/1. Part 1 Introduction/
|
1. A Practical Example What You Will Learn in This Course.mp4
|
51.4 MB
|
1. A Practical Example What You Will Learn in This Course.vtt
|
5.8 KB
|
2. What Does the Course Cover.mp4
|
65.3 MB
|
2. What Does the Course Cover.vtt
|
4.6 KB
|
3. Download All Resources and Important FAQ.html
|
21.3 KB
|
3.1 Download All Resources.html
|
0.1 KB
|
3.2 FAQ_The_Data_Science_Course.pdf.pdf
|
313.4 KB
|
/10. Combinatorics/
|
1. Fundamentals of Combinatorics.mp4
|
17.0 MB
|
1. Fundamentals of Combinatorics.vtt
|
1.2 KB
|
1.1 Course Notes - Combinatorics.pdf.pdf
|
231.5 KB
|
10. Solving Variations without Repetition.html
|
0.2 KB
|
11. Solving Combinations.mp4
|
60.1 MB
|
11. Solving Combinations.vtt
|
5.1 KB
|
11.1 Combinations With Repetition.pdf.pdf
|
212.4 KB
|
12. Solving Combinations.html
|
0.2 KB
|
13. Symmetry of Combinations.mp4
|
40.6 MB
|
13. Symmetry of Combinations.vtt
|
3.9 KB
|
13.1 Symmetry Explained.pdf.pdf
|
87.1 KB
|
14. Symmetry of Combinations.html
|
0.2 KB
|
15. Solving Combinations with Separate Sample Spaces.mp4
|
34.8 MB
|
15. Solving Combinations with Separate Sample Spaces.vtt
|
3.4 KB
|
16. Solving Combinations with Separate Sample Spaces.html
|
0.2 KB
|
17. Combinatorics in Real-Life The Lottery.mp4
|
41.3 MB
|
17. Combinatorics in Real-Life The Lottery.vtt
|
3.7 KB
|
18. Combinatorics in Real-Life The Lottery.html
|
0.2 KB
|
19. A Recap of Combinatorics.mp4
|
40.4 MB
|
19. A Recap of Combinatorics.vtt
|
3.3 KB
|
2. Fundamentals of Combinatorics.html
|
0.2 KB
|
20. A Practical Example of Combinatorics.mp4
|
140.7 MB
|
20. A Practical Example of Combinatorics.vtt
|
12.7 KB
|
20.1 Additional Exercises Combinatorics Solutions.pdf.pdf
|
251.7 KB
|
20.2 Additional Exercises Combinatorics.pdf.pdf
|
109.1 KB
|
3. Permutations and How to Use Them.mp4
|
44.8 MB
|
3. Permutations and How to Use Them.vtt
|
3.7 KB
|
4. Permutations and How to Use Them.html
|
0.2 KB
|
5. Simple Operations with Factorials.mp4
|
37.9 MB
|
5. Simple Operations with Factorials.vtt
|
3.0 KB
|
6. Simple Operations with Factorials.html
|
0.2 KB
|
7. Solving Variations with Repetition.mp4
|
35.7 MB
|
7. Solving Variations with Repetition.vtt
|
3.2 KB
|
8. Solving Variations with Repetition.html
|
0.2 KB
|
9. Solving Variations without Repetition.mp4
|
45.2 MB
|
9. Solving Variations without Repetition.vtt
|
4.1 KB
|
/11. Bayesian Inference/
|
1. Sets and Events.mp4
|
56.1 MB
|
1. Sets and Events.vtt
|
4.6 KB
|
1.1 Course Notes - Bayesian Inference.pdf.pdf
|
395.3 KB
|
10. Mutually Exclusive Sets.html
|
0.2 KB
|
11. Dependence and Independence of Sets.mp4
|
36.5 MB
|
11. Dependence and Independence of Sets.vtt
|
3.1 KB
|
12. Dependence and Independence of Sets.html
|
0.2 KB
|
13. The Conditional Probability Formula.mp4
|
48.1 MB
|
13. The Conditional Probability Formula.vtt
|
4.5 KB
|
14. The Conditional Probability Formula.html
|
0.2 KB
|
15. The Law of Total Probability.mp4
|
36.6 MB
|
15. The Law of Total Probability.vtt
|
3.2 KB
|
16. The Additive Rule.mp4
|
27.0 MB
|
16. The Additive Rule.vtt
|
2.4 KB
|
17. The Additive Rule.html
|
0.2 KB
|
18. The Multiplication Law.mp4
|
45.0 MB
|
18. The Multiplication Law.vtt
|
4.2 KB
|
19. The Multiplication Law.html
|
0.2 KB
|
2. Sets and Events.html
|
0.2 KB
|
20. Bayes' Law.mp4
|
62.5 MB
|
20. Bayes' Law.vtt
|
6.5 KB
|
21. Bayes' Law.html
|
0.2 KB
|
22. A Practical Example of Bayesian Inference.mp4
|
163.0 MB
|
22. A Practical Example of Bayesian Inference.vtt
|
17.5 KB
|
22.1 CDS_2017-2018 Hamilton.pdf.pdf
|
865.6 KB
|
3. Ways Sets Can Interact.mp4
|
47.6 MB
|
3. Ways Sets Can Interact.vtt
|
4.0 KB
|
4. Ways Sets Can Interact.html
|
0.2 KB
|
5. Intersection of Sets.mp4
|
28.3 MB
|
5. Intersection of Sets.vtt
|
2.2 KB
|
6. Intersection of Sets.html
|
0.2 KB
|
7. Union of Sets.mp4
|
60.0 MB
|
7. Union of Sets.vtt
|
5.1 KB
|
8. Union of Sets.html
|
0.2 KB
|
9. Mutually Exclusive Sets.mp4
|
26.6 MB
|
9. Mutually Exclusive Sets.vtt
|
2.3 KB
|
/12. Probability Distributions/
|
1. Fundamentals of Probability Distributions.mp4
|
77.0 MB
|
1. Fundamentals of Probability Distributions.vtt
|
6.9 KB
|
1.1 Course Notes - Probability Distributions.pdf.pdf
|
458.8 KB
|
10. Discrete Distributions The Bernoulli Distribution.html
|
0.2 KB
|
11. Discrete Distributions The Binomial Distribution.mp4
|
68.7 MB
|
11. Discrete Distributions The Binomial Distribution.vtt
|
7.6 KB
|
12. Discrete Distributions The Binomial Distribution.html
|
0.2 KB
|
13. Discrete Distributions The Poisson Distribution.mp4
|
61.3 MB
|
13. Discrete Distributions The Poisson Distribution.vtt
|
5.9 KB
|
13.1 Poisson - Expected Value and Variance.pdf.pdf
|
149.5 KB
|
14. Discrete Distributions The Poisson Distribution.html
|
0.2 KB
|
15. Characteristics of Continuous Distributions.mp4
|
83.6 MB
|
15. Characteristics of Continuous Distributions.vtt
|
7.8 KB
|
15.1 Solving Integrals.pdf.pdf
|
352.1 KB
|
16. Characteristics of Continuous Distributions.html
|
0.2 KB
|
17. Continuous Distributions The Normal Distribution.mp4
|
50.6 MB
|
17. Continuous Distributions The Normal Distribution.vtt
|
4.3 KB
|
17.1 Normal Distribution - Exp and Var.pdf.pdf
|
147.5 KB
|
18. Continuous Distributions The Normal Distribution.html
|
0.2 KB
|
19. Continuous Distributions The Standard Normal Distribution.mp4
|
50.2 MB
|
19. Continuous Distributions The Standard Normal Distribution.vtt
|
4.8 KB
|
2. Fundamentals of Probability Distributions.html
|
0.2 KB
|
20. Continuous Distributions The Standard Normal Distribution.html
|
0.2 KB
|
21. Continuous Distributions The Students' T Distribution.mp4
|
28.5 MB
|
21. Continuous Distributions The Students' T Distribution.vtt
|
2.6 KB
|
22. Continuous Distributions The Students' T Distribution.html
|
0.2 KB
|
23. Continuous Distributions The Chi-Squared Distribution.mp4
|
27.6 MB
|
23. Continuous Distributions The Chi-Squared Distribution.vtt
|
2.5 KB
|
24. Continuous Distributions The Chi-Squared Distribution.html
|
0.2 KB
|
25. Continuous Distributions The Exponential Distribution.mp4
|
42.2 MB
|
25. Continuous Distributions The Exponential Distribution.vtt
|
3.7 KB
|
26. Continuous Distributions The Exponential Distribution.html
|
0.2 KB
|
27. Continuous Distributions The Logistic Distribution.mp4
|
49.3 MB
|
27. Continuous Distributions The Logistic Distribution.vtt
|
4.6 KB
|
28. Continuous Distributions The Logistic Distribution.html
|
0.2 KB
|
29. A Practical Example of Probability Distributions.mp4
|
165.7 MB
|
29. A Practical Example of Probability Distributions.vtt
|
17.9 KB
|
29.1 FIFA19 (post).csv.csv
|
9.1 MB
|
29.2 Daily Views.xlsx.xlsx
|
9.8 KB
|
29.3 FIFA19.csv.csv
|
9.1 MB
|
29.4 Customers_Membership (post).xlsx.xlsx
|
16.0 KB
|
29.5 Customers_Membership.xlsx.xlsx
|
9.9 KB
|
29.6 Daily Views (post).xlsx.xlsx
|
20.7 KB
|
3. Types of Probability Distributions.mp4
|
96.8 MB
|
3. Types of Probability Distributions.vtt
|
8.5 KB
|
4. Types of Probability Distributions.html
|
0.2 KB
|
5. Characteristics of Discrete Distributions.mp4
|
23.8 MB
|
5. Characteristics of Discrete Distributions.vtt
|
2.2 KB
|
6. Characteristics of Discrete Distributions.html
|
0.2 KB
|
7. Discrete Distributions The Uniform Distribution.mp4
|
25.6 MB
|
7. Discrete Distributions The Uniform Distribution.vtt
|
2.5 KB
|
8. Discrete Distributions The Uniform Distribution.html
|
0.2 KB
|
9. Discrete Distributions The Bernoulli Distribution.mp4
|
35.8 MB
|
9. Discrete Distributions The Bernoulli Distribution.vtt
|
3.6 KB
|
/13. Probability in Other Fields/
|
1. Probability in Finance.mp4
|
103.9 MB
|
1. Probability in Finance.vtt
|
8.9 KB
|
2. Probability in Statistics.mp4
|
81.0 MB
|
2. Probability in Statistics.vtt
|
7.7 KB
|
3. Probability in Data Science.mp4
|
66.6 MB
|
3. Probability in Data Science.vtt
|
6.0 KB
|
/14. Part 3 Statistics/
|
1. Population and Sample.mp4
|
60.9 MB
|
1. Population and Sample.vtt
|
4.9 KB
|
1.1 Statistics Glossary.xlsx.xlsx
|
31.0 KB
|
1.2 Course notes_descriptive_statistics.pdf.pdf
|
493.8 KB
|
2. Population and Sample.html
|
0.2 KB
|
/15. Statistics - Descriptive Statistics/
|
1. Types of Data.mp4
|
76.0 MB
|
1. Types of Data.vtt
|
5.4 KB
|
1.1 Glossary.xlsx.xlsx
|
20.4 KB
|
1.2 Course notes_descriptive_statistics.pdf.pdf
|
493.8 KB
|
10. Numerical Variables Exercise.html
|
0.1 KB
|
10.1 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx
|
13.5 KB
|
10.2 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx
|
12.0 KB
|
11. The Histogram.mp4
|
14.5 MB
|
11. The Histogram.vtt
|
2.7 KB
|
11.1 2.5. The Histogram_lesson.xlsx.xlsx
|
19.1 KB
|
12. The Histogram.html
|
0.2 KB
|
13. Histogram Exercise.html
|
0.1 KB
|
13.1 2.5.The-Histogram-exercise-solution.xlsx.xlsx
|
17.5 KB
|
