 MB

22. Visualizing Our Data.srt

16.0 KB

23. Preparing Our Inputs and Outputs.mp4

52.5 MB

23. Preparing Our Inputs and Outputs.srt

8.0 KB

23.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html

0.1 KB

24. Optional How machines learn and what's going on behind the scenes.html

2.8 KB

25. Building A Deep Learning Model.mp4

127.8 MB

25. Building A Deep Learning Model.srt

16.3 KB

25.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html

0.1 KB

25.2 MobileNetV2 (the model we're using) on TensorFlow Hub.html

0.1 KB

25.3 Andrei Karpathy's talk on AI at Tesla.html

0.1 KB

25.4 Papers with Code (a great resource for some of the best machine learning papers with code examples).html

0.1 KB

25.5 PyTorch Hub (PyTorch version of TensorFlow Hub).html

0.1 KB

26. Building A Deep Learning Model 2.mp4

111.0 MB

26. Building A Deep Learning Model 2.srt

12.8 KB

26.1 Keras in TensorFlow Overview Documentation.html

0.1 KB

27. Building A Deep Learning Model 3.mp4

111.1 MB

27. Building A Deep Learning Model 3.srt

11.5 KB

27.1 The Softmax Function (activation function we use in our model).html

0.1 KB

27.2 Step by step breakdown of a convolutional neural network (what MobileNetV2 is made of).html

0.2 KB

27.3 MobileNetV2 (the model we're using) architecture explanation by Sik-Ho Tsang.html

0.2 KB

28. Building A Deep Learning Model 4.mp4

90.5 MB

28. Building A Deep Learning Model 4.srt

12.3 KB

28.1 [Article] How to choose loss & activation functions when building a deep learning model.html

