/0. Websites you may like/
|
[CourseClub.Me].url
|
0.1 KB
|
[FreeCourseSite.com].url
|
0.1 KB
|
[GigaCourse.Com].url
|
0.0 KB
|
/01 - Introduction to the Course/
|
001 What is Machine Learning.mp4
|
42.3 MB
|
001 What is Machine Learning_en.vtt
|
6.2 KB
|
002 What is Data Science.mp4
|
41.8 MB
|
002 What is Data Science_en.vtt
|
5.2 KB
|
003 Download the Syllabus.html
|
1.0 KB
|
004 Top Tips for Succeeding on this Course.html
|
2.1 KB
|
005 Course Resources List.html
|
1.1 KB
|
18162714-ML-Data-Science-Syllabus.pdf
|
106.5 KB
|
external-assets-links.txt
|
0.1 KB
|
/02 - Predict Movie Box Office Revenue with Linear Regression/
|
001 Introduction to Linear Regression & Specifying the Problem.mp4
|
27.8 MB
|
001 Introduction to Linear Regression & Specifying the Problem_en.vtt
|
7.8 KB
|
002 Gather & Clean the Data.mp4
|
42.8 MB
|
002 Gather & Clean the Data_en.vtt
|
12.5 KB
|
003 Explore & Visualise the Data with Python.mp4
|
110.2 MB
|
003 Explore & Visualise the Data with Python_en.vtt
|
27.6 KB
|
004 The Intuition behind the Linear Regression Model.mp4
|
13.5 MB
|
004 The Intuition behind the Linear Regression Model_en.vtt
|
9.7 KB
|
005 Analyse and Evaluate the Results.mp4
|
79.1 MB
|
005 Analyse and Evaluate the Results_en.vtt
|
20.0 KB
|
006 Download the Complete Notebook Here.html
|
0.2 KB
|
007 Join the Student Community.html
|
0.7 KB
|
008 Any Feedback on this Section.html
|
0.5 KB
|
18175084-01-Linear-Regression-checkpoint.ipynb.zip
|
38.5 KB
|
18175146-01-Linear-Regression-complete.ipynb.zip
|
77.1 KB
|
9246634-cost-revenue-dirty.csv
|
383.7 KB
|
9249290-cost-revenue-clean.csv
|
93.0 KB
|
external-assets-links.txt
|
0.2 KB
|
/03 - Python Programming for Data Science and Machine Learning/
|
001 Windows Users - Install Anaconda.mp4
|
33.7 MB
|
001 Windows Users - Install Anaconda_en.vtt
|
7.9 KB
|
002 Mac Users - Install Anaconda.mp4
|
41.0 MB
|
002 Mac Users - Install Anaconda_en.vtt
|
7.2 KB
|
003 Does LSD Make You Better at Maths.mp4
|
16.4 MB
|
003 Does LSD Make You Better at Maths_en.vtt
|
6.6 KB
|
004 Download the 12 Rules to Learn to Code.html
|
1.1 KB
|
005 [Python] - Variables and Types.mp4
|
49.9 MB
|
005 [Python] - Variables and Types_en.vtt
|
14.8 KB
|
006 [Python] - Lists and Arrays.mp4
|
36.8 MB
|
006 [Python] - Lists and Arrays_en.vtt
|
10.8 KB
|
007 [Python & Pandas] - Dataframes and Series.mp4
|
106.3 MB
|
007 [Python & Pandas] - Dataframes and Series_en.vtt
|
25.0 KB
|
008 [Python] - Module Imports.mp4
|
195.9 MB
|
008 [Python] - Module Imports_en.vtt
|
32.2 KB
|
009 [Python] - Functions - Part 1 Defining and Calling Functions.mp4
|
28.7 MB
|
009 [Python] - Functions - Part 1 Defining and Calling Functions_en.vtt
|
9.4 KB
|
010 [Python] - Functions - Part 2 Arguments & Parameters.mp4
|
104.3 MB
|
010 [Python] - Functions - Part 2 Arguments & Parameters_en.vtt
|
18.6 KB
|
011 [Python] - Functions - Part 3 Results & Return Values.mp4
|
56.8 MB
|
011 [Python] - Functions - Part 3 Results & Return Values_en.vtt
|
14.8 KB
|
012 [Python] - Objects - Understanding Attributes and Methods.mp4
|
131.4 MB
|