13.2 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf
|
296.1 KB
|
13.3 2.5.The-Histogram-exercise.xlsx.xlsx
|
15.9 KB
|
14. Cross Tables and Scatter Plots.mp4
|
41.7 MB
|
14. Cross Tables and Scatter Plots.vtt
|
6.0 KB
|
14.1 2.6. Cross table and scatter plot.xlsx.xlsx
|
26.7 KB
|
15. Cross Tables and Scatter Plots.html
|
0.2 KB
|
16. Cross Tables and Scatter Plots Exercise.html
|
0.1 KB
|
16.1 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx
|
41.4 KB
|
16.2 2.6. Cross table and scatter plot_exercise.xlsx.xlsx
|
16.7 KB
|
17. Mean, median and mode.mp4
|
38.9 MB
|
17. Mean, median and mode.vtt
|
5.1 KB
|
17.1 2.7. Mean, median and mode_lesson.xlsx.xlsx
|
10.7 KB
|
18. Mean, Median and Mode Exercise.html
|
0.1 KB
|
18.1 2.7. Mean, median and mode_exercise.xlsx.xlsx
|
11.1 KB
|
18.2 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx
|
11.6 KB
|
19. Skewness.mp4
|
20.3 MB
|
19. Skewness.vtt
|
3.3 KB
|
19.1 2.8. Skewness_lesson.xlsx.xlsx
|
35.5 KB
|
2. Types of Data.html
|
0.2 KB
|
20. Skewness.html
|
0.2 KB
|
21. Skewness Exercise.html
|
0.1 KB
|
21.1 2.8. Skewness_exercise_solution.xlsx.xlsx
|
20.3 KB
|
21.2 2.8. Skewness_exercise.xlsx.xlsx
|
9.7 KB
|
22. Variance.mp4
|
53.4 MB
|
22. Variance.vtt
|
6.8 KB
|
22.1 2.9. Variance_lesson.xlsx.xlsx
|
10.3 KB
|
23. Variance Exercise.html
|
0.5 KB
|
23.1 2.9. Variance_exercise.xlsx.xlsx
|
11.1 KB
|
23.2 2.9. Variance_exercise_solution.xlsx.xlsx
|
11.3 KB
|
24. Standard Deviation and Coefficient of Variation.mp4
|
47.3 MB
|
24. Standard Deviation and Coefficient of Variation.vtt
|
5.9 KB
|
24.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx
|
11.2 KB
|
25. Standard Deviation.html
|
0.2 KB
|
26. Standard Deviation and Coefficient of Variation Exercise.html
|
0.1 KB
|
26.1 2.10. Standard deviation and coefficient of variation_exercise_solution.xlsx.xlsx
|
12.7 KB
|
26.2 2.10. Standard deviation and coefficient of variation_exercise.xlsx.xlsx
|
11.6 KB
|
27. Covariance.mp4
|
28.8 MB
|
27. Covariance.vtt
|
4.4 KB
|
27.1 2.11. Covariance_lesson.xlsx.xlsx
|
25.5 KB
|
28. Covariance.html
|
0.2 KB
|
29. Covariance Exercise.html
|
0.1 KB
|
29.1 2.11. Covariance_exercise.xlsx.xlsx
|
20.7 KB
|
29.2 2.11. Covariance_exercise_solution.xlsx.xlsx
|
30.2 KB
|
3. Levels of Measurement.mp4
|
57.0 MB
|
3. Levels of Measurement.vtt
|
4.1 KB
|
30. Correlation Coefficient.mp4
|
30.8 MB
|
30. Correlation Coefficient.vtt
|
4.2 KB
|
31. Correlation.html
|
0.2 KB
|
32. Correlation Coefficient Exercise.html
|
0.1 KB
|
32.1 2.12. Correlation_exercise_solution.xlsx.xlsx
|
30.2 KB
|
32.2 2.12. Correlation_exercise.xlsx.xlsx
|
30.0 KB
|
4. Levels of Measurement.html
|
0.2 KB
|
5. Categorical Variables - Visualization Techniques.mp4
|
40.3 MB
|
5. Categorical Variables - Visualization Techniques.vtt
|
5.8 KB
|
5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx
|
31.5 KB
|
6. Categorical Variables - Visualization Techniques.html
|
0.2 KB
|
7. Categorical Variables Exercise.html
|
0.1 KB
|
7.1 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx
|
42.1 KB
|
7.2 Statistics - PDF with Excel Solutions that don't visualize properly.pdf.pdf
|
296.1 KB
|
7.3 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx
|
15.6 KB
|
8. Numerical Variables - Frequency Distribution Table.mp4
|
27.1 MB
|
8. Numerical Variables - Frequency Distribution Table.vtt
|
3.9 KB
|
8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx
|
11.7 KB
|
9. Numerical Variables - Frequency Distribution Table.html
|
0.2 KB
|
/16. Statistics - Practical Example Descriptive Statistics/
|
1. Practical Example Descriptive Statistics.mp4
|
168.3 MB
|
1. Practical Example Descriptive Statistics.vtt
|
18.4 KB
|
1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx
|
150.0 KB
|
2. Practical Example Descriptive Statistics Exercise.html
|
0.1 KB
|
2.1 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx
|
149.7 KB
|
2.2 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx
|
123.2 KB
|
/17. Statistics - Inferential Statistics Fundamentals/
|
1. Introduction.mp4
|
16.3 MB
|
1. Introduction.vtt
|
1.5 KB
|
1.1 Course notes_inferential statistics.pdf.pdf
|
391.5 KB
|
10. Central Limit Theorem.html
|
0.2 KB
|
11. Standard error.mp4
|
23.9 MB
|
11. Standard error.vtt
|
1.8 KB
|
12. Standard Error.html
|
0.2 KB
|
13. Estimators and Estimates.mp4
|
50.2 MB
|
13. Estimators and Estimates.vtt
|
3.4 KB
|
14. Estimators and Estimates.html
|
0.2 KB
|
2. What is a Distribution.mp4
|
64.6 MB
|
2. What is a Distribution.vtt
|
5.2 KB
|
2.1 Course notes_inferential statistics.pdf.pdf
|
391.5 KB
|
2.2 3.2. What is a distribution_lesson.xlsx.xlsx
|
19.9 KB
|
3. What is a Distribution.html
|
0.2 KB
|
4. The Normal Distribution.mp4
|
52.3 MB
|
4. The Normal Distribution.vtt
|
4.4 KB
|
5. The Normal Distribution.html
|
0.2 KB
|
6. The Standard Normal Distribution.mp4
|
23.6 MB
|
6. The Standard Normal Distribution.vtt
|
3.5 KB
|
6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx
|
10.6 KB
|
7. The Standard Normal Distribution.html
|
0.2 KB
|
8. The Standard Normal Distribution Exercise.html
|
0.1 KB
|
8.1 3.4.Standard-normal-distribution-exercise.xlsx.xlsx
|
12.3 KB
|
8.2 3.4.Standard-normal-distribution-exercise-solution.xlsx.xlsx
|
24.6 KB
|
9. Central Limit Theorem.mp4
|
65.9 MB
|
9. Central Limit Theorem.vtt
|
5.1 KB
|
/18. Statistics - Inferential Statistics Confidence Intervals/
|
1. What are Confidence Intervals.mp4
|
52.4 MB
|
1. What are Confidence Intervals.vtt
|
2.9 KB
|
10. Margin of Error.mp4
|
62.0 MB
|
10. Margin of Error.vtt
|
5.5 KB
|
11. Margin of Error.html
|
0.2 KB
|
12. Confidence intervals. Two means. Dependent samples.mp4
|
73.9 MB
|
12. Confidence intervals. Two means. Dependent samples.vtt
|
7.3 KB
|
12.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx
|
10.7 KB
|
13. Confidence intervals. Two means. Dependent samples Exercise.html
|
0.1 KB
|
13.1 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx
|
14.6 KB
|
13.2 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx
|
14.1 KB
|
14. Confidence intervals. Two means. Independent samples (Part 1).mp4
|
30.2 MB
|
14. Confidence intervals. Two means. Independent samples (Part 1).vtt
|
5.5 KB
|
14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx
|
10.1 KB
|
15. Confidence intervals. Two means. Independent samples (Part 1) Exercise.html
|
0.1 KB
|
15.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx
|
10.4 KB
|
15.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx
|
10.1 KB
|
16. Confidence intervals. Two means. Independent samples (Part 2).mp4
|
28.1 MB
|
16. Confidence intervals. Two means. Independent samples (Part 2).vtt
|
4.1 KB
|
16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx
|
9.7 KB
|
17. Confidence intervals. Two means. Independent samples (Part 2) Exercise.html
|
0.1 KB
|
17.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx
|
9.4 KB
|
17.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx
|
10.0 KB
|
18. Confidence intervals. Two means. Independent samples (Part 3).mp4
|
20.9 MB
|
18. Confidence intervals. Two means. Independent samples (Part 3).vtt
|
1.8 KB
|
2. What are Confidence Intervals.html
|
0.2 KB
|
3. Confidence Intervals; Population Variance Known; z-score.mp4
|
82.0 MB
|
3. Confidence Intervals; Population Variance Known; z-score.vtt
|
8.9 KB
|
3.1 3.9.The-z-table.xlsx.xlsx
|
26.2 KB
|
3.2 3.9. Population variance known, z-score_lesson.xlsx.xlsx
|
11.5 KB
|
4. Confidence Intervals; Population Variance Known; z-score; Exercise.html
|
0.1 KB
|
4.1 3.9.The-z-table.xlsx.xlsx
|
26.2 KB
|
4.2 3.9. Population variance known, z-score_exercise.xlsx.xlsx
|
11.1 KB
|
4.3 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx
|
11.4 KB
|
5. Confidence Interval Clarifications.mp4
|
59.8 MB
|
5. Confidence Interval Clarifications.vtt
|
4.9 KB
|
6. Student's T Distribution.mp4
|
37.2 MB
|
6. Student's T Distribution.vtt
|
3.8 KB
|
7. Student's T Distribution.html
|
0.2 KB
|
8. Confidence Intervals; Population Variance Unknown; t-score.mp4
|
33.8 MB
|
8. Confidence Intervals; Population Variance Unknown; t-score.vtt
|
5.1 KB
|
8.1 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx
|
11.0 KB
|
8.2 3.11. The t-table.xlsx.xlsx
|
16.2 KB
|
9. Confidence Intervals; Population Variance Unknown; t-score; Exercise.html
|
0.1 KB
|
9.1 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx
|
11.4 KB
|
9.2 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx
|
10.9 KB
|
/19. Statistics - Practical Example Inferential Statistics/
|
1. Practical Example Inferential Statistics.mp4
|
107.7 MB
|
1. Practical Example Inferential Statistics.vtt
|
12.2 KB
|
1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx
|
1.8 MB
|
2. Practical Example Inferential Statistics Exercise.html