0.2 KB

29. Summarizing Our Model.mp4

47.6 MB

29. Summarizing Our Model.srt

6.1 KB

3. Setting Up With Google.html

0.6 KB

30. Evaluating Our Model.mp4

83.1 MB

30. Evaluating Our Model.srt

10.7 KB

30.1 TensorBoard Callback Documentation.html

0.1 KB

31. Preventing Overfitting.mp4

38.3 MB

31. Preventing Overfitting.srt

5.7 KB

31.1 Early Stopping Callback (a way to stop your model from training when it stops improving) Documentation.html

0.1 KB

32. Training Your Deep Neural Network.mp4

174.7 MB

32. Training Your Deep Neural Network.srt

23.6 KB

33. Evaluating Performance With TensorBoard.mp4

77.8 MB

33. Evaluating Performance With TensorBoard.srt

9.8 KB

34. Make And Transform Predictions.mp4

162.5 MB

34. Make And Transform Predictions.srt

19.6 KB

35. Transform Predictions To Text.mp4

136.2 MB

35. Transform Predictions To Text.srt

18.0 KB

35.1 TensorFlow documentation for the unbatch() function.html

0.1 KB

36. Visualizing Model Predictions.mp4

125.1 MB

36. Visualizing Model Predictions.srt

17.4 KB

37. Visualizing And Evaluate Model Predictions 2.mp4

150.8 MB

37. Visualizing And Evaluate Model Predictions 2.srt

18.1 KB

38. Visualizing And Evaluate Model Predictions 3.mp4

118.7 MB

38. Visualizing And Evaluate Model Predictions 3.srt

14.1 KB

39. Saving And Loading A Trained Model.mp4

133.2 MB

39. Saving And Loading A Trained Model.srt

17.3 KB

4. Setting Up Google Colab.mp4

77.8 MB

4. Setting Up Google Colab.srt

9.9 KB

4.1 Kaggle Dog Breed Identification Competition (the basis of our upcoming project).html

0.1 KB

4.2 Google Colab (our workspace for the upcoming project).html

0.1 KB

4.3 End-to-end Dog Vision Notebook (the project we'll be working through).html

0.2 KB

4.4 Introduction to Google Colab example notebook.html

0.1 KB

4.5 Google Colab IO example (how to get data in and out of your Colab notebook).html

0.1 KB

40. Training Model On Full Dataset.mp4

146.6 MB

40. Training Model On Full Dataset.srt

19.6 KB

41. Making Predictions On Test Images.mp4

147.7 MB

41. Making Predictions On Test Images.srt

20.8 KB

41.1 Dog Vision Prediction Probabilities Array.html

0.2 KB

42. Submitting Model to Kaggle.mp4

127.2 MB

42. Submitting Model to Kaggle.srt

17.0 KB

42.1 Dog Vision Predictions with MobileNetV2 Ready for Kaggle Submission.html

0.2 KB

43. Making Predictions On Our Images.mp4

125.0 MB

43. Making Predictions On Our Images.srt

19.0 KB

43.1 End-to-end Dog Vision Notebook (from the videos).html

0.2 KB

43.2 End-to-end Dog Vision Notebook (with annotations).html

0.2 KB

44. Finishing Dog Vision Where to next.html

4.0 KB

5. Google Colab Workspace.mp4

41.6 MB

5. Google Colab Workspace.srt

6.5 KB

5.1 Google Colab (our workspace for the upcoming project).html

0.1 KB

5.2 Google Colab FAQ (things you should know about Google Colab).html

0.1 KB

6. Uploading Project Data.mp4

54.5 MB

6. Uploading Project Data.srt

8.8 KB

6.1 Kaggle Dog Breed Identification Competition Data.html

0.1 KB

6.2 Google Colab IO example (how to get data in and out of your Colab notebook).html

0.1 KB

7. Setting Up Our Data.mp4

44.3 MB

7. Setting Up Our Data.srt

6.5 KB

8. Setting Up Our Data 2.mp4

21.9 MB

8. Setting Up Our Data 2.srt

2.2 KB

9. Importing TensorFlow 2.mp4

122.4 MB

9. Importing TensorFlow 2.srt

17.2 KB

/15. Storytelling + Communication How To Present Your Work/

1. Section Overview.mp4

11.5 MB

1. Section Overview.srt

3.4 KB

2. Communicating Your Work.mp4

21.2 MB

2. Communicating Your Work.srt

5.0 KB

2.1 How to Think About Communicating and Sharing Your Work (blog post).html

0.1 KB

3. Communicating With Managers.mp4

19.3 MB

3. Communicating With Managers.srt

4.6 KB

4. Communicating With Co-Workers.mp4

19.9 MB

4. Communicating With Co-Workers.srt

5.7 KB

5. Weekend Project Principle.mp4

24.7 MB

5. Weekend Project Principle.srt

9.2 KB

6. Communicating With Outside World.mp4

15.2 MB

6. Communicating With Outside World.srt

4.6 KB

6.1 fast_template by fast.ai (a template you can use for your blog on GitHub Pages).html