012 [Python] - Objects - Understanding Attributes and Methods_en.vtt
|
26.5 KB
|
013 How to Make Sense of Python Documentation for Data Visualisation.mp4
|
144.8 MB
|
013 How to Make Sense of Python Documentation for Data Visualisation_en.vtt
|
23.6 KB
|
014 Working with Python Objects to Analyse Data.mp4
|
142.0 MB
|
014 Working with Python Objects to Analyse Data_en.vtt
|
24.1 KB
|
015 [Python] - Tips, Code Style and Naming Conventions.mp4
|
70.4 MB
|
015 [Python] - Tips, Code Style and Naming Conventions_en.vtt
|
15.0 KB
|
016 Download the Complete Notebook Here.html
|
0.2 KB
|
017 Any Feedback on this Section.html
|
0.5 KB
|
18179882-02-Python-Intro.ipynb.zip
|
37.3 KB
|
18204473-12-Rules-to-Learn-to-Code.pdf
|
2.4 MB
|
18877814-lsd-math-score-data.csv
|
0.2 KB
|
external-assets-links.txt
|
0.1 KB
|
/04 - Introduction to Optimisation and the Gradient Descent Algorithm/
|
001 What's Coming Up.mp4
|
13.5 MB
|
001 What's Coming Up_en.vtt
|
3.4 KB
|
002 How a Machine Learns.mp4
|
11.0 MB
|
002 How a Machine Learns_en.vtt
|
6.5 KB
|
003 Introduction to Cost Functions.mp4
|
40.9 MB
|
003 Introduction to Cost Functions_en.vtt
|
8.4 KB
|
004 LaTeX Markdown and Generating Data with Numpy.mp4
|
49.3 MB
|
004 LaTeX Markdown and Generating Data with Numpy_en.vtt
|
15.2 KB
|
005 Understanding the Power Rule & Creating Charts with Subplots.mp4
|
62.4 MB
|
005 Understanding the Power Rule & Creating Charts with Subplots_en.vtt
|
16.0 KB
|
006 [Python] - Loops and the Gradient Descent Algorithm.mp4
|
97.4 MB
|
006 [Python] - Loops and the Gradient Descent Algorithm_en.vtt
|
38.5 KB
|
007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4
|
240.6 MB
|
007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1)_en.vtt
|
38.1 KB
|
008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4
|
152.3 MB
|
008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2)_en.vtt
|
29.7 KB
|
009 Understanding the Learning Rate.mp4
|
199.4 MB
|
009 Understanding the Learning Rate_en.vtt
|
33.3 KB
|
010 How to Create 3-Dimensional Charts.mp4
|
159.4 MB
|
010 How to Create 3-Dimensional Charts_en.vtt
|
23.1 KB
|
011 Understanding Partial Derivatives and How to use SymPy.mp4
|
107.7 MB
|
011 Understanding Partial Derivatives and How to use SymPy_en.vtt
|
18.0 KB
|
012 Implementing Batch Gradient Descent with SymPy.mp4
|
68.7 MB
|
012 Implementing Batch Gradient Descent with SymPy_en.vtt
|
11.5 KB
|
013 [Python] - Loops and Performance Considerations.mp4
|
111.8 MB
|
013 [Python] - Loops and Performance Considerations_en.vtt
|
16.1 KB
|
014 Reshaping and Slicing N-Dimensional Arrays.mp4
|
99.7 MB
|
014 Reshaping and Slicing N-Dimensional Arrays_en.vtt
|
20.4 KB
|
015 Concatenating Numpy Arrays.mp4
|
34.1 MB
|
015 Concatenating Numpy Arrays_en.vtt
|
8.0 KB
|
016 Introduction to the Mean Squared Error (MSE).mp4
|
45.3 MB
|
016 Introduction to the Mean Squared Error (MSE)_en.vtt
|
11.3 KB
|
017 Transposing and Reshaping Arrays.mp4
|
60.8 MB
|
017 Transposing and Reshaping Arrays_en.vtt
|
12.0 KB
|
018 Implementing a MSE Cost Function.mp4
|
57.2 MB
|
018 Implementing a MSE Cost Function_en.vtt