|
0.1 KB
|
2.1 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx
|
1.9 MB
|
2.2 3.17.Practical-example.Confidence-intervals-exercise.xlsx.xlsx
|
1.8 MB
|
/2. The Field of Data Science - The Various Data Science Disciplines/
|
1. Data Science and Business Buzzwords Why are there so many.mp4
|
85.4 MB
|
1. Data Science and Business Buzzwords Why are there so many.vtt
|
6.0 KB
|
10. A Breakdown of our Data Science Infographic.html
|
0.2 KB
|
2. Data Science and Business Buzzwords Why are there so many.html
|
0.2 KB
|
3. What is the difference between Analysis and Analytics.mp4
|
56.2 MB
|
3. What is the difference between Analysis and Analytics.vtt
|
4.5 KB
|
4. What is the difference between Analysis and Analytics.html
|
0.2 KB
|
5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4
|
67.7 MB
|
5. Business Analytics, Data Analytics, and Data Science An Introduction.vtt
|
9.5 KB
|
5.1 365_DataScience_Diagram.pdf.pdf
|
330.8 KB
|
6. Business Analytics, Data Analytics, and Data Science An Introduction.html
|
0.2 KB
|
7. Continuing with BI, ML, and AI.mp4
|
114.3 MB
|
7. Continuing with BI, ML, and AI.vtt
|
10.7 KB
|
7.1 365_DataScience_Diagram.pdf.pdf
|
330.8 KB
|
7.2 365_DataScience.png.png
|
7.3 MB
|
8. Continuing with BI, ML, and AI.html
|
0.2 KB
|
9. A Breakdown of our Data Science Infographic.mp4
|
71.0 MB
|
9. A Breakdown of our Data Science Infographic.vtt
|
4.6 KB
|
9.1 365_DataScience.png.png
|
7.3 MB
|
/20. Statistics - Hypothesis Testing/
|
1. Null vs Alternative Hypothesis.mp4
|
96.5 MB
|
1. Null vs Alternative Hypothesis.vtt
|
6.3 KB
|
1.1 Course notes_hypothesis_testing.pdf.pdf
|
663.8 KB
|
10. p-value.mp4
|
58.6 MB
|
10. p-value.vtt
|
4.6 KB
|
10.1 Online p-value calculator.pdf.pdf
|
1.2 MB
|
11. p-value.html
|
0.2 KB
|
12. Test for the Mean. Population Variance Unknown.mp4
|
42.2 MB
|
12. Test for the Mean. Population Variance Unknown.vtt
|
5.2 KB
|
12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx
|
14.9 KB
|
13. Test for the Mean. Population Variance Unknown Exercise.html
|
0.1 KB
|
13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx
|
11.6 KB
|
13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx
|
12.9 KB
|
14. Test for the Mean. Dependent Samples.mp4
|
52.8 MB
|
14. Test for the Mean. Dependent Samples.vtt
|
5.7 KB
|
14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx
|
10.0 KB
|
15. Test for the Mean. Dependent Samples Exercise.html
|
0.1 KB
|
15.1 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx
|
13.1 KB
|
15.2 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx
|
14.7 KB
|
16. Test for the mean. Independent samples (Part 1).mp4
|
31.4 MB
|
16. Test for the mean. Independent samples (Part 1).vtt
|
4.9 KB
|
16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx
|
9.9 KB
|
17. Test for the mean. Independent samples (Part 1). Exercise.html
|
0.1 KB
|
17.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx.xlsx
|
11.0 KB
|
17.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx.xlsx
|
11.5 KB
|
18. Test for the mean. Independent samples (Part 2).mp4
|
38.2 MB
|
18. Test for the mean. Independent samples (Part 2).vtt
|
4.7 KB
|
18.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx
|
9.5 KB
|
19. Test for the mean. Independent samples (Part 2).html
|
0.2 KB
|
2. Further Reading on Null and Alternative Hypothesis.html
|
2.3 KB
|
20. Test for the mean. Independent samples (Part 2) Exercise.html
|
0.1 KB
|
20.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx.xlsx
|
10.8 KB
|
20.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx.xlsx
|
11.7 KB
|
3. Null vs Alternative Hypothesis.html
|
0.2 KB
|
4. Rejection Region and Significance Level.mp4
|
118.1 MB
|
4. Rejection Region and Significance Level.vtt
|
7.9 KB
|
4.1 Course notes_hypothesis_testing.pdf.pdf
|
663.8 KB
|
5. Rejection Region and Significance Level.html
|
0.2 KB
|
6. Type I Error and Type II Error.mp4
|
46.1 MB
|
6. Type I Error and Type II Error.vtt
|
5.0 KB
|
7. Type I Error and Type II Error.html
|
0.2 KB
|
8. Test for the Mean. Population Variance Known.mp4
|
56.9 MB
|
8. Test for the Mean. Population Variance Known.vtt
|
7.3 KB
|
8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx
|
11.2 KB
|
9. Test for the Mean. Population Variance Known Exercise.html
|
0.1 KB
|
9.1 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx
|
11.3 KB
|
9.2 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx
|
11.5 KB
|
/21. Statistics - Practical Example Hypothesis Testing/
|
1. Practical Example Hypothesis Testing.mp4
|
72.9 MB
|
1. Practical Example Hypothesis Testing.vtt
|
7.6 KB
|
1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx
|
53.0 KB
|
2. Practical Example Hypothesis Testing Exercise.html
|
0.1 KB
|
2.1 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx
|
44.4 KB
|
2.2 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx
|
45.1 KB
|
/22. Part 4 Introduction to Python/
|
1. Introduction to Programming.mp4
|
61.4 MB
|
1. Introduction to Programming.vtt
|
6.2 KB
|
10. Jupyter's Interface.html
|
0.2 KB
|
11. Python 2 vs Python 3.mp4
|
11.8 MB
|
11. Python 2 vs Python 3.vtt
|
3.0 KB
|
11.1 Python Introduction - Course Notes.pdf.pdf
|
2.1 MB
|
2. Introduction to Programming.html
|
0.2 KB
|
3. Why Python.mp4
|
78.7 MB
|
3. Why Python.vtt
|
6.3 KB
|
4. Why Python.html
|
0.2 KB
|
5. Why Jupyter.mp4
|
46.5 MB
|
5. Why Jupyter.vtt
|
4.2 KB
|
6. Why Jupyter.html
|
0.2 KB
|
7. Installing Python and Jupyter.mp4
|
53.5 MB
|
7. Installing Python and Jupyter.vtt
|
8.0 KB
|
8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4
|
14.5 MB
|
8. Understanding Jupyter's Interface - the Notebook Dashboard.vtt
|
3.3 KB
|
9. Prerequisites for Coding in the Jupyter Notebooks.mp4
|
32.1 MB
|
9. Prerequisites for Coding in the Jupyter Notebooks.vtt
|
7.0 KB
|
/23. Python - Variables and Data Types/
|
1. Variables.mp4
|
26.5 MB
|
1. Variables.vtt
|
5.4 KB
|
1.1 Python Introduction - Course Notes.pdf.pdf
|
2.1 MB
|
1.2 Variables - Resources.html
|
0.1 KB
|
2. Variables.html
|
0.2 KB
|
3. Numbers and Boolean Values in Python.mp4
|
17.9 MB
|
3. Numbers and Boolean Values in Python.vtt
|
3.2 KB
|
3.1 Numbers and Boolean Values - Resources.html
|
0.1 KB
|
4. Numbers and Boolean Values in Python.html
|
0.2 KB
|
5. Python Strings.mp4
|
32.3 MB
|
5. Python Strings.vtt
|
6.6 KB
|
5.1 Strings - Resources.html
|
0.1 KB
|
6. Python Strings.html
|
0.2 KB
|
/24. Python - Basic Python Syntax/
|
1. Using Arithmetic Operators in Python.mp4
|
19.8 MB
|
1. Using Arithmetic Operators in Python.vtt
|
3.7 KB
|
1.1 Arithmetic Operators - Resources.html
|
0.1 KB
|
10. Indexing Elements.mp4
|
6.2 MB
|
10. Indexing Elements.vtt
|
1.5 KB
|
10.1 Indexing Elements - Resources.html
|
0.1 KB
|
11. Indexing Elements.html
|
0.2 KB
|
12. Structuring with Indentation.mp4
|
7.2 MB
|
12. Structuring with Indentation.vtt
|
2.0 KB
|
12.1 Structure Your Code with Indentation - Resources.html
|
0.1 KB
|
13. Structuring with Indentation.html
|
0.2 KB
|
2. Using Arithmetic Operators in Python.html
|
0.2 KB
|
3. The Double Equality Sign.mp4
|
6.3 MB
|
3. The Double Equality Sign.vtt
|
1.6 KB
|
3.1 The Double Equality Sign - Resources.html
|
0.1 KB
|
4. The Double Equality Sign.html
|
0.2 KB
|
5. How to Reassign Values.mp4
|
4.2 MB
|
5. How to Reassign Values.vtt
|
1.2 KB
|
5.1 Reassign Values - Resources.html
|
0.1 KB
|
6. How to Reassign Values.html
|
0.2 KB
|
7. Add Comments.mp4
|
5.2 MB
|
7. Add Comments.vtt
|
1.5 KB
|
7.1 Add Comments - Resources.html
|
0.1 KB
|
8. Add Comments.html
|
0.2 KB
|
9. Understanding Line Continuation.mp4
|
2.5 MB
|
9. Understanding Line Continuation.vtt
|
1.0 KB
|
9.1 Line Continuation - Resources.html
|
0.1 KB
|
/25. Python - Other Python Operators/
|
1. Comparison Operators.mp4
|
10.7 MB
|
1. Comparison Operators.vtt
|
2.2 KB
|
1.1 Comparison Operators - Resources.html
|
0.1 KB
|
2. Comparison Operators.html
|
0.2 KB
|
3. Logical and Identity Operators.mp4
|
31.5 MB
|
3. Logical and Identity Operators.vtt
|
5.1 KB
|
3.1 Logical and Identity Operators - Resources.html
|
0.1 KB
|
4. Logical and Identity Operators.html
|
0.2 KB
|
/26. Python - Conditional Statements/
|
1. The IF Statement.mp4
|
14.3 MB
|
1. The IF Statement.vtt
|
3.2 KB
|
1.1 Introduction to the If Statement - Resources.html
|
0.1 KB
|
2. The IF Statement.html
|
0.2 KB
|
3. The ELSE Statement.mp4
|
14.2 MB
|
3. The ELSE Statement.vtt
|
2.5 KB
|
3.1 Add an Else Statement - Resources.html
|
0.1 KB
|
4. The ELIF Statement.mp4
|
34.8 MB
|
4. The ELIF Statement.vtt
|
5.9 KB
|
4.1 Else if, for Brief - Elif - Resources.html
|
0.1 KB
|
5. A Note on Boolean Values.mp4
|
11.8 MB
|
5. A Note on Boolean Values.vtt
|
2.6 KB
|
5.1 A Note on Boolean Values - Resources.html