0.1 KB

6.2 Devblog by Hashnode (an easy and free way to create a blog you own).html

0.1 KB

7. Storytelling.mp4

12.6 MB

7. Storytelling.srt

4.2 KB

8. Communicating and sharing your work Further reading.html

3.2 KB

/16. Career Advice + Extra Bits/

1. Endorsements On LinkedIn.html

0.7 KB

10. CWD Git + Github 2.mp4

124.1 MB

10. CWD Git + Github 2.srt

18.7 KB

11. Contributing To Open Source.mp4

136.6 MB

11. Contributing To Open Source.srt

17.5 KB

12. Contributing To Open Source 2.mp4

118.5 MB

12. Contributing To Open Source 2.srt

10.4 KB

13. Coding Challenges.html

0.9 KB

14. Exercise Contribute To Open Source.html

1.5 KB

2. Quick Note Upcoming Video.html

0.6 KB

3. What If I Don't Have Enough Experience.mp4

168.8 MB

3. What If I Don't Have Enough Experience.srt

20.5 KB

4. Learning Guideline.html

0.3 KB

5. Quick Note Upcoming Videos.html

0.6 KB

6. JTS Learn to Learn.mp4

11.7 MB

6. JTS Learn to Learn.srt

2.6 KB

7. JTS Start With Why.mp4

16.2 MB

7. JTS Start With Why.srt

3.0 KB

8. Quick Note Upcoming Videos.html

0.4 KB

9. CWD Git + Github.mp4

184.7 MB

9. CWD Git + Github.srt

21.7 KB

/17. Learn Python/

1. What Is A Programming Language.mp4

109.9 MB

1. What Is A Programming Language.srt

7.2 KB

10. Numbers.mp4

76.2 MB

10. Numbers.srt

11.4 KB

10.1 Floating point numbers.html

0.1 KB

11. Math Functions.mp4

43.8 MB

11. Math Functions.srt

5.6 KB

12. DEVELOPER FUNDAMENTALS I.mp4

62.6 MB

12. DEVELOPER FUNDAMENTALS I.srt

5.3 KB

13. Operator Precedence.mp4

15.1 MB

13. Operator Precedence.srt

3.6 KB

13.1 Exercise Repl.html

0.1 KB

14. Exercise Operator Precedence.html

0.7 KB

14.1 Exercise Repl.html

0.1 KB

15. Optional bin() and complex.mp4

23.0 MB

15. Optional bin() and complex.srt

4.9 KB

15.1 Base Numbers.html

0.1 KB

16. Variables.mp4

98.1 MB

16. Variables.srt

16.4 KB

16.1 Python Keywords.html

0.1 KB

17. Expressions vs Statements.mp4

11.5 MB

17. Expressions vs Statements.srt

1.8 KB

18. Augmented Assignment Operator.mp4

16.1 MB

18. Augmented Assignment Operator.srt

3.0 KB

18.1 Exercise Repl.html

0.1 KB

19. Strings.mp4

32.5 MB

19. Strings.srt

6.4 KB

2. Python Interpreter.mp4

98.0 MB

2. Python Interpreter.srt

8.5 KB

20. String Concatenation.mp4

7.7 MB

20. String Concatenation.srt

1.5 KB

21. Type Conversion.mp4

19.9 MB

21. Type Conversion.srt

3.2 KB

22. Escape Sequences.mp4

24.3 MB

22. Escape Sequences.srt

5.1 KB

23. Formatted Strings.mp4

51.6 MB

23. Formatted Strings.srt

9.0 KB

23.1 Exercise Repl.html

0.1 KB

24. String Indexes.mp4

51.5 MB

24. String Indexes.srt

9.4 KB

24.1 Exercise Repl.html

0.1 KB

25. Immutability.mp4

21.8 MB

25. Immutability.srt

3.6 KB

26. Built-In Functions + Methods.mp4

72.8 MB

26. Built-In Functions + Methods.srt

10.5 KB

26.1 Built in Functions.html

0.1 KB

26.2 String Methods.html

0.1 KB

27. Booleans.mp4

17.4 MB

27. Booleans.srt

4.0 KB

28. Exercise Type Conversion.mp4

52.8 MB

28. Exercise Type Conversion.srt

8.8 KB

29. DEVELOPER FUNDAMENTALS II.mp4

30.7 MB

29. DEVELOPER FUNDAMENTALS II.srt

5.4 KB

29.1 Python Comments Best Practices.html

0.1 KB

3. How To Run Python Code.mp4

67.0 MB

3. How To Run Python Code.srt

6.6 KB

30. Exercise Password Checker.mp4

53.6 MB

30. Exercise Password Checker.srt

8.1 KB

31. Lists.mp4

23.0 MB

31. Lists.srt

5.7 KB

32. List Slicing.mp4

52.3 MB

32. List Slicing.srt

8.7 KB

32.1 Exercise Repl.html

0.1 KB

33. Matrix.mp4

20.1 MB

33. Matrix.srt

4.2 KB

33.1 Exercise Repl.html

0.1 KB

34. List Methods.mp4

64.8 MB

34. List Methods.srt

11.0 KB

34.1 List Methods.html

0.1 KB

35. List Methods 2.mp4

28.7 MB

35. List Methods 2.srt

4.6 KB

35.1 Python Keywords.html

0.1 KB

35.2 Exercise Repl.html

0.1 KB

36. List Methods 3.mp4

29.0 MB

36. List Methods 3.srt

5.1 KB

37. Common List Patterns.mp4

42.4 MB

37. Common List Patterns.srt

6.0 KB

37.1 Exercise Repl.html

0.1 KB

38. List Unpacking.mp4

14.5 MB

38. List Unpacking.srt

3.0 KB

39. None.mp4

8.3 MB

39. None.srt

2.2 KB

4. Our First Python Program.mp4

49.5 MB