|
12.0 KB
|
019 Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4
|
51.3 MB
|
019 Understanding Nested Loops and Plotting the MSE Function (Part 1)_en.vtt
|
12.4 KB
|
020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4
|
101.6 MB
|
020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2)_en.vtt
|
15.3 KB
|
021 Running Gradient Descent with a MSE Cost Function.mp4
|
77.9 MB
|
021 Running Gradient Descent with a MSE Cost Function_en.vtt
|
19.7 KB
|
022 Visualising the Optimisation on a 3D Surface.mp4
|
37.3 MB
|
022 Visualising the Optimisation on a 3D Surface_en.vtt
|
9.6 KB
|
023 Download the Complete Notebook Here.html
|
0.2 KB
|
024 Any Feedback on this Section.html
|
0.5 KB
|
18179908-03-Gradient-Descent.ipynb.zip
|
1.2 MB
|
external-assets-links.txt
|
0.1 KB
|
/05 - Predict House Prices with Multivariable Linear Regression/
|
001 Defining the Problem.mp4
|
31.5 MB
|
001 Defining the Problem_en.vtt
|
5.7 KB
|
002 Gathering the Boston House Price Data.mp4
|
49.9 MB
|
002 Gathering the Boston House Price Data_en.vtt
|
7.7 KB
|
003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4
|
59.5 MB
|
003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset_en.vtt
|
14.0 KB
|
004 Clean and Explore the Data (Part 2) Find Missing Values.mp4
|
112.7 MB
|
004 Clean and Explore the Data (Part 2) Find Missing Values_en.vtt
|
16.7 KB
|
005 Visualising Data (Part 1) Historams, Distributions & Outliers.mp4
|
44.7 MB
|
005 Visualising Data (Part 1) Historams, Distributions & Outliers_en.vtt
|
12.7 KB
|
006 Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4
|
39.4 MB
|
006 Visualising Data (Part 2) Seaborn and Probability Density Functions_en.vtt
|
8.0 KB
|
007 Working with Index Data, Pandas Series, and Dummy Variables.mp4
|
108.8 MB
|
007 Working with Index Data, Pandas Series, and Dummy Variables_en.vtt
|
18.4 KB
|
008 Understanding Descriptive Statistics the Mean vs the Median.mp4
|
43.0 MB
|
008 Understanding Descriptive Statistics the Mean vs the Median_en.vtt
|
10.9 KB
|
009 Introduction to Correlation Understanding Strength & Direction.mp4
|
13.5 MB
|
009 Introduction to Correlation Understanding Strength & Direction_en.vtt
|
7.5 KB
|
010 Calculating Correlations and the Problem posed by Multicollinearity.mp4
|
86.5 MB
|
010 Calculating Correlations and the Problem posed by Multicollinearity_en.vtt
|
15.9 KB
|
011 Visualising Correlations with a Heatmap.mp4
|
113.7 MB
|
011 Visualising Correlations with a Heatmap_en.vtt
|
21.7 KB
|
012 Techniques to Style Scatter Plots.mp4
|
87.9 MB
|
012 Techniques to Style Scatter Plots_en.vtt
|
18.5 KB
|
013 A Note for the Next Lesson.html
|
0.5 KB
|
014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4
|
183.7 MB
|
014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques_en.vtt
|
25.6 KB
|
015 Understanding Multivariable Regression.mp4
|
33.0 MB
|
015 Understanding Multivariable Regression_en.vtt
|
6.7 KB
|
016 How to Shuffle and Split Training & Testing Data.mp4
|
47.3 MB
|
016 How to Shuffle and Split Training & Testing Data_en.vtt
|
10.2 KB
|
017 Running a Multivariable Regression.mp4