|
0.1 KB
|
6. A Note on Boolean Values.html
|
0.2 KB
|
/27. Python - Python Functions/
|
1. Defining a Function in Python.mp4
|
8.1 MB
|
1. Defining a Function in Python.vtt
|
2.3 KB
|
1.1 Defining a Function in Python - Resources.html
|
0.1 KB
|
2. How to Create a Function with a Parameter.mp4
|
25.0 MB
|
2. How to Create a Function with a Parameter.vtt
|
3.9 KB
|
2.1 Creating a Function with a Parameter - Resources.html
|
0.1 KB
|
3. Defining a Function in Python - Part II.mp4
|
15.5 MB
|
3. Defining a Function in Python - Part II.vtt
|
2.8 KB
|
3.1 Another Way to Define a Function - Resources.html
|
0.1 KB
|
4. How to Use a Function within a Function.mp4
|
8.5 MB
|
4. How to Use a Function within a Function.vtt
|
1.8 KB
|
4.1 Using a Function in Another Function - Resources.html
|
0.1 KB
|
5. Conditional Statements and Functions.mp4
|
16.4 MB
|
5. Conditional Statements and Functions.vtt
|
3.1 KB
|
5.1 Combining Conditional Statements and Functions - Resources.html
|
0.1 KB
|
6. Functions Containing a Few Arguments.mp4
|
7.9 MB
|
6. Functions Containing a Few Arguments.vtt
|
1.2 KB
|
6.1 Creating Functions Containing a Few Arguments - Resources.html
|
0.1 KB
|
7. Built-in Functions in Python.mp4
|
23.1 MB
|
7. Built-in Functions in Python.vtt
|
3.8 KB
|
7.1 Notable Built-In Functions in Python - Resources.html
|
0.1 KB
|
8. Python Functions.html
|
0.2 KB
|
/28. Python - Sequences/
|
1. Lists.mp4
|
23.1 MB
|
1. Lists.vtt
|
4.4 KB
|
1.1 Lists - Resources.html
|
0.1 KB
|
2. Lists.html
|
0.2 KB
|
3. Using Methods.mp4
|
23.0 MB
|
3. Using Methods.vtt
|
3.6 KB
|
3.1 Help Yourself with Methods - Resources.html
|
0.1 KB
|
4. Using Methods.html
|
0.2 KB
|
5. List Slicing.mp4
|
32.3 MB
|
5. List Slicing.vtt
|
4.9 KB
|
5.1 List Slicing - Resources.html
|
0.1 KB
|
6. Tuples.mp4
|
17.5 MB
|
6. Tuples.vtt
|
3.0 KB
|
6.1 Tuples - Resources.html
|
0.1 KB
|
7. Dictionaries.mp4
|
26.3 MB
|
7. Dictionaries.vtt
|
3.7 KB
|
7.1 Dictionaries - Resources.html
|
0.1 KB
|
8. Dictionaries.html
|
0.2 KB
|
/29. Python - Iterations/
|
1. For Loops.mp4
|
12.4 MB
|
1. For Loops.vtt
|
2.5 KB
|
1.1 For Loops - Resources.html
|
0.1 KB
|
2. For Loops.html
|
0.2 KB
|
3. While Loops and Incrementing.mp4
|
16.2 MB
|
3. While Loops and Incrementing.vtt
|
2.5 KB
|
3.1 While Loops and Incrementing - Resources.html
|
0.1 KB
|
4. Lists with the range() Function.mp4
|
12.0 MB
|
4. Lists with the range() Function.vtt
|
2.5 KB
|
4.1 Create Lists with the range() Function - Resources.html
|
0.1 KB
|
5. Lists with the range() Function.html
|
0.2 KB
|
6. Conditional Statements and Loops.mp4
|
16.9 MB
|
6. Conditional Statements and Loops.vtt
|
3.2 KB
|
6.1 Use Conditional Statements and Loops Together - Resources.html
|
0.1 KB
|
7. Conditional Statements, Functions, and Loops.mp4
|
10.0 MB
|
7. Conditional Statements, Functions, and Loops.vtt
|
2.1 KB
|
7.1 All In - Conditional Statements, Functions, and Loops - Resources.html
|
0.1 KB
|
8. How to Iterate over Dictionaries.mp4
|
17.8 MB
|
8. How to Iterate over Dictionaries.vtt
|
3.4 KB
|
8.1 Iterating over Dictionaries - Resources.html
|
0.1 KB
|
/3. The Field of Data Science - Connecting the Data Science Disciplines/
|
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4
|
133.0 MB
|
1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt
|
8.1 KB
|
2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html
|
0.2 KB
|
/30. Python - Advanced Python Tools/
|
1. Object Oriented Programming.mp4
|
35.2 MB
|
1. Object Oriented Programming.vtt
|
5.5 KB
|
2. Object Oriented Programming.html
|
0.2 KB
|
3. Modules and Packages.mp4
|
8.9 MB
|
3. Modules and Packages.vtt
|
1.2 KB
|
4. Modules and Packages.html
|
0.2 KB
|
5. What is the Standard Library.mp4
|
18.9 MB
|
5. What is the Standard Library.vtt
|
3.2 KB
|
6. What is the Standard Library.html
|
0.2 KB
|
7. Importing Modules in Python.mp4
|
20.9 MB
|
7. Importing Modules in Python.vtt
|
4.3 KB
|
8. Importing Modules in Python.html
|
0.2 KB
|
/31. Part 5 Advanced Statistical Methods in Python/
|
1. Introduction to Regression Analysis.mp4
|
18.2 MB
|
1. Introduction to Regression Analysis.vtt
|
2.0 KB
|
2. Introduction to Regression Analysis.html
|
0.2 KB
|
/32. Advanced Statistical Methods - Linear regression with StatsModels/
|
1. The Linear Regression Model.mp4
|
60.2 MB
|
1. The Linear Regression Model.vtt
|
6.3 KB
|
10. Using Seaborn for Graphs.mp4
|
12.8 MB
|
10. Using Seaborn for Graphs.vtt
|
1.3 KB
|
11. How to Interpret the Regression Table.mp4
|
46.8 MB
|
11. How to Interpret the Regression Table.vtt
|
5.6 KB
|
12. How to Interpret the Regression Table.html
|
0.2 KB
|
13. Decomposition of Variability.mp4
|
52.1 MB
|
13. Decomposition of Variability.vtt
|
3.8 KB
|
14. Decomposition of Variability.html
|
0.2 KB
|
15. What is the OLS.mp4
|
29.7 MB
|
15. What is the OLS.vtt
|
3.4 KB
|
16. What is the OLS.html
|
0.2 KB
|
17. R-Squared.mp4
|
43.0 MB
|
17. R-Squared.vtt
|
5.9 KB
|
18. R-Squared.html
|
0.2 KB
|
2. The Linear Regression Model.html
|
0.2 KB
|
3. Correlation vs Regression.mp4
|
15.5 MB
|
3. Correlation vs Regression.vtt
|
1.9 KB
|
4. Correlation vs Regression.html
|
0.2 KB
|
5. Geometrical Representation of the Linear Regression Model.mp4
|
5.4 MB
|
5. Geometrical Representation of the Linear Regression Model.vtt
|
1.5 KB
|
6. Geometrical Representation of the Linear Regression Model.html
|
0.2 KB
|
7. Python Packages Installation.mp4
|
42.6 MB
|
7. Python Packages Installation.vtt
|
5.0 KB
|
8. First Regression in Python.mp4
|
46.7 MB
|
8. First Regression in Python.vtt
|
7.1 KB
|
8.1 First regression in Python.html
|
0.1 KB
|
9. First Regression in Python Exercise.html
|
1.4 KB
|
9.1 First regression in Python - Exercise.html
|
0.1 KB
|
/33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/
|
1. Multiple Linear Regression.mp4
|
22.6 MB
|
1. Multiple Linear Regression.vtt
|
3.0 KB
|
10. A1 Linearity.html
|
0.2 KB
|
11. A2 No Endogeneity.mp4
|
37.4 MB
|
11. A2 No Endogeneity.vtt
|
4.7 KB
|
12. A2 No Endogeneity.html
|
0.2 KB
|
13. A3 Normality and Homoscedasticity.mp4
|
44.8 MB
|
13. A3 Normality and Homoscedasticity.vtt
|
6.0 KB
|
14. A4 No Autocorrelation.mp4
|
33.1 MB
|
14. A4 No Autocorrelation.vtt
|
4.4 KB
|
15. A4 No autocorrelation.html
|
0.2 KB
|
16. A5 No Multicollinearity.mp4
|
30.1 MB
|
16. A5 No Multicollinearity.vtt
|
4.1 KB
|
17. A5 No Multicollinearity.html
|
0.2 KB
|
18. Dealing with Categorical Data - Dummy Variables.mp4
|
58.4 MB
|
18. Dealing with Categorical Data - Dummy Variables.vtt
|
7.3 KB
|
18.1 Dealing with categorical data.html
|
0.1 KB
|
19. Dealing with Categorical Data - Dummy Variables.html
|
0.1 KB
|
19.1 Dealing with categorical data.html
|
0.1 KB
|
2. Multiple Linear Regression.html
|
0.2 KB
|
20. Making Predictions with the Linear Regression.mp4
|
25.9 MB
|
20. Making Predictions with the Linear Regression.vtt
|
4.0 KB
|
20.1 Making predictions.html
|
0.1 KB
|
3. Adjusted R-Squared.mp4
|
57.5 MB
|
3. Adjusted R-Squared.vtt
|
6.7 KB
|
3.1 Adjusted R-squared.html
|
0.1 KB
|
4. Adjusted R-Squared.html
|
0.2 KB
|
5. Multiple Linear Regression Exercise.html
|
0.1 KB
|
5.1 Multiple linear regression - exercise.html
|
0.1 KB
|
6. Test for Significance of the Model (F-Test).mp4
|
17.2 MB
|
6. Test for Significance of the Model (F-Test).vtt
|
2.3 KB
|
7. OLS Assumptions.mp4
|
22.9 MB
|
7. OLS Assumptions.vtt
|
2.7 KB
|
8. OLS Assumptions.html
|
0.2 KB
|
9. A1 Linearity.mp4
|
13.2 MB
|
9. A1 Linearity.vtt
|
2.1 KB
|
/34. Advanced Statistical Methods - Linear Regression with sklearn/
|
1. What is sklearn and How is it Different from Other Packages.mp4
|
28.6 MB
|
1. What is sklearn and How is it Different from Other Packages.vtt
|
3.1 KB
|
10. Feature Selection (F-regression).mp4
|
30.9 MB
|
10. Feature Selection (F-regression).vtt
|
6.0 KB
|
10.1 Feature selection.html
|
0.1 KB
|
11. A Note on Calculation of P-values with sklearn.html
|
0.4 KB
|
11.1 Calculation of P-values.html
|
0.1 KB
|
12. Creating a Summary Table with p-values.mp4
|
12.9 MB
|
12. Creating a Summary Table with p-values.vtt
|
2.7 KB
|
12.1 Summary table with p-values.html
|
0.1 KB
|
13. Multiple Linear Regression - Exercise.html
|
0.1 KB
|
13.1 Multiple linear regression - Exercise.html
|
0.1 KB
|
14. Feature Scaling (Standardization).mp4
|
41.0 MB
|
14. Feature Scaling (Standardization).vtt
|
6.9 KB
|
14.1 Feature scaling.html
|
0.1 KB
|
15. Feature Selection through Standardization of Weights.mp4
|
36.6 MB
|
15. Feature Selection through Standardization of Weights.vtt
|
6.6 KB
|
15.1 Feature scaling standardization.html
|
0.1 KB
|
16. Predicting with the Standardized Coefficients.mp4
|
27.2 MB
|
16. Predicting with the Standardized Coefficients.vtt
|
5.0 KB
|