4. Our First Python Program.srt

9.2 KB

40. Dictionaries.mp4

34.3 MB

40. Dictionaries.srt

7.3 KB

41. DEVELOPER FUNDAMENTALS III.mp4

27.9 MB

41. DEVELOPER FUNDAMENTALS III.srt

3.7 KB

42. Dictionary Keys.mp4

21.4 MB

42. Dictionary Keys.srt

4.3 KB

43. Dictionary Methods.mp4

28.5 MB

43. Dictionary Methods.srt

5.4 KB

43.1 Dictionary Methods.html

0.1 KB

44. Dictionary Methods 2.mp4

44.4 MB

44. Dictionary Methods 2.srt

7.3 KB

44.1 Exercise Repl.html

0.1 KB

45. Tuples.mp4

26.9 MB

45. Tuples.srt

5.8 KB

46. Tuples 2.mp4

17.8 MB

46. Tuples 2.srt

3.1 KB

46.1 Tuple Methods.html

0.1 KB

47. Sets.mp4

38.8 MB

47. Sets.srt

8.6 KB

48. Sets 2.mp4

67.4 MB

48. Sets 2.srt

9.5 KB

48.1 Sets Methods.html

0.1 KB

48.2 Exercise Repl.html

0.1 KB

5. Python 2 vs Python 3.mp4

86.1 MB

5. Python 2 vs Python 3.srt

8.4 KB

5.1 Python 2 vs Python 3.html

0.2 KB

5.2 The Story of Python.html

0.1 KB

6. Exercise How Does Python Work.mp4

27.2 MB

6. Exercise How Does Python Work.srt

2.9 KB

7. Learning Python.mp4

40.4 MB

7. Learning Python.srt

2.6 KB

8. Python Data Types.mp4

30.3 MB

8. Python Data Types.srt

5.3 KB

9. How To Succeed.html

0.3 KB

/18. Learn Python Part 2/

1. Breaking The Flow.mp4

21.3 MB

1. Breaking The Flow.srt

3.1 KB

10. For Loops.mp4

36.0 MB

10. For Loops.srt

7.7 KB

11. Iterables.mp4

45.3 MB

11. Iterables.srt

7.0 KB

12. Exercise Tricky Counter.mp4

17.2 MB

12. Exercise Tricky Counter.srt

3.7 KB

12.1 Solution Repl.html

0.1 KB

13. range().mp4

29.7 MB

13. range().srt

6.0 KB

14. enumerate().mp4

26.0 MB

14. enumerate().srt

4.7 KB

15. While Loops.mp4

29.7 MB

15. While Loops.srt

7.5 KB

16. While Loops 2.mp4

27.2 MB

16. While Loops 2.srt

6.6 KB

17. break, continue, pass.mp4

23.3 MB

17. break, continue, pass.srt

5.4 KB

18. Our First GUI.mp4

52.0 MB

18. Our First GUI.srt

10.6 KB

18.1 Solution Repl.html

0.1 KB

18.2 Exercise Repl.html

0.1 KB

19. DEVELOPER FUNDAMENTALS IV.mp4

52.7 MB

19. DEVELOPER FUNDAMENTALS IV.srt

8.0 KB

2. Conditional Logic.mp4

78.2 MB

2. Conditional Logic.srt

16.0 KB

20. Exercise Find Duplicates.mp4

21.2 MB

20. Exercise Find Duplicates.srt

4.5 KB

20.1 Solution Repl.html

0.1 KB

21. Functions.mp4

51.0 MB

21. Functions.srt

9.4 KB

22. Parameters and Arguments.mp4

24.3 MB

22. Parameters and Arguments.srt

5.0 KB

23. Default Parameters and Keyword Arguments.mp4

40.0 MB

23. Default Parameters and Keyword Arguments.srt

6.1 KB

24. return.mp4

66.1 MB

24. return.srt

15.3 KB

25. Exercise Tesla.html

0.4 KB

26. Methods vs Functions.mp4

32.2 MB

26. Methods vs Functions.srt

5.4 KB

27. Docstrings.mp4

18.2 MB

27. Docstrings.srt

4.4 KB

28. Clean Code.mp4

20.6 MB

28. Clean Code.srt

5.5 KB

29. args and kwargs.mp4

45.1 MB

29. args and kwargs.srt

8.3 KB

3. Indentation In Python.mp4

29.4 MB

3. Indentation In Python.srt

5.4 KB

30. Exercise Functions.mp4

22.9 MB

30. Exercise Functions.srt

4.8 KB

30.1 Solution Repl.html

0.1 KB

31. Scope.mp4

21.1 MB

31. Scope.srt

3.9 KB

32. Scope Rules.mp4

39.5 MB

32. Scope Rules.srt

8.7 KB

33. global Keyword.mp4

38.3 MB

33. global Keyword.srt

6.8 KB

34. nonlocal Keyword.mp4

19.1 MB

34. nonlocal Keyword.srt

4.2 KB

34.1 Solution Repl.html

0.1 KB

35. Why Do We Need Scope.mp4

20.1 MB

35. Why Do We Need Scope.srt

4.9 KB

36. Pure Functions.mp4

70.6 MB

36. Pure Functions.srt

10.3 KB

37. map().mp4

40.2 MB

37. map().srt

6.4 KB

38. filter().mp4

24.7 MB

38. filter().srt

5.2 KB

39. zip().mp4

22.3 MB

39. zip().srt

3.3 KB

4. Truthy vs Falsey.mp4

44.9 MB

4. Truthy vs Falsey.srt

6.1 KB

4.1 Truthy vs Falsey Stackoverflow.html

0.2 KB

40. reduce().mp4

54.8 MB

40. reduce().srt

8.6 KB

41. List Comprehensions.mp4

55.9 MB

41. List Comprehensions.srt

9.6 KB

42. Set Comprehensions.mp4

37.1 MB

42. Set Comprehensions.srt

6.7 KB

43. Exercise Comprehensions.mp4

23.0 MB

43. Exercise Comprehensions.srt

5.1 KB

43.1 Solution Repl.html

0.1 KB

43.2 Exercise Repl.html

0.1 KB

44. Python Exam Testing Your Understanding.html

1.1 KB

45. Modules in Python.mp4

