FileMood

Download [FreeAllCourse.Com] Udemy- The Complete Machine Learning Course with Python

FreeAllCourse Com Udemy The Complete Machine Learning Course with Python

Name

[FreeAllCourse.Com] Udemy- The Complete Machine Learning Course with Python

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

7.3 GB

Total Files

221

Hash

BE1C9559DDC8EFB105665A8D97ABCA77B961D8C9

/1. Introduction/

1. What Does the Course Cover.mp4

57.0 MB

1. What Does the Course Cover.vtt

3.0 KB

2. How to Succeed in This Course.html

2.3 KB

3. Project Files and Resources.html

1.8 KB

/10. Unsupervised Learning Clustering/

1. Clustering.mp4

131.8 MB

1. Clustering.vtt

19.2 KB

2. k_Means Clustering.mp4

60.5 MB

2. k_Means Clustering.vtt

10.2 KB

/11. Deep Learning/

1. Estimating Simple Function with Neural Networks.mp4

150.8 MB

1. Estimating Simple Function with Neural Networks.vtt

24.9 KB

2. Neural Network Architecture.mp4

23.5 MB

2. Neural Network Architecture.vtt

7.4 KB

3. Motivational Example - Project MNIST.mp4

152.0 MB

3. Motivational Example - Project MNIST.vtt

24.1 KB

4. Binary Classification Problem.mp4

75.6 MB

4. Binary Classification Problem.vtt

11.7 KB

5. Natural Language Processing - Binary Classification.mp4

79.7 MB

5. Natural Language Processing - Binary Classification.vtt

12.0 KB

/12. Appendix A1 Foundations of Deep Learning/

1. Introduction to Neural Networks.mp4

14.4 MB

1. Introduction to Neural Networks.vtt

2.6 KB

10. Gradient Based Optimization.mp4

57.6 MB

10. Gradient Based Optimization.vtt

13.0 KB

11. Getting Started with Neural Network and Deep Learning Libraries.mp4

19.6 MB

11. Getting Started with Neural Network and Deep Learning Libraries.vtt

5.2 KB

12. Categories of Machine Learning.mp4

39.3 MB

12. Categories of Machine Learning.vtt

11.5 KB

13. Over and Under Fitting.mp4

73.5 MB

13. Over and Under Fitting.vtt

17.1 KB

14. Machine Learning Workflow.mp4

28.8 MB

14. Machine Learning Workflow.vtt

5.4 KB

2. Differences between Classical Programming and Machine Learning.mp4

21.9 MB

2. Differences between Classical Programming and Machine Learning.vtt

5.0 KB

3. Learning Representations.mp4

81.0 MB

3. Learning Representations.vtt

11.8 KB

4. What is Deep Learning.mp4

163.2 MB

4. What is Deep Learning.vtt

23.6 KB

5. Learning Neural Networks.mp4

42.6 MB

5. Learning Neural Networks.vtt

11.7 KB

6. Why Now.mp4

9.5 MB

6. Why Now.vtt

3.1 KB

7. Building Block Introduction.mp4

14.8 MB

7. Building Block Introduction.vtt

5.2 KB

8. Tensors.mp4

17.7 MB

8. Tensors.vtt

4.4 KB

9. Tensor Operations.mp4

93.1 MB

9. Tensor Operations.vtt

19.3 KB

/13. Computer Vision and Convolutional Neural Network (CNN)/

1. Outline.mp4

66.8 MB

1. Outline.vtt

4.2 KB

10. Training Your CNN 1.mp4

130.9 MB

10. Training Your CNN 1.vtt

15.6 KB

11. Training Your CNN 2.mp4

134.8 MB

11. Training Your CNN 2.vtt

22.9 KB

12. Loading Previously Trained Model.mp4

11.8 MB

12. Loading Previously Trained Model.vtt

1.6 KB

13. Model Performance Comparison.mp4

83.6 MB

13. Model Performance Comparison.vtt

10.9 KB

14. Data Augmentation.mp4

29.9 MB

14. Data Augmentation.vtt

3.4 KB

15. Transfer Learning.mp4

101.7 MB

15. Transfer Learning.vtt

12.4 KB

16. Feature Extraction.mp4

116.5 MB

16. Feature Extraction.vtt

13.2 KB