16.1 Predicting with the Standardized Cofficients.html
|
0.1 KB
|
17. Feature Scaling (Standardization) - Exercise.html
|
0.1 KB
|
17.1 Feature scaling - exercise.html
|
0.1 KB
|
18. Underfitting and Overfitting.mp4
|
17.8 MB
|
18. Underfitting and Overfitting.vtt
|
3.1 KB
|
19. Train - Test Split Explained.mp4
|
51.6 MB
|
19. Train - Test Split Explained.vtt
|
8.6 KB
|
19.1 Train - Test split explained.html
|
0.1 KB
|
2. How are Going to Approach this Section.mp4
|
20.4 MB
|
2. How are Going to Approach this Section.vtt
|
2.6 KB
|
3. Simple Linear Regression with sklearn.mp4
|
36.5 MB
|
3. Simple Linear Regression with sklearn.vtt
|
6.6 KB
|
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4
|
33.6 MB
|
4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt
|
6.0 KB
|
5. A Note on Normalization.html
|
0.7 KB
|
6. Simple Linear Regression with sklearn - Exercise.html
|
0.1 KB
|
6.1 Simple linear regression with sklearn.html
|
0.1 KB
|
7. Multiple Linear Regression with sklearn.mp4
|
21.0 MB
|
7. Multiple Linear Regression with sklearn.vtt
|
3.8 KB
|
8. Calculating the Adjusted R-Squared in sklearn.mp4
|
32.4 MB
|
8. Calculating the Adjusted R-Squared in sklearn.vtt
|
5.7 KB
|
9. Calculating the Adjusted R-Squared in sklearn - Exercise.html
|
0.1 KB
|
9.1 Calculating the Adjusted R-Squared.html
|
0.1 KB
|
/35. Advanced Statistical Methods - Practical Example Linear Regression/
|
1. Practical Example Linear Regression (Part 1).mp4
|
101.8 MB
|
1. Practical Example Linear Regression (Part 1).vtt
|
13.3 KB
|
1.1 sklearn - Linear Regression - Practical Example (Part 1).html
|
0.1 KB
|
2. Practical Example Linear Regression (Part 2).mp4
|
48.2 MB
|
2. Practical Example Linear Regression (Part 2).vtt
|
7.2 KB
|
2.1 sklearn - Linear Regression - Practical Example (Part 2).html
|
0.1 KB
|
3. A Note on Multicollinearity.html
|
0.8 KB
|
4. Practical Example Linear Regression (Part 3).mp4
|
24.8 MB
|
4. Practical Example Linear Regression (Part 3).vtt
|
3.7 KB
|
4.1 sklearn - Linear Regression - Practical Example (Part 3).html
|
0.1 KB
|
5. Dummies and Variance Inflation Factor - Exercise.html
|
0.1 KB
|
5.1 Dummies and VIF - Exercise and Solution.html
|
0.1 KB
|
6. Practical Example Linear Regression (Part 4).mp4
|
58.8 MB
|
6. Practical Example Linear Regression (Part 4).vtt
|
10.3 KB
|
6.1 sklearn - Linear Regression - Practical Example (Part 4).html
|
0.1 KB
|
7. Dummy Variables - Exercise.html
|
0.7 KB
|
8. Practical Example Linear Regression (Part 5).mp4
|
60.7 MB
|
8. Practical Example Linear Regression (Part 5).vtt
|
9.5 KB
|
8.1 sklearn - Linear Regression - Practical Example (Part 5).html
|
0.1 KB
|
9. Linear Regression - Exercise.html
|
0.5 KB
|
/36. Advanced Statistical Methods - Logistic Regression/
|
1. Introduction to Logistic Regression.mp4
|
28.4 MB
|
1. Introduction to Logistic Regression.vtt
|
1.5 KB
|
10. Binary Predictors in a Logistic Regression.mp4
|
40.3 MB
|
10. Binary Predictors in a Logistic Regression.vtt
|
4.9 KB
|
10.1 Binary predictors.html
|
0.1 KB
|
11. Binary Predictors in a Logistic Regression - Exercise.html
|
0.1 KB
|
11.1 Binary predictors - exercise.html
|
0.1 KB
|
11.2 Bank_data.csv.csv
|
20.0 KB
|
12. Calculating the Accuracy of the Model.mp4
|
34.5 MB
|
12. Calculating the Accuracy of the Model.vtt
|
3.7 KB
|
12.1 Accuracy.html
|
0.1 KB
|
13. Calculating the Accuracy of the Model.html
|
0.1 KB
|
13.1 Accuracy of the model - exercise.html
|
0.1 KB
|
13.2 Bank_data.csv.csv
|
20.0 KB
|
14. Underfitting and Overfitting.mp4
|
23.4 MB
|
14. Underfitting and Overfitting.vtt
|
4.5 KB
|
15. Testing the Model.mp4
|
33.8 MB
|
15. Testing the Model.vtt
|
5.8 KB
|
15.1 Testing the model.html
|
0.1 KB
|
16. Testing the Model - Exercise.html
|
0.1 KB
|
16.1 Bank_data_testing.csv.csv
|
8.5 KB
|
16.2 Bank_data.csv.csv
|
20.0 KB
|
16.3 Testing the model - exercise.html
|
0.1 KB
|
2. A Simple Example in Python.mp4
|
36.4 MB
|
2. A Simple Example in Python.vtt
|
5.2 KB
|
2.1 A simple example in Python.html
|
0.1 KB
|
3. Logistic vs Logit Function.mp4
|
90.7 MB
|
3. Logistic vs Logit Function.vtt
|
4.4 KB
|
4. Building a Logistic Regression.mp4
|
17.9 MB
|
4. Building a Logistic Regression.vtt
|
3.0 KB
|
4.1 Building a logistic regression.html
|
0.1 KB
|
5. Building a Logistic Regression - Exercise.html
|
0.1 KB
|
5.1 Building a logistic regression.html
|
0.1 KB
|
5.2 Example_bank_data.csv.csv
|
6.4 KB
|
6. An Invaluable Coding Tip.mp4
|
24.2 MB
|
6. An Invaluable Coding Tip.vtt
|
2.8 KB
|
7. Understanding Logistic Regression Tables.mp4
|
32.0 MB
|
7. Understanding Logistic Regression Tables.vtt
|
5.0 KB
|
8. Understanding Logistic Regression Tables - Exercise.html
|
0.1 KB
|
8.1 Bank_data.csv.csv
|
20.0 KB
|
8.2 Understanding logistic regression.html
|
0.1 KB
|
9. What do the Odds Actually Mean.mp4
|
33.9 MB
|
9. What do the Odds Actually Mean.vtt
|
4.3 KB
|
/37. Advanced Statistical Methods - Cluster Analysis/
|
1. Introduction to Cluster Analysis.mp4
|
56.0 MB
|
1. Introduction to Cluster Analysis.vtt
|
4.3 KB
|
2. Some Examples of Clusters.mp4
|
75.0 MB
|
2. Some Examples of Clusters.vtt
|
5.6 KB
|
3. Difference between Classification and Clustering.mp4
|
37.9 MB
|
3. Difference between Classification and Clustering.vtt
|
3.0 KB
|
4. Math Prerequisites.mp4
|
15.3 MB
|
4. Math Prerequisites.vtt
|
3.6 KB
|
/38. Advanced Statistical Methods - K-Means Clustering/
|
1. K-Means Clustering.mp4
|
28.6 MB
|
1. K-Means Clustering.vtt
|
5.9 KB
|
10. Relationship between Clustering and Regression.mp4
|
10.4 MB
|
10. Relationship between Clustering and Regression.vtt
|
2.0 KB
|
11. Market Segmentation with Cluster Analysis (Part 1).mp4
|
45.1 MB
|
11. Market Segmentation with Cluster Analysis (Part 1).vtt
|
6.7 KB
|
11.1 Market segmentation.html
|
0.1 KB
|
12. Market Segmentation with Cluster Analysis (Part 2).mp4
|
58.8 MB
|
12. Market Segmentation with Cluster Analysis (Part 2).vtt
|
8.1 KB
|
12.1 Market segmentation.html
|
0.1 KB
|
13. How is Clustering Useful.mp4
|
78.1 MB
|
13. How is Clustering Useful.vtt
|
5.8 KB
|
14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
|
0.1 KB
|
14.1 iris_dataset.csv.csv
|
2.5 KB
|
14.2 Exercise - part 1.html
|
0.1 KB
|
15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
|
0.1 KB
|
15.1 iris_dataset.csv.csv
|
2.5 KB
|
15.2 Exercise - part 2.html
|
0.1 KB
|
15.3 iris_with_answers.csv.csv
|
3.7 KB
|
2. A Simple Example of Clustering.mp4
|
54.3 MB
|
2. A Simple Example of Clustering.vtt
|
8.5 KB
|
2.1 Example of clustering.html
|
0.1 KB
|
3. A Simple Example of Clustering - Exercise.html
|
0.1 KB
|
3.1 Countries_exercise.csv.csv
|
8.5 KB
|
3.2 A simple example of clustering.html
|
0.1 KB
|
4. Clustering Categorical Data.mp4
|
22.3 MB
|
4. Clustering Categorical Data.vtt
|
2.9 KB
|
4.1 Clustering categorical data.html
|
0.1 KB
|
5. Clustering Categorical Data - Exercise.html
|
0.1 KB
|
5.1 Categorical.csv.csv
|
10.6 KB
|
5.2 Clustering categorical data.html
|
0.1 KB
|
6. How to Choose the Number of Clusters.mp4
|
46.3 MB
|
6. How to Choose the Number of Clusters.vtt
|
6.6 KB
|
6.1 How to choose the number of clusters.html
|
0.1 KB
|
7. How to Choose the Number of Clusters - Exercise.html
|
0.1 KB
|
7.1 Countries_exercise.csv.csv
|
8.5 KB
|
7.2 How to choose the number of clusters.html
|
0.1 KB
|
8. Pros and Cons of K-Means Clustering.mp4
|
39.5 MB
|
8. Pros and Cons of K-Means Clustering.vtt
|
4.1 KB
|
9. To Standardize or not to Standardize.mp4
|
31.6 MB
|
9. To Standardize or not to Standardize.vtt
|
5.3 KB
|
/39. Advanced Statistical Methods - Other Types of Clustering/
|
1. Types of Clustering.mp4
|
46.7 MB
|
1. Types of Clustering.vtt
|
4.2 KB
|
2. Dendrogram.mp4
|
30.5 MB
|
2. Dendrogram.vtt
|
6.6 KB
|
3. Heatmaps.mp4
|
31.1 MB
|
3. Heatmaps.vtt
|
5.6 KB
|
3.1 Heatmaps.html
|
0.1 KB
|
/4. The Field of Data Science - The Benefits of Each Discipline/
|
1. The Reason behind these Disciplines.mp4
|
85.1 MB
|
1. The Reason behind these Disciplines.vtt
|
5.8 KB
|
2. The Reason behind these Disciplines.html
|
0.2 KB
|
/40. Part 6 Mathematics/
|
1. What is a matrix.mp4
|
35.2 MB
|
1. What is a matrix.vtt
|
3.9 KB
|
10. Addition and Subtraction of Matrices.mp4
|
34.2 MB
|
10. Addition and Subtraction of Matrices.vtt
|
3.6 KB
|
10.1 Addition and Subtraction of Matrices Python Notebook.html
|
0.2 KB
|
11. Addition and Subtraction of Matrices.html
|
0.2 KB
|
12. Errors when Adding Matrices.mp4
|
11.7 MB
|
12. Errors when Adding Matrices.vtt
|
2.3 KB
|
12.1 Errors when Adding Matrices Python Notebook.html
|
0.2 KB
|
13. Transpose of a Matrix.mp4
|
39.9 MB
|
13. Transpose of a Matrix.vtt
|
4.8 KB
|
13.1 Transpose of a Matrix Python Notebook.html
|
0.2 KB
|
14. Dot Product.mp4
|
25.2 MB
|