86.2 MB

45. Modules in Python.srt

13.0 KB

46. Quick Note Upcoming Videos.html

0.4 KB

47. Optional PyCharm.mp4

55.6 MB

47. Optional PyCharm.srt

10.8 KB

48. Packages in Python.mp4

75.9 MB

48. Packages in Python.srt

12.8 KB

49. Different Ways To Import.mp4

50.3 MB

49. Different Ways To Import.srt

7.7 KB

5. Ternary Operator.mp4

20.7 MB

5. Ternary Operator.srt

4.9 KB

50. Next Steps.html

1.0 KB

6. Short Circuiting.mp4

20.3 MB

6. Short Circuiting.srt

4.6 KB

7. Logical Operators.mp4

29.7 MB

7. Logical Operators.srt

8.3 KB

8. Exercise Logical Operators.mp4

48.9 MB

8. Exercise Logical Operators.srt

8.6 KB

9. is vs ==.mp4

35.2 MB

9. is vs ==.srt

8.3 KB

/19. Bonus Learn Advanced Statistics and Mathematics for FREE!/

1. Statistics and Mathematics.html

0.7 KB

/2. Machine Learning 101/

1. What Is Machine Learning.mp4

29.7 MB

1. What Is Machine Learning.srt

8.9 KB

2. AIMachine LearningData Science.mp4

20.6 MB

2. AIMachine LearningData Science.srt

6.5 KB

3. Exercise Machine Learning Playground.mp4

44.7 MB

3. Exercise Machine Learning Playground.srt

8.3 KB

3.1 Teachable Machine.html

0.1 KB

4. How Did We Get Here.mp4

32.0 MB

4. How Did We Get Here.srt

7.2 KB

5. Exercise YouTube Recommendation Engine.mp4

20.4 MB

5. Exercise YouTube Recommendation Engine.srt

5.8 KB

5.1 Machine Learning Playground.html

0.1 KB

6. Types of Machine Learning.mp4

23.9 MB

6. Types of Machine Learning.srt

5.4 KB

7. Are You Getting It Yet.html

0.2 KB

8. What Is Machine Learning Round 2.mp4

26.7 MB

8. What Is Machine Learning Round 2.srt

6.2 KB

9. Section Review.mp4

5.8 MB

9. Section Review.srt

2.4 KB

/20. Where To Go From Here/

1. Become An Alumni.html

1.8 KB

2. Thank You.mp4

11.7 MB

2. Thank You.srt

3.7 KB

/21. Extras/

1. Bonus Special Thank You Gift!.html

1.6 KB

/3. Machine Learning and Data Science Framework/

1. Section Overview.mp4

14.0 MB

1. Section Overview.srt

4.8 KB

10. Modelling - Tuning.mp4

16.8 MB

10. Modelling - Tuning.srt

5.0 KB

11. Modelling - Comparison.mp4

47.1 MB

11. Modelling - Comparison.srt

13.4 KB

12. Experimentation.mp4

22.4 MB

12. Experimentation.srt

5.1 KB

13. Tools We Will Use.mp4

28.7 MB

13. Tools We Will Use.srt

6.1 KB

14. Optional Elements of AI.html

1.0 KB

2. Introducing Our Framework.mp4

11.9 MB

2. Introducing Our Framework.srt

3.8 KB

3. 6 Step Machine Learning Framework.mp4

24.6 MB

3. 6 Step Machine Learning Framework.srt

6.8 KB

3.1 A 6 Step Field Guide for Machine Learning Modelling (blog post).html

0.1 KB

4. Types of Machine Learning Problems.mp4

63.4 MB

4. Types of Machine Learning Problems.srt

14.3 KB

5. Types of Data.mp4

30.7 MB

5. Types of Data.srt

6.7 KB

6. Types of Evaluation.mp4

18.6 MB

6. Types of Evaluation.srt

4.4 KB

7. Features In Data.mp4

38.6 MB

7. Features In Data.srt

6.9 KB

8. Modelling - Splitting Data.mp4

28.9 MB

8. Modelling - Splitting Data.srt

7.9 KB

9. Modelling - Picking the Model.mp4

24.4 MB

9. Modelling - Picking the Model.srt

6.4 KB

/4. The 2 Paths/

1. The 2 Paths.mp4

10.2 MB

1. The 2 Paths.srt

4.8 KB

2. Python + Machine Learning Monthly.html

0.7 KB

/5. Data Science Environment Setup/

1. Section Overview.mp4

6.3 MB

1. Section Overview.srt

2.2 KB

10. Sharing your Conda Environment.html

2.5 KB

10.1 Conda documentation on sharing an environment.html

0.2 KB

11. Jupyter Notebook Walkthrough.mp4

70.6 MB

11. Jupyter Notebook Walkthrough.srt

15.5 KB

11.1 6-step-ml-framework.png

332.0 KB

11.2 Jupyter Notebook documentation.html

0.1 KB

11.3 heart-disease.csv

11.3 KB

11.4 Dataquest Jupyter Notebook for Beginners Tutorial.html

0.1 KB

12. Jupyter Notebook Walkthrough 2.mp4

108.9 MB

12. Jupyter Notebook Walkthrough 2.srt

23.0 KB

13. Jupyter Notebook Walkthrough 3.mp4

74.9 MB

13. Jupyter Notebook Walkthrough 3.srt

11.8 KB

2. Introducing Our Tools.mp4

20.2 MB

2. Introducing Our Tools.srt

4.4 KB

3. What is Conda.mp4

13.1 MB

3. What is Conda.srt

3.5 KB

3.1 Getting your computer ready for machine learning How.html

0.2 KB

3.2 conda-cheatsheet.pdf

206.1 KB