17. State of the Art Tools.mp4

37.1 MB

17. State of the Art Tools.vtt

6.1 KB

2. Neural Network Revision.mp4

45.9 MB

2. Neural Network Revision.vtt

9.4 KB

3. Motivational Example.mp4

69.4 MB

3. Motivational Example.vtt

8.9 KB

4. Visualizing CNN.mp4

148.8 MB

4. Visualizing CNN.vtt

15.7 KB

5. Understanding CNN.mp4

31.5 MB

5. Understanding CNN.vtt

6.9 KB

6. Layer - Input.mp4

30.5 MB

6. Layer - Input.vtt

6.4 KB

7. Layer - Filter.mp4

88.5 MB

7. Layer - Filter.vtt

18.9 KB

8. Activation Function.mp4

33.9 MB

8. Activation Function.vtt

7.0 KB

9. Pooling, Flatten, Dense.mp4

92.4 MB

9. Pooling, Flatten, Dense.vtt

12.8 KB

/2. Getting Started with Anaconda/

1. Installing Applications and Creating Environment.mp4

40.3 MB

1. Installing Applications and Creating Environment.vtt

6.1 KB

2. Hello World.mp4

53.7 MB

2. Hello World.vtt

12.8 KB

3. Iris Project 1 Working with Error Messages.mp4

94.2 MB

3. Iris Project 1 Working with Error Messages.vtt

14.8 KB

4. Iris Project 2 Reading CSV Data into Memory.mp4

67.7 MB

4. Iris Project 2 Reading CSV Data into Memory.vtt

10.3 KB

5. Iris Project 3 Loading data from Seaborn.mp4

58.6 MB

5. Iris Project 3 Loading data from Seaborn.vtt

10.2 KB

6. Iris Project 4 Visualization.mp4

98.0 MB

6. Iris Project 4 Visualization.vtt

11.8 KB

/3. Regression/

1. Scikit-Learn.mp4

50.8 MB

1. Scikit-Learn.vtt

10.2 KB

10. Multiple Regression 2.mp4

95.6 MB

10. Multiple Regression 2.vtt

14.1 KB

11. Regularized Regression.mp4

46.5 MB

11. Regularized Regression.vtt

8.0 KB

12. Polynomial Regression.mp4

116.2 MB

12. Polynomial Regression.vtt

20.2 KB

13. Dealing with Non-linear Relationships.mp4

65.7 MB

13. Dealing with Non-linear Relationships.vtt

10.5 KB

14. Feature Importance.mp4

38.0 MB

14. Feature Importance.vtt

5.5 KB

15. Data Preprocessing.mp4

142.1 MB

15. Data Preprocessing.vtt

26.1 KB

16. Variance-Bias Trade Off.mp4

72.0 MB

16. Variance-Bias Trade Off.vtt

14.0 KB

17. Learning Curve.mp4

59.1 MB

17. Learning Curve.vtt

10.5 KB

18. Cross Validation.mp4

50.4 MB

18. Cross Validation.vtt

9.9 KB

19. CV Illustration.mp4

133.4 MB

19. CV Illustration.vtt

20.3 KB

2. EDA.mp4

159.0 MB

2. EDA.vtt

23.0 KB

3. Correlation Analysis and Feature Selection.mp4

23.7 MB

3. Correlation Analysis and Feature Selection.vtt

10.0 KB

3.1 0305.zip.zip

2.2 MB

4. Correlation Analysis and Feature Selection.mp4

110.3 MB

4. Correlation Analysis and Feature Selection.vtt

14.3 KB

5. Linear Regression with Scikit-Learn.mp4

80.7 MB

5. Linear Regression with Scikit-Learn.vtt

15.3 KB

6. Five Steps Machine Learning Process.mp4

81.0 MB

6. Five Steps Machine Learning Process.vtt

9.4 KB

7. Robust Regression.mp4

124.8 MB

7. Robust Regression.vtt

20.6 KB

8. Evaluate Regression Model Performance.mp4

104.5 MB

8. Evaluate Regression Model Performance.vtt

18.3 KB

9. Multiple Regression 1.mp4

131.6 MB

9. Multiple Regression 1.vtt

23.0 KB

/4. Classification/

1. Logistic Regression.mp4

125.4 MB

1. Logistic Regression.vtt

24.0 KB

10. Precision Recall Tradeoff.mp4

107.0 MB

10. Precision Recall Tradeoff.vtt

21.3 KB

11. Altering the Precision Recall Tradeoff.mp4

21.9 MB

11. Altering the Precision Recall Tradeoff.vtt

3.6 KB

12. ROC.mp4

54.8 MB

12. ROC.vtt

7.8 KB

2. Introduction to Classification.mp4

44.2 MB