14. Dot Product.vtt
|
3.8 KB
|
14.1 Dot Product Python Notebook.html
|
0.2 KB
|
15. Dot Product of Matrices.mp4
|
51.8 MB
|
15. Dot Product of Matrices.vtt
|
8.4 KB
|
15.1 Dot Product of Matrices Python Notebook.html
|
0.2 KB
|
16. Why is Linear Algebra Useful.mp4
|
151.4 MB
|
16. Why is Linear Algebra Useful.vtt
|
10.6 KB
|
2. What is a Matrix.html
|
0.2 KB
|
3. Scalars and Vectors.mp4
|
35.5 MB
|
3. Scalars and Vectors.vtt
|
3.4 KB
|
4. Scalars and Vectors.html
|
0.2 KB
|
5. Linear Algebra and Geometry.mp4
|
52.2 MB
|
5. Linear Algebra and Geometry.vtt
|
3.6 KB
|
6. Linear Algebra and Geometry.html
|
0.2 KB
|
7. Arrays in Python - A Convenient Way To Represent Matrices.mp4
|
28.0 MB
|
7. Arrays in Python - A Convenient Way To Represent Matrices.vtt
|
5.4 KB
|
7.1 Arrays in Python Notebook.html
|
0.2 KB
|
8. What is a Tensor.mp4
|
23.6 MB
|
8. What is a Tensor.vtt
|
3.2 KB
|
8.1 Tensors Notebook.html
|
0.1 KB
|
9. What is a Tensor.html
|
0.2 KB
|
/41. Part 7 Deep Learning/
|
1. What to Expect from this Part.mp4
|
32.6 MB
|
1. What to Expect from this Part.vtt
|
4.1 KB
|
2. What is Machine Learning.html
|
0.2 KB
|
/42. Deep Learning - Introduction to Neural Networks/
|
1. Introduction to Neural Networks.mp4
|
45.0 MB
|
1. Introduction to Neural Networks.vtt
|
5.3 KB
|
1.1 Course Notes - Section 2.pdf.pdf
|
592.0 KB
|
10. The Linear Model with Multiple Inputs.html
|
0.2 KB
|
11. The Linear model with Multiple Inputs and Multiple Outputs.mp4
|
40.2 MB
|
11. The Linear model with Multiple Inputs and Multiple Outputs.vtt
|
4.9 KB
|
12. The Linear model with Multiple Inputs and Multiple Outputs.html
|
0.2 KB
|
13. Graphical Representation of Simple Neural Networks.mp4
|
23.8 MB
|
13. Graphical Representation of Simple Neural Networks.vtt
|
2.4 KB
|
14. Graphical Representation of Simple Neural Networks.html
|
0.2 KB
|
15. What is the Objective Function.mp4
|
18.8 MB
|
15. What is the Objective Function.vtt
|
1.9 KB
|
16. What is the Objective Function.html
|
0.2 KB
|
17. Common Objective Functions L2-norm Loss.mp4
|
24.4 MB
|
17. Common Objective Functions L2-norm Loss.vtt
|
2.5 KB
|
18. Common Objective Functions L2-norm Loss.html
|
0.2 KB
|
19. Common Objective Functions Cross-Entropy Loss.mp4
|
39.1 MB
|
19. Common Objective Functions Cross-Entropy Loss.vtt
|
4.7 KB
|
2. Introduction to Neural Networks.html
|
0.2 KB
|
20. Common Objective Functions Cross-Entropy Loss.html
|
0.2 KB
|
21. Optimization Algorithm 1-Parameter Gradient Descent.mp4
|
58.3 MB
|
21. Optimization Algorithm 1-Parameter Gradient Descent.vtt
|
7.6 KB
|
21.1 GD-function-example.xlsx.xlsx
|
43.4 KB
|
22. Optimization Algorithm 1-Parameter Gradient Descent.html
|
0.2 KB
|
23. Optimization Algorithm n-Parameter Gradient Descent.mp4
|
41.3 MB
|
23. Optimization Algorithm n-Parameter Gradient Descent.vtt
|
6.8 KB
|
24. Optimization Algorithm n-Parameter Gradient Descent.html
|
0.2 KB
|
3. Training the Model.mp4
|
30.1 MB
|
3. Training the Model.vtt
|
3.9 KB
|
3.1 Course Notes - Section 2.pdf.pdf
|
592.0 KB
|
4. Training the Model.html
|
0.2 KB
|
5. Types of Machine Learning.mp4
|
47.3 MB
|
5. Types of Machine Learning.vtt
|
4.7 KB
|
6. Types of Machine Learning.html
|
0.2 KB
|
7. The Linear Model (Linear Algebraic Version).mp4
|
29.8 MB
|
7. The Linear Model (Linear Algebraic Version).vtt
|
3.5 KB
|
8. The Linear Model.html
|
0.2 KB
|
9. The Linear Model with Multiple Inputs.mp4
|
26.3 MB
|
9. The Linear Model with Multiple Inputs.vtt
|
2.8 KB
|
/43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/
|
1. Basic NN Example (Part 1).mp4
|
21.6 MB
|
1. Basic NN Example (Part 1).vtt
|
4.0 KB
|
1.1 Shortcuts-for-Jupyter.pdf.pdf
|
634.0 KB
|
1.2 Bais NN Example Part 1.html
|
0.1 KB
|
2. Basic NN Example (Part 2).mp4
|
36.6 MB
|
2. Basic NN Example (Part 2).vtt
|
6.0 KB
|
2.1 Basic NN Example (Part 2).html
|
0.1 KB
|
3. Basic NN Example (Part 3).mp4
|
25.6 MB
|
3. Basic NN Example (Part 3).vtt
|
4.0 KB
|
3.1 Basic NN Example (Part 3).html
|
0.1 KB
|
4. Basic NN Example (Part 4).mp4
|
64.1 MB
|
4. Basic NN Example (Part 4).vtt
|
9.7 KB
|
4.1 Basic NN Example (Part 4).html
|
0.1 KB
|
5. Basic NN Example Exercises.html
|
1.4 KB
|
5.1 Basic NN Example Exercise 1 Solution.html
|
0.1 KB
|
5.10 Basic NN Example Exercise 4 Solution.html
|
0.1 KB
|
5.2 Basic NN Example Exercise 3c Solution.html
|
0.2 KB
|
5.3 Basic NN Example (All Exercises).html
|
0.1 KB
|
5.4 Basic NN Example Exercise 3b Solution.html
|
0.2 KB
|
5.5 Basic NN Example Exercise 3a Solution.html
|
0.2 KB
|
5.6 Basic NN Example Exercise 6 Solution.html
|
0.1 KB
|
5.7 Basic NN Example Exercise 2 Solution.html
|
0.1 KB
|
5.8 Basic NN Example Exercise 3d Solution.html
|
0.2 KB
|
5.9 Basic NN Example Exercise 5 Solution.html
|
0.1 KB
|
/44. Deep Learning - TensorFlow Introduction/
|
1. How to Install TensorFlow.mp4
|
15.3 MB
|
1. How to Install TensorFlow.vtt
|
2.9 KB
|
1.1 Shortcuts-for-Jupyter.pdf.pdf
|
634.0 KB
|
2. A Note on Installing Packages in Anaconda.html
|
2.4 KB
|
3. TensorFlow Outline and Logic.mp4
|
50.0 MB
|
3. TensorFlow Outline and Logic.vtt
|
4.7 KB
|
4. Actual Introduction to TensorFlow.mp4
|
18.3 MB
|
4. Actual Introduction to TensorFlow.vtt
|
2.0 KB
|
4.1 Shortcuts-for-Jupyter.pdf.pdf
|
634.0 KB
|
5. Types of File Formats, supporting Tensors.mp4
|
21.3 MB
|
5. Types of File Formats, supporting Tensors.vtt
|
3.1 KB
|
5.1 Basic NN Example with TensorFlow (Part 1).html
|
0.2 KB
|
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4
|
40.4 MB
|
6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt
|
6.6 KB
|
6.1 Basic NN Example with TensorFlow (Part 2).html
|
0.2 KB
|
7. Basic NN Example with TF Loss Function and Gradient Descent.mp4
|
34.1 MB
|
7. Basic NN Example with TF Loss Function and Gradient Descent.vtt
|
4.3 KB
|
7.1 Basic NN Example with TensorFlow (Part 3).html
|
0.2 KB
|
8. Basic NN Example with TF Model Output.mp4
|
39.2 MB
|
8. Basic NN Example with TF Model Output.vtt
|
7.0 KB
|
8.1 Basic NN Example with TensorFlow (Complete).html
|
0.2 KB
|
9. Basic NN Example with TF Exercises.html
|
1.6 KB
|
9.1 Basic NN Example with TensorFlow Exercise 4 Solution.html
|
0.2 KB
|
9.2 Basic NN Example with TensorFlow Exercise 3 Solution.html
|
0.2 KB
|
9.3 Basic NN Example with TensorFlow Exercise 2.2 Solution.html
|
0.2 KB
|
9.4 Basic NN Example with TensorFlow Exercise 2.4 Solution.html
|
0.2 KB
|
9.5 Basic NN Example with TensorFlow Exercise 1 Solution.html
|
0.2 KB
|
9.6 Basic NN Example with TensorFlow Exercise 2.1 Solution.html
|
0.2 KB
|
9.7 Basic NN Example with TensorFlow Exercise 2.3 Solution.html
|
0.2 KB
|
9.8 Basic NN Example with TensorFlow (All Exercises).html
|
0.2 KB
|
/45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/
|
1. What is a Layer.mp4
|
13.1 MB
|
1. What is a Layer.vtt
|
2.2 KB
|
1.1 Course Notes - Section 6.pdf.pdf
|
958.9 KB
|
2. What is a Deep Net.mp4
|
31.0 MB
|
2. What is a Deep Net.vtt
|
2.9 KB
|
2.1 Course Notes - Section 6.pdf.pdf
|
958.9 KB
|
3. Digging into a Deep Net.mp4
|
62.3 MB
|
3. Digging into a Deep Net.vtt
|
6.0 KB
|
4. Non-Linearities and their Purpose.mp4
|
29.0 MB
|
4. Non-Linearities and their Purpose.vtt
|
3.5 KB
|
5. Activation Functions.mp4
|
26.3 MB
|
5. Activation Functions.vtt
|
4.7 KB
|
6. Activation Functions Softmax Activation.mp4
|
27.2 MB
|
6. Activation Functions Softmax Activation.vtt
|
4.0 KB
|
7. Backpropagation.mp4
|
36.7 MB
|
7. Backpropagation.vtt
|
4.0 KB
|
8. Backpropagation picture.mp4
|
20.4 MB
|
8. Backpropagation picture.vtt
|
3.5 KB
|
9. Backpropagation - A Peek into the Mathematics of Optimization.html
|
0.5 KB
|
9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf
|
186.7 KB
|
/46. Deep Learning - Overfitting/
|
1. What is Overfitting.mp4
|
32.6 MB
|
1. What is Overfitting.vtt
|
5.1 KB
|
2. Underfitting and Overfitting for Classification.mp4
|
26.3 MB
|
2. Underfitting and Overfitting for Classification.vtt
|
2.4 KB
|
3. What is Validation.mp4
|
34.3 MB
|
3. What is Validation.vtt
|
4.4 KB
|
4. Training, Validation, and Test Datasets.mp4
|
26.4 MB
|
4. Training, Validation, and Test Datasets.vtt
|
3.2 KB
|
5. N-Fold Cross Validation.mp4
|
21.7 MB
|
5. N-Fold Cross Validation.vtt
|
3.8 KB
|
6. Early Stopping or When to Stop Training.mp4
|
25.4 MB
|
6. Early Stopping or When to Stop Training.vtt
|
6.2 KB
|
/47. Deep Learning - Initialization/
|
1. What is Initialization.mp4
|
22.8 MB
|
1. What is Initialization.vtt
|
3.2 KB
|
2. Types of Simple Initializations.mp4
|
15.0 MB
|
2. Types of Simple Initializations.vtt
|
3.3 KB
|
3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4
|
18.0 MB
|
3. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt
|
3.3 KB
|
/48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/
|