3.3 Getting started with Conda (documentation).html

0.1 KB

3.4 Conda documentation.html

0.1 KB

4. Conda Environments.mp4

32.0 MB

4. Conda Environments.srt

6.3 KB

5. Mac Environment Setup.mp4

151.4 MB

5. Mac Environment Setup.srt

24.5 KB

5.1 Miniconda download documentation.html

0.1 KB

6. Mac Environment Setup 2.mp4

131.6 MB

6. Mac Environment Setup 2.srt

21.2 KB

7. Windows Environment Setup.mp4

50.2 MB

7. Windows Environment Setup.srt

7.8 KB

7.1 Miniconda download documentation.html

0.1 KB

8. Windows Environment Setup 2.mp4

238.7 MB

8. Windows Environment Setup 2.srt

32.4 KB

9. Linux Environment Setup.html

1.1 KB

/6. Pandas Data Analysis/

1. Section Overview.mp4

11.4 MB

1. Section Overview.srt

3.8 KB

10. Manipulating Data 2.mp4

90.7 MB

10. Manipulating Data 2.srt

14.2 KB

10.1 pandas-anatomy-of-a-dataframe.png

341.2 KB

11. Manipulating Data 3.mp4

95.4 MB

11. Manipulating Data 3.srt

14.0 KB

11.1 Introduction to Pandas Jupyter Notebook (from the videos).html

0.2 KB

11.2 Introduction to Pandas Jupyter Notebook (with annotations).html

0.2 KB

12. Assignment Pandas Practice.html

2.1 KB

13. How To Download The Course Assignments.mp4

70.0 MB

13. How To Download The Course Assignments.srt

11.3 KB

13.1 Course notebooks - Github.html

0.1 KB

13.2 Google Colab.html

0.1 KB

2. Downloading Workbooks and Assignments.html

1.0 KB

3. Pandas Introduction.mp4

28.8 MB

3.1 Pandas Documentation.html

0.1 KB

3.2 Introduction to Pandas Jupyter Notebook (with annotations).html

0.2 KB

3.3 10-minutes to pandas (from the pandas documentation).html

0.1 KB

3.4 Introduction to Pandas Jupyter Notebook (from the upcoming videos).html

0.2 KB

4. Series, Data Frames and CSVs.mp4

100.0 MB

4. Series, Data Frames and CSVs.srt

17.2 KB

4.1 pandas-anatomy-of-a-dataframe.png

341.2 KB

5. Data from URLs.html

1.1 KB

6. Describing Data with Pandas.mp4

79.2 MB

6. Describing Data with Pandas.srt

13.9 KB

7. Selecting and Viewing Data with Pandas.mp4

75.9 MB

7. Selecting and Viewing Data with Pandas.srt

14.9 KB

7.1 car-sales.csv

0.4 KB

8. Selecting and Viewing Data with Pandas Part 2.mp4

111.7 MB

8. Selecting and Viewing Data with Pandas Part 2.srt

18.4 KB

9. Manipulating Data.mp4

110.1 MB

9. Manipulating Data.srt

18.5 KB

9.1 Jake VanderPlas's Data Manipulation with Pandas.html

0.1 KB

9.2 car-sales-missing-data.csv

0.3 KB

/7. NumPy/

1. Section Overview.mp4

14.0 MB

1. Section Overview.srt

3.2 KB

10. Standard Deviation and Variance.mp4

53.6 MB

10. Standard Deviation and Variance.srt

9.6 KB

10.1 Standard deviation and variance explained.html

0.1 KB

11. Reshape and Transpose.mp4

56.1 MB

11. Reshape and Transpose.srt

9.8 KB

12. Dot Product vs Element Wise.mp4

88.0 MB

12. Dot Product vs Element Wise.srt

15.7 KB

12.1 Matrix Multiplication Explained.html

0.1 KB

13. Exercise Nut Butter Store Sales.mp4

95.8 MB

13. Exercise Nut Butter Store Sales.srt

17.4 KB

14. Comparison Operators.mp4

27.6 MB

14. Comparison Operators.srt

5.4 KB

15. Sorting Arrays.mp4

34.4 MB

15. Sorting Arrays.srt

9.0 KB

16. Turn Images Into NumPy Arrays.mp4

90.1 MB

16. Turn Images Into NumPy Arrays.srt

10.7 KB

16.1 numpy-images.zip

7.6 MB

16.2 Introduction to NumPy Jupyter Notebook (from the videos).html

0.2 KB

16.3 Introduction to NumPy Jupyter Notebook (with annotations).html

0.2 KB

17. Assignment NumPy Practice.html

2.2 KB

18. Optional Extra NumPy resources.html

1.0 KB

2. NumPy Introduction.mp4

28.1 MB

2. NumPy Introduction.srt

7.7 KB

2.1 Introduction to NumPy Jupyter Notebook (with annotations).html

0.2 KB

2.2 Introduction to NumPy Jupyter Notebook (from the upcoming videos).html

0.2 KB

2.3 NumPy Documentation.html

0.1 KB

3. Quick Note Correction In Next Video.html

1.3 KB

4. NumPy DataTypes and Attributes.mp4

82.8 MB

4. NumPy DataTypes and Attributes.srt

19.7 KB

5. Creating NumPy Arrays.mp4

70.0 MB

5. Creating NumPy Arrays.srt

12.7 KB

6. NumPy Random Seed.mp4

54.4 MB

6. NumPy Random Seed.srt

10.0 KB

7. Viewing Arrays and Matrices.mp4

74.1 MB