2. Introduction to Classification.vtt

5.9 KB

3. Understanding MNIST.mp4

114.3 MB

3. Understanding MNIST.vtt

16.8 KB

4. SGD.mp4

60.1 MB

4. SGD.vtt

10.8 KB

5. Performance Measure and Stratified k-Fold.mp4

54.0 MB

5. Performance Measure and Stratified k-Fold.vtt

8.3 KB

6. Confusion Matrix.mp4

57.4 MB

6. Confusion Matrix.vtt

11.3 KB

7. Precision.mp4

24.7 MB

7. Precision.vtt

4.2 KB

8. Recall.mp4

20.6 MB

8. Recall.vtt

3.7 KB

9. f1.mp4

12.7 MB

9. f1.vtt

2.3 KB

/5. Support Vector Machine (SVM)/

1. Support Vector Machine (SVM) Concepts.mp4

39.7 MB

1. Support Vector Machine (SVM) Concepts.vtt

8.2 KB

2. Linear SVM Classification.mp4

84.9 MB

2. Linear SVM Classification.vtt

12.4 KB

3. Polynomial Kernel.mp4

36.7 MB

3. Polynomial Kernel.vtt

5.6 KB

4. Radial Basis Function.mp4

73.5 MB

4. Radial Basis Function.vtt

9.0 KB

5. Support Vector Regression.mp4

62.6 MB

5. Support Vector Regression.vtt

9.5 KB

/6. Tree/

1. Introduction to Decision Tree.mp4

46.0 MB

1. Introduction to Decision Tree.vtt

8.1 KB

2. Training and Visualizing a Decision Tree.mp4

53.9 MB

2. Training and Visualizing a Decision Tree.vtt

7.2 KB

3. Visualizing Boundary.mp4

57.4 MB

3. Visualizing Boundary.vtt

9.0 KB

4. Tree Regression, Regularization and Over Fitting.mp4

42.0 MB

4. Tree Regression, Regularization and Over Fitting.vtt

5.4 KB

5. End to End Modeling.mp4

37.3 MB

5. End to End Modeling.vtt

5.5 KB

6. Project HR.mp4

186.5 MB

6. Project HR.vtt

28.8 KB

7. Project HR with Google Colab.mp4

69.8 MB

7. Project HR with Google Colab.vtt

11.7 KB

/7. Ensemble Machine Learning/

1. Ensemble Learning Methods Introduction.mp4

39.0 MB

1. Ensemble Learning Methods Introduction.vtt

5.7 KB

10. Ensemble of ensembles Part 2.mp4

39.7 MB

10. Ensemble of ensembles Part 2.vtt

5.9 KB

2. Bagging.mp4

173.5 MB

2. Bagging.vtt

21.6 KB

3. Random Forests and Extra-Trees.mp4

84.2 MB

3. Random Forests and Extra-Trees.vtt

11.3 KB

4. AdaBoost.mp4

52.3 MB

4. AdaBoost.vtt

8.1 KB

5. Gradient Boosting Machine.mp4

23.0 MB

5. Gradient Boosting Machine.vtt

3.7 KB

6. XGBoost Installation.mp4

23.3 MB

6. XGBoost Installation.vtt

2.9 KB

7. XGBoost.mp4

36.8 MB

7. XGBoost.vtt

5.2 KB

8. Project HR - Human Resources Analytics.mp4

62.1 MB

8. Project HR - Human Resources Analytics.vtt

9.7 KB

9. Ensemble of Ensembles Part 1.mp4

48.7 MB

9. Ensemble of Ensembles Part 1.vtt

7.5 KB

/8. k-Nearest Neighbours (kNN)/

1. kNN Introduction.mp4

66.0 MB

1. kNN Introduction.vtt

11.3 KB

2. Project Cancer Detection.mp4

79.4 MB

2. Project Cancer Detection.vtt

10.2 KB

3. Addition Materials.html

0.3 KB

4. Project Cancer Detection Part 1.mp4

51.8 MB

4. Project Cancer Detection Part 1.vtt

22.6 KB

4.1 0805.zip.zip

41.7 KB

/9. Unsupervised Learning Dimensionality Reduction/

1. Dimensionality Reduction Concept.mp4

32.9 MB

1. Dimensionality Reduction Concept.vtt

5.4 KB

2. PCA Introduction.mp4

51.4 MB

2. PCA Introduction.vtt

8.4 KB

3. Project Wine.mp4

50.2 MB

3. Project Wine.vtt

7.2 KB

4. Kernel PCA.mp4

38.4 MB

4. Kernel PCA.vtt

6.2 KB

5. Kernel PCA Demo.mp4

22.5 MB

5. Kernel PCA Demo.vtt

3.7 KB

6. LDA vs PCA.mp4

35.8 MB

6. LDA vs PCA.vtt

6.0 KB

7. Project Abalone.mp4

32.2 MB

7. Project Abalone.vtt

4.4 KB

 

Total files 221


Copyright © 2025 FileMood.com