1. Stochastic Gradient Descent.mp4
|
30.1 MB
|
1. Stochastic Gradient Descent.vtt
|
4.3 KB
|
2. Problems with Gradient Descent.mp4
|
11.6 MB
|
2. Problems with Gradient Descent.vtt
|
2.6 KB
|
3. Momentum.mp4
|
17.2 MB
|
3. Momentum.vtt
|
3.1 KB
|
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4
|
30.5 MB
|
4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt
|
5.3 KB
|
5. Learning Rate Schedules Visualized.mp4
|
9.5 MB
|
5. Learning Rate Schedules Visualized.vtt
|
1.9 KB
|
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4
|
27.6 MB
|
6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt
|
4.7 KB
|
7. Adam (Adaptive Moment Estimation).mp4
|
23.4 MB
|
7. Adam (Adaptive Moment Estimation).vtt
|
3.0 KB
|
/49. Deep Learning - Preprocessing/
|
1. Preprocessing Introduction.mp4
|
29.1 MB
|
1. Preprocessing Introduction.vtt
|
3.5 KB
|
2. Types of Basic Preprocessing.mp4
|
12.4 MB
|
2. Types of Basic Preprocessing.vtt
|
1.5 KB
|
3. Standardization.mp4
|
53.5 MB
|
3. Standardization.vtt
|
5.4 KB
|
4. Preprocessing Categorical Data.mp4
|
19.5 MB
|
4. Preprocessing Categorical Data.vtt
|
2.5 KB
|
5. Binary and One-Hot Encoding.mp4
|
30.4 MB
|
5. Binary and One-Hot Encoding.vtt
|
4.3 KB
|
/5. The Field of Data Science - Popular Data Science Techniques/
|
1. Techniques for Working with Traditional Data.mp4
|
145.0 MB
|
1. Techniques for Working with Traditional Data.vtt
|
9.5 KB
|
10. Techniques for Working with Traditional Methods.mp4
|
129.5 MB
|
10. Techniques for Working with Traditional Methods.vtt
|
9.9 KB
|
11. Techniques for Working with Traditional Methods.html
|
0.2 KB
|
12. Real Life Examples of Traditional Methods.mp4
|
44.9 MB
|
12. Real Life Examples of Traditional Methods.vtt
|
3.2 KB
|
13. Machine Learning (ML) Techniques.mp4
|
104.2 MB
|
13. Machine Learning (ML) Techniques.vtt
|
7.9 KB
|
14. Machine Learning (ML) Techniques.html
|
0.2 KB
|
15. Types of Machine Learning.mp4
|
131.2 MB
|
15. Types of Machine Learning.vtt
|
9.5 KB
|
16. Types of Machine Learning.html
|
0.2 KB
|
17. Real Life Examples of Machine Learning (ML).mp4
|
38.6 MB
|
17. Real Life Examples of Machine Learning (ML).vtt
|
2.6 KB
|
18. Real Life Examples of Machine Learning (ML).html
|
0.2 KB
|
2. Techniques for Working with Traditional Data.html
|
0.2 KB
|
3. Real Life Examples of Traditional Data.mp4
|
31.4 MB
|
3. Real Life Examples of Traditional Data.vtt
|
2.0 KB
|
4. Techniques for Working with Big Data.mp4
|
79.2 MB
|
4. Techniques for Working with Big Data.vtt
|
5.1 KB
|
5. Techniques for Working with Big Data.html
|
0.2 KB
|
6. Real Life Examples of Big Data.mp4
|
23.1 MB
|
6. Real Life Examples of Big Data.vtt
|
1.7 KB
|
7. Business Intelligence (BI) Techniques.mp4
|
94.3 MB
|
7. Business Intelligence (BI) Techniques.vtt
|
7.7 KB
|
8. Business Intelligence (BI) Techniques.html
|
0.2 KB
|
9. Real Life Examples of Business Intelligence (BI).mp4
|
31.0 MB
|
9. Real Life Examples of Business Intelligence (BI).vtt
|
1.9 KB
|
/50. Deep Learning - Classifying on the MNIST Dataset/
|
1. MNIST What is the MNIST Dataset.mp4
|
18.7 MB
|
1. MNIST What is the MNIST Dataset.vtt
|
3.1 KB
|
10. MNIST Exercises.html
|
2.2 KB
|
10.1 TensorFlow MNIST All Exercises.html
|
0.1 KB
|
11. MNIST Solutions.html
|
2.2 KB
|
11.1 TensorFlow MNIST 'Time' Solution.html
|
0.2 KB
|
11.10 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html
|
0.2 KB
|
11.11 TensorFlow MNIST 'Around 98% Accuracy' Solution.html
|
0.2 KB
|
11.2 TensorFlow MNIST '1. Width' Solution.html
|
0.2 KB
|
11.3 TensorFlow MNIST '2. Depth' Solution.html
|
0.2 KB
|
11.4 TensorFlow MNIST '3. Width and Depth' Solution.html
|
0.2 KB
|
11.5 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html
|
0.2 KB
|
11.6 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html
|
0.2 KB
|
11.7 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html
|
0.2 KB
|
11.8 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html
|
0.2 KB
|
11.9 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html
|
0.2 KB
|
2. MNIST How to Tackle the MNIST.mp4
|
23.7 MB
|
2. MNIST How to Tackle the MNIST.vtt
|
3.2 KB
|
3. MNIST Relevant Packages.mp4
|
19.8 MB
|
3. MNIST Relevant Packages.vtt
|
1.9 KB
|
3.1 TensorFlow MNIST Part 1 with Comments.html
|
0.2 KB
|
4. MNIST Model Outline.mp4
|
59.1 MB
|
4. MNIST Model Outline.vtt
|
8.1 KB
|
4.1 TensorFlow MNIST Part 2 with Comments.html
|
0.2 KB
|
5. MNIST Loss and Optimization Algorithm.mp4
|
27.1 MB
|
5. MNIST Loss and Optimization Algorithm.vtt
|
3.2 KB
|
5.1 TensorFlow MNIST Part 3 with Comments.html
|
0.2 KB
|
6. Calculating the Accuracy of the Model.mp4
|
46.0 MB
|
6. Calculating the Accuracy of the Model.vtt
|
4.6 KB
|
6.1 TensorFlow MNIST Part 4 with Comments.html
|
0.2 KB
|
7. MNIST Batching and Early Stopping.mp4
|
13.5 MB
|
7. MNIST Batching and Early Stopping.vtt
|
2.6 KB
|
7.1 TensorFlow MNIST Part 5 with Comments.html
|
0.2 KB
|
8. MNIST Learning.mp4
|
49.0 MB
|
8. MNIST Learning.vtt
|
9.1 KB
|
8.1 TensorFlow MNIST Part 6 with Comments.html
|
0.2 KB
|
9. MNIST Results and Testing.mp4
|
65.8 MB
|
9. MNIST Results and Testing.vtt
|
7.3 KB
|
9.1 TensorFlow MNIST Complete Code with Comments.html
|
0.2 KB
|
/51. Deep Learning - Business Case Example/
|
1. Business Case Getting acquainted with the dataset.mp4
|
91.9 MB
|
1. Business Case Getting acquainted with the dataset.vtt
|
9.6 KB
|
1.1 Audiobooks_data.csv.csv
|
727.8 KB
|
10. Business Case Testing the Model.mp4
|
11.8 MB
|
10. Business Case Testing the Model.vtt
|
2.4 KB
|
11. Business Case A Comment on the Homework.mp4
|
38.1 MB
|
11. Business Case A Comment on the Homework.vtt
|
38.2 MB
|
11.1 TensorFlow Business Case Homework.html
|
0.1 KB
|
12. Business Case Final Exercise.html
|
0.4 KB
|
12.1 TensorFlow Business Case Homework.html
|
0.1 KB
|
2. Business Case Outlining the Solution.mp4
|
12.8 MB
|
2. Business Case Outlining the Solution.vtt
|
2.2 KB
|
3. The Importance of Working with a Balanced Dataset.mp4
|
41.3 MB
|
3. The Importance of Working with a Balanced Dataset.vtt
|
4.0 KB
|
4. Business Case Preprocessing.mp4
|
108.4 MB
|
4. Business Case Preprocessing.vtt
|
12.0 KB
|
4.1 Audiobooks Preprocessing.html
|
0.1 KB
|
5. Business Case Preprocessing Exercise.html
|
0.4 KB
|
5.1 Preprocessing Exercise.html
|
0.1 KB
|
6. Creating a Data Provider.mp4
|
80.1 MB
|
6. Creating a Data Provider.vtt
|
7.0 KB
|
6.1 Creating a Data Provider (Class).html
|
0.1 KB
|
7. Business Case Model Outline.mp4
|
55.7 MB
|
7. Business Case Model Outline.vtt
|
6.2 KB
|
7.1 TensorFlow Business Case Model Outline.html
|
0.1 KB
|
8. Business Case Optimization.mp4
|
43.5 MB
|
8. Business Case Optimization.vtt
|
5.9 KB
|
8.1 TensorFlow Business Case Optimization.html
|
0.1 KB
|
9. Business Case Interpretation.mp4
|
27.0 MB
|
9. Business Case Interpretation.vtt
|
2.7 KB
|
9.1 TensorFlow Business Case Interpretation.html
|
0.1 KB
|
/52. Deep Learning - Conclusion/
|
1. Summary on What You've Learned.mp4
|
41.7 MB
|
1. Summary on What You've Learned.vtt
|
4.7 KB
|
2. What's Further out there in terms of Machine Learning.mp4
|
21.1 MB
|
2. What's Further out there in terms of Machine Learning.vtt
|
2.3 KB
|
3. An overview of CNNs.mp4
|
61.6 MB
|
3. An overview of CNNs.vtt
|
5.8 KB
|
4. DeepMind and Deep Learning.html
|
1.1 KB
|
5. An Overview of RNNs.mp4
|
26.5 MB
|
5. An Overview of RNNs.vtt
|
3.4 KB
|
6. An Overview of non-NN Approaches.mp4
|
47.0 MB
|
6. An Overview of non-NN Approaches.vtt
|
4.7 KB
|
7. Download All Resources.html
|
0.5 KB
|
/53. Software Integration/
|
1. What are Data, Servers, Clients, Requests, and Responses.mp4
|
72.4 MB
|
1. What are Data, Servers, Clients, Requests, and Responses.vtt
|
5.3 KB
|
10. Software Integration - Explained.html
|
0.2 KB
|
2. What are Data, Servers, Clients, Requests, and Responses.html
|
0.2 KB
|
3. What are Data Connectivity, APIs, and Endpoints.mp4
|
109.1 MB
|
3. What are Data Connectivity, APIs, and Endpoints.vtt
|
7.7 KB
|
4. What are Data Connectivity, APIs, and Endpoints.html
|
0.2 KB
|
5. Taking a Closer Look at APIs.mp4
|
121.2 MB
|
5. Taking a Closer Look at APIs.vtt
|
9.4 KB
|
6. Taking a Closer Look at APIs.html
|
0.2 KB
|
7. Communication between Software Products through Text Files.mp4
|
63.3 MB
|
7. Communication between Software Products through Text Files.vtt
|
4.9 KB
|
8. Communication between Software Products through Text Files.html
|
0.2 KB
|
9. Software Integration - Explained.mp4
|
76.2 MB
|
9. Software Integration - Explained.vtt
|
6.1 KB
|
/54. Case Study - What's Next in the Course/
|
1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4
|
54.8 MB
|
1. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt
|
4.9 KB
|
2. The Business Task.mp4
|
41.1 MB
|
2. The Business Task.vtt