7. Viewing Arrays and Matrices.srt

13.2 KB

8. Manipulating Arrays.mp4

84.6 MB

8. Manipulating Arrays.srt

16.6 KB

8.1 Standard deviation and variance explained.html

0.1 KB

9. Manipulating Arrays 2.mp4

71.2 MB

9. Manipulating Arrays 2.srt

11.8 KB

9.1 Standard deviation and variance explained.html

0.1 KB

/8. Matplotlib Plotting and Data Visualization/

1. Section Overview.mp4

9.0 MB

1. Section Overview.srt

2.8 KB

10. Quick Note Regular Expressions.html

0.6 KB

11. Plotting From Pandas DataFrames 2.mp4

103.6 MB

11. Plotting From Pandas DataFrames 2.srt

14.0 KB

12. Plotting from Pandas DataFrames 3.mp4

78.3 MB

12. Plotting from Pandas DataFrames 3.srt

11.7 KB

13. Plotting from Pandas DataFrames 4.mp4

51.4 MB

13. Plotting from Pandas DataFrames 4.srt

9.6 KB

13.1 heart-disease.csv

11.3 KB

14. Plotting from Pandas DataFrames 5.mp4

59.7 MB

14. Plotting from Pandas DataFrames 5.srt

11.9 KB

15. Plotting from Pandas DataFrames 6.mp4

86.0 MB

15. Plotting from Pandas DataFrames 6.srt

11.3 KB

16. Plotting from Pandas DataFrames 7.mp4

125.6 MB

16. Plotting from Pandas DataFrames 7.srt

15.3 KB

17. Customizing Your Plots.mp4

96.7 MB

17. Customizing Your Plots.srt

14.3 KB

18. Customizing Your Plots 2.mp4

129.6 MB

18. Customizing Your Plots 2.srt

13.6 KB

19. Saving And Sharing Your Plots.mp4

51.9 MB

19. Saving And Sharing Your Plots.srt

6.0 KB

19.1 Introduction to Matplotlib Notebook (from the videos).html

0.2 KB

2. Matplotlib Introduction.mp4

33.0 MB

2. Matplotlib Introduction.srt

8.2 KB

2.1 Introduction to Matplotlib Jupyter Notebook (from the upcoming videos).html

0.2 KB

2.2 Matplotlib Documentation.html

0.1 KB

20. Assignment Matplotlib Practice.html

2.1 KB

3. Importing And Using Matplotlib.mp4

90.6 MB

3. Importing And Using Matplotlib.srt

16.4 KB

4. Anatomy Of A Matplotlib Figure.mp4

86.1 MB

4. Anatomy Of A Matplotlib Figure.srt

14.5 KB

4.1 matplotlib-anatomy-of-a-plot.png

378.3 KB

4.2 matplotlib-anatomy-of-a-plot-with-code.png

670.5 KB

5. Scatter Plot And Bar Plot.mp4

70.3 MB

5. Scatter Plot And Bar Plot.srt

15.0 KB

6. Histograms And Subplots.mp4

73.1 MB

6. Histograms And Subplots.srt

12.7 KB

7. Subplots Option 2.mp4

39.9 MB

7. Subplots Option 2.srt

6.6 KB

8. Quick Tip Data Visualizations.mp4

12.9 MB

8. Quick Tip Data Visualizations.srt

2.4 KB

9. Plotting From Pandas DataFrames.mp4

63.3 MB

9. Plotting From Pandas DataFrames.srt

9.2 KB

/9. Scikit-learn Creating Machine Learning Models/

1. Section Overview.mp4

13.1 MB

1. Section Overview.srt

4.2 KB

10. Quick Tip Clean, Transform, Reduce.mp4

17.3 MB

10. Quick Tip Clean, Transform, Reduce.srt

6.6 KB

11. Getting Your Data Ready Convert Data To Numbers.mp4

141.6 MB

11. Getting Your Data Ready Convert Data To Numbers.srt

23.3 KB

12. Getting Your Data Ready Handling Missing Values With Pandas.mp4

109.9 MB

12. Getting Your Data Ready Handling Missing Values With Pandas.srt

17.4 KB

13. Note Correction in the upcoming video.html

2.1 KB

14. Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4

143.5 MB

14. Getting Your Data Ready Handling Missing Values With Scikit-learn.srt

23.7 KB

15. Choosing The Right Model For Your Data.mp4

150.2 MB

15. Choosing The Right Model For Your Data.srt

21.9 KB

15.1 Scikit-Learn machine learning map (how to choose the right machine learning model).html

0.1 KB

16. Choosing The Right Model For Your Data 2 (Regression).mp4

91.1 MB

16. Choosing The Right Model For Your Data 2 (Regression).srt

12.3 KB

17. Quick Note Decision Trees.html

0.2 KB

18. Quick Tip How ML Algorithms Work.mp4

11.6 MB

18. Quick Tip How ML Algorithms Work.srt

2.0 KB

19. Choosing The Right Model For Your Data 3 (Classification).mp4

124.6 MB

19. Choosing The Right Model For Your Data 3 (Classification).srt

17.5 KB

2. Scikit-learn Introduction.mp4

42.6 MB

2. Scikit-learn Introduction.srt

10.9 KB

2.1 Introduction to Scikit-Learn Jupyter Notebook (from the upcoming videos).html

0.2 KB

2.2 Scikit-Learn Documentation.html

0.1 KB

2.3 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html