|
3.4 KB
|
3. Introducing the Data Set.mp4
|
42.9 MB
|
3. Introducing the Data Set.vtt
|
3.7 KB
|
4. Introducing the Data Set.html
|
0.2 KB
|
/55. Case Study - Preprocessing the 'Absenteeism_data'/
|
1. What to Expect from the Following Sections.html
|
2.5 KB
|
1.1 data_preprocessing_homework.pdf.pdf
|
137.7 KB
|
1.2 df_preprocessed.csv.csv
|
29.8 KB
|
1.3 Absenteeism_data.csv.csv
|
32.8 KB
|
10. Analyzing the Reasons for Absence.mp4
|
42.5 MB
|
10. Analyzing the Reasons for Absence.vtt
|
5.2 KB
|
11. Obtaining Dummies from a Single Feature.mp4
|
85.1 MB
|
11. Obtaining Dummies from a Single Feature.vtt
|
9.2 KB
|
12. EXERCISE - Obtaining Dummies from a Single Feature.html
|
0.1 KB
|
13. SOLUTION - Obtaining Dummies from a Single Feature.html
|
0.1 KB
|
14. Dropping a Dummy Variable from the Data Set.html
|
2.4 KB
|
15. More on Dummy Variables A Statistical Perspective.mp4
|
14.4 MB
|
15. More on Dummy Variables A Statistical Perspective.vtt
|
1.5 KB
|
16. Classifying the Various Reasons for Absence.mp4
|
78.2 MB
|
16. Classifying the Various Reasons for Absence.vtt
|
9.0 KB
|
17. Using .concat() in Python.mp4
|
40.6 MB
|
17. Using .concat() in Python.vtt
|
4.5 KB
|
18. EXERCISE - Using .concat() in Python.html
|
0.2 KB
|
19. SOLUTION - Using .concat() in Python.html
|
0.1 KB
|
2. Importing the Absenteeism Data in Python.mp4
|
24.3 MB
|
2. Importing the Absenteeism Data in Python.vtt
|
3.6 KB
|
20. Reordering Columns in a Pandas DataFrame in Python.mp4
|
14.7 MB
|
20. Reordering Columns in a Pandas DataFrame in Python.vtt
|
1.6 KB
|
21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html
|
0.2 KB
|
22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html
|
0.5 KB
|
23. Creating Checkpoints while Coding in Jupyter.mp4
|
26.9 MB
|
23. Creating Checkpoints while Coding in Jupyter.vtt
|
3.3 KB
|
23.1 Creating Checkpoints.html
|
0.2 KB
|
24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html
|
0.1 KB
|
25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html
|
0.1 KB
|
26. Analyzing the Dates from the Initial Data Set.mp4
|
60.1 MB
|
26. Analyzing the Dates from the Initial Data Set.vtt
|
7.6 KB
|
27. Extracting the Month Value from the Date Column.mp4
|
50.1 MB
|
27. Extracting the Month Value from the Date Column.vtt
|
7.1 KB
|
28. Extracting the Day of the Week from the Date Column.mp4
|
29.3 MB
|
28. Extracting the Day of the Week from the Date Column.vtt
|
4.0 KB
|
29. EXERCISE - Removing the Date Column.html
|
1.2 KB
|
29.1 Preprocessing.html
|
0.2 KB
|
29.2 Removing the “Date” Column.html
|
0.2 KB
|
3. Checking the Content of the Data Set.mp4
|
64.9 MB
|
3. Checking the Content of the Data Set.vtt
|
6.3 KB
|
30. Analyzing Several Straightforward Columns for this Exercise.mp4
|
31.0 MB
|
30. Analyzing Several Straightforward Columns for this Exercise.vtt
|
3.9 KB
|
31. Working on Education, Children, and Pets.mp4
|
41.5 MB
|
31. Working on Education, Children, and Pets.vtt
|
5.1 KB
|
32. Final Remarks of this Section.mp4
|
22.7 MB
|
32. Final Remarks of this Section.vtt
|
22.7 MB
|
32.1 Exercises and solutions.html
|
0.2 KB
|
32.2 Preprocessing.html
|
0.2 KB
|
4. Introduction to Terms with Multiple Meanings.mp4
|
29.2 MB
|
4. Introduction to Terms with Multiple Meanings.vtt
|
3.7 KB
|
5. What's Regression Analysis - a Quick Refresher.html
|
2.9 KB
|
6. Using a Statistical Approach towards the Solution to the Exercise.mp4
|
21.2 MB
|
6. Using a Statistical Approach towards the Solution to the Exercise.vtt
|
2.5 KB
|
7. Dropping a Column from a DataFrame in Python.mp4
|
64.8 MB
|
7. Dropping a Column from a DataFrame in Python.vtt
|
7.0 KB
|
8. EXERCISE - Dropping a Column from a DataFrame in Python.html
|
0.9 KB
|
9. SOLUTION - Dropping a Column from a DataFrame in Python.html
|
0.1 KB
|
/56. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/
|
1. Exploring the Problem with a Machine Learning Mindset.mp4
|
28.9 MB
|
1. Exploring the Problem with a Machine Learning Mindset.vtt
|
4.1 KB
|
1.1 Absenteeism_preprocessed.csv.csv
|
29.8 KB
|
10. Interpreting the Coefficients of the Logistic Regression.mp4
|
42.4 MB
|
10. Interpreting the Coefficients of the Logistic Regression.vtt
|
6.5 KB
|
11. Backward Elimination or How to Simplify Your Model.mp4
|
41.5 MB
|
11. Backward Elimination or How to Simplify Your Model.vtt
|
4.7 KB
|
11.1 Logistic Regression prior to Backward Elimination.html
|
0.2 KB
|
12. Testing the Model We Created.mp4
|
51.5 MB
|
12. Testing the Model We Created.vtt
|
5.8 KB
|
13. Saving the Model and Preparing it for Deployment.mp4
|
39.3 MB
|
13. Saving the Model and Preparing it for Deployment.vtt
|
5.0 KB
|
14. ARTICLE - A Note on 'pickling'.html
|
2.2 KB
|
15. EXERCISE - Saving the Model (and Scaler).html
|
0.3 KB
|
15.1 Logistic Regression.html
|
0.2 KB
|
15.2 Logistic Regression with Comments.html
|
0.2 KB
|
16. Preparing the Deployment of the Model through a Module.mp4
|
46.6 MB
|
16. Preparing the Deployment of the Model through a Module.vtt
|
5.0 KB
|
2. Creating the Targets for the Logistic Regression.mp4
|
48.0 MB
|
2. Creating the Targets for the Logistic Regression.vtt
|
7.5 KB
|
3. Selecting the Inputs for the Logistic Regression.mp4
|
17.6 MB
|
3. Selecting the Inputs for the Logistic Regression.vtt
|
3.2 KB
|
4. Standardizing the Data.mp4
|
21.6 MB
|
4. Standardizing the Data.vtt
|
3.8 KB
|
5. Splitting the Data for Training and Testing.mp4
|
55.3 MB
|
5. Splitting the Data for Training and Testing.vtt
|
7.2 KB
|
6. Fitting the Model and Assessing its Accuracy.mp4
|
43.7 MB
|
6. Fitting the Model and Assessing its Accuracy.vtt
|
6.6 KB
|
7. Creating a Summary Table with the Coefficients and Intercept.mp4
|
40.8 MB
|
7. Creating a Summary Table with the Coefficients and Intercept.vtt
|
5.9 KB
|
8. Interpreting the Coefficients for Our Problem.mp4
|
54.9 MB
|
8. Interpreting the Coefficients for Our Problem.vtt
|
7.1 KB
|
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4
|
43.2 MB
|
9. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt
|
4.5 KB
|
9.1 Logistic Regression prior to Custom Scaler.html
|
0.2 KB
|
/57. Case Study - Loading the 'absenteeism_module'/
|
1. Are You Sure You're All Set.html
|
0.5 KB
|
1.1 5 Files Needed to Deploy the Model.html
|
0.1 KB
|
2. Deploying the 'absenteeism_module' - Part I.mp4
|
26.7 MB
|
2. Deploying the 'absenteeism_module' - Part I.vtt
|
4.3 KB
|
3. Deploying the 'absenteeism_module' - Part II.mp4
|
56.9 MB
|
3. Deploying the 'absenteeism_module' - Part II.vtt
|
6.8 KB
|
4. Exporting the Obtained Data Set as a .csv.html
|
1.0 KB
|
4.1 Deploying the ‘absenteeism_module.html
|
0.2 KB
|
/58. Case Study - Analyzing the Predicted Outputs in Tableau/
|
1. EXERCISE - Age vs Probability.html
|
0.4 KB
|
2. Analyzing Age vs Probability in Tableau.mp4
|
59.3 MB
|
2. Analyzing Age vs Probability in Tableau.vtt
|
9.0 KB
|
3. EXERCISE - Reasons vs Probability.html
|
0.4 KB
|
4. Analyzing Reasons vs Probability in Tableau.mp4
|
62.2 MB
|
4. Analyzing Reasons vs Probability in Tableau.vtt
|
8.6 KB
|
5. EXERCISE - Transportation Expense vs Probability.html
|
0.6 KB
|
6. Analyzing Transportation Expense vs Probability in Tableau.mp4
|
42.6 MB
|
6. Analyzing Transportation Expense vs Probability in Tableau.vtt
|
6.5 KB
|
/6. The Field of Data Science - Popular Data Science Tools/
|
1. Necessary Programming Languages and Software Used in Data Science.mp4
|
108.6 MB
|
1. Necessary Programming Languages and Software Used in Data Science.vtt
|
6.6 KB
|
2. Necessary Programming Languages and Software Used in Data Science.html
|
0.2 KB
|
/7. The Field of Data Science - Careers in Data Science/
|
1. Finding the Job - What to Expect and What to Look for.mp4
|
57.0 MB
|
1. Finding the Job - What to Expect and What to Look for.vtt
|
4.0 KB
|
2. Finding the Job - What to Expect and What to Look for.html
|
0.2 KB
|
/8. The Field of Data Science - Debunking Common Misconceptions/
|
1. Debunking Common Misconceptions.mp4
|
76.4 MB
|
1. Debunking Common Misconceptions.vtt
|
4.8 KB
|
2. Debunking Common Misconceptions.html
|
0.2 KB
|
/9. Part 2 Probability/
|
1. The Basic Probability Formula.mp4
|
90.1 MB
|
1. The Basic Probability Formula.vtt
|
8.0 KB
|
1.1 Course Notes - Basic Probability.pdf.pdf
|
380.0 KB
|
2. The Basic Probability Formula.html
|
0.2 KB
|
3. Computing Expected Values.mp4
|
79.4 MB
|
3. Computing Expected Values.vtt
|
6.0 KB
|
4. Computing Expected Values.html
|
0.2 KB
|
5. Frequency.mp4
|
64.7 MB
|
5. Frequency.vtt
|
5.8 KB
|
6. Frequency.html
|
0.2 KB
|
7. Events and Their Complements.mp4
|
62.0 MB
|
7. Events and Their Complements.vtt
|
6.1 KB
|
8. Events and Their Complements.html
|
0.2 KB
|
/
|
[FreeCourseLab.com].url
|
0.1 KB
|
Total files 1226
|