0.2 KB

20. Fitting A Model To The Data.mp4

59.3 MB

20. Fitting A Model To The Data.srt

9.6 KB

21. Making Predictions With Our Model.mp4

69.7 MB

21. Making Predictions With Our Model.srt

12.4 KB

22. predict() vs predict_proba().mp4

57.0 MB

22. predict() vs predict_proba().srt

11.8 KB

23. Making Predictions With Our Model (Regression).mp4

47.1 MB

23. Making Predictions With Our Model (Regression).srt

9.3 KB

24. Evaluating A Machine Learning Model (Score).mp4

91.4 MB

24. Evaluating A Machine Learning Model (Score).srt

13.2 KB

25. Evaluating A Machine Learning Model 2 (Cross Validation).mp4

100.6 MB

25. Evaluating A Machine Learning Model 2 (Cross Validation).srt

17.7 KB

26. Evaluating A Classification Model 1 (Accuracy).mp4

32.9 MB

26. Evaluating A Classification Model 1 (Accuracy).srt

6.0 KB

27. Evaluating A Classification Model 2 (ROC Curve).mp4

69.2 MB

27. Evaluating A Classification Model 2 (ROC Curve).srt

12.6 KB

28. Evaluating A Classification Model 3 (ROC Curve).mp4

53.1 MB

28. Evaluating A Classification Model 3 (ROC Curve).srt

10.3 KB

29. Evaluating A Classification Model 4 (Confusion Matrix).mp4

81.5 MB

29. Evaluating A Classification Model 4 (Confusion Matrix).srt

15.5 KB

3. Quick Note Upcoming Video.html

0.4 KB

30. Evaluating A Classification Model 5 (Confusion Matrix).mp4

66.7 MB

30. Evaluating A Classification Model 5 (Confusion Matrix).srt

11.5 KB

31. Evaluating A Classification Model 6 (Classification Report).mp4

91.5 MB

31. Evaluating A Classification Model 6 (Classification Report).srt

14.9 KB

32. Evaluating A Regression Model 1 (R2 Score).mp4

73.8 MB

32. Evaluating A Regression Model 1 (R2 Score).srt

12.3 KB

33. Evaluating A Regression Model 2 (MAE).mp4

29.9 MB

33. Evaluating A Regression Model 2 (MAE).srt

5.8 KB

34. Evaluating A Regression Model 3 (MSE).mp4

57.6 MB

34. Evaluating A Regression Model 3 (MSE).srt

9.5 KB

35. Machine Learning Model Evaluation.html

7.3 KB

36. Evaluating A Model With Cross Validation and Scoring Parameter.mp4

95.9 MB

36. Evaluating A Model With Cross Validation and Scoring Parameter.srt

18.4 KB

37. Evaluating A Model With Scikit-learn Functions.mp4

99.4 MB

37. Evaluating A Model With Scikit-learn Functions.srt

16.7 KB

38. Improving A Machine Learning Model.mp4

95.4 MB

38. Improving A Machine Learning Model.srt

15.2 KB

39. Tuning Hyperparameters.mp4

184.1 MB

39. Tuning Hyperparameters.srt

31.3 KB

4. Refresher What Is Machine Learning.mp4

92.6 MB

4. Refresher What Is Machine Learning.srt

6.5 KB

40. Tuning Hyperparameters 2.mp4

122.4 MB

40. Tuning Hyperparameters 2.srt

17.4 KB

41. Tuning Hyperparameters 3.mp4

127.7 MB

41. Tuning Hyperparameters 3.srt

19.2 KB

42. Quick Tip Correlation Analysis.mp4

17.7 MB

42. Quick Tip Correlation Analysis.srt

3.2 KB

43. Saving And Loading A Model.mp4

55.2 MB

43. Saving And Loading A Model.srt

10.1 KB

44. Saving And Loading A Model 2.mp4

59.5 MB

44. Saving And Loading A Model 2.srt

9.2 KB

45. Putting It All Together.mp4

166.0 MB

45. Putting It All Together.srt

27.1 KB

46. Putting It All Together 2.mp4

122.5 MB

46. Putting It All Together 2.srt

16.5 KB

46.1 Introduction to Scikit-Learn Jupyter Notebook (from the videos).html

0.2 KB

46.2 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html

0.2 KB

47. Scikit-Learn Practice.html

2.1 KB

5. Quick Note Upcoming Videos.html

1.0 KB

6. Scikit-learn Cheatsheet.mp4

78.8 MB

6. Scikit-learn Cheatsheet.srt

10.3 KB

6.1 Scikit-Learn Reference Notebook.html

0.2 KB

7. Typical scikit-learn Workflow.mp4

199.4 MB

7. Typical scikit-learn Workflow.srt

32.5 KB

7.1 Example Scikit-Learn Workflow Notebook.html

0.2 KB

8. Optional Debugging Warnings In Jupyter.mp4

184.7 MB

8. Optional Debugging Warnings In Jupyter.srt

26.1 KB

9. Getting Your Data Ready Splitting Your Data.mp4

66.8 MB

9. Getting Your Data Ready Splitting Your Data.srt

12.4 KB

9.1 scikit-learn-data.zip

21.3 KB

/

Verify Files.txt

1.0 KB

[FreeAllCourse.Com].url

0.1 KB

 

Total files 821


Copyright © 2024 FileMood.com