|
42.2 MB
|
017 Running a Multivariable Regression_en.vtt
|
8.7 KB
|
018 How to Calculate the Model Fit with R-Squared.mp4
|
22.5 MB
|
018 How to Calculate the Model Fit with R-Squared_en.vtt
|
3.9 KB
|
019 Introduction to Model Evaluation.mp4
|
7.7 MB
|
019 Introduction to Model Evaluation_en.vtt
|
3.4 KB
|
020 Improving the Model by Transforming the Data.mp4
|
85.4 MB
|
020 Improving the Model by Transforming the Data_en.vtt
|
19.2 KB
|
021 How to Interpret Coefficients using p-Values and Statistical Significance.mp4
|
51.4 MB
|
021 How to Interpret Coefficients using p-Values and Statistical Significance_en.vtt
|
9.7 KB
|
022 Understanding VIF & Testing for Multicollinearity.mp4
|
110.5 MB
|
022 Understanding VIF & Testing for Multicollinearity_en.vtt
|
22.8 KB
|
023 Model Simplification & Baysian Information Criterion.mp4
|
125.5 MB
|
023 Model Simplification & Baysian Information Criterion_en.vtt
|
20.7 KB
|
024 How to Analyse and Plot Regression Residuals.mp4
|
29.4 MB
|
024 How to Analyse and Plot Regression Residuals_en.vtt
|
13.2 KB
|
025 Residual Analysis (Part 1) Predicted vs Actual Values.mp4
|
85.4 MB
|
025 Residual Analysis (Part 1) Predicted vs Actual Values_en.vtt
|
16.1 KB
|
026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4
|
104.0 MB
|
026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals_en.vtt
|
20.2 KB
|
027 Making Predictions (Part 1) MSE & R-Squared.mp4
|
132.7 MB
|
027 Making Predictions (Part 1) MSE & R-Squared_en.vtt
|
21.0 KB
|
028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4
|
66.8 MB
|
028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals_en.vtt
|
13.2 KB
|
029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4
|
107.6 MB
|
029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays_en.vtt
|
18.3 KB
|
030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4
|
94.5 MB
|
030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2)_en.vtt
|
18.9 KB
|
031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4
|
210.7 MB
|
031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module_en.vtt
|
25.1 KB
|
032 Download the Complete Notebook Here.html
|
0.2 KB
|
033 Any Feedback on this Section.html
|
0.5 KB
|
18179918-04-Multivariable-Regression.ipynb.zip
|
3.7 MB
|
18179928-04-Valuation-Tool.ipynb.zip
|
3.0 KB
|
18905386-boston-valuation.py
|
3.1 KB
|
external-assets-links.txt
|
0.1 KB
|
/06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/
|
001 How to Translate a Business Problem into a Machine Learning Problem.mp4
|
32.5 MB
|
001 How to Translate a Business Problem into a Machine Learning Problem_en.vtt
|
8.7 KB
|
002 Gathering Email Data and Working with Archives & Text Editors.mp4
|
100.7 MB
|
002 Gathering Email Data and Working with Archives & Text Editors_en.vtt
|
12.6 KB
|
003 How to Add the Lesson Resources to the Project.mp4
|
19.9 MB
|
003 How to Add the Lesson Resources to the Project_en.vtt
|
4.3 KB
|
004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4
|
30.8 MB
|
004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier_en.vtt
|
5.5 KB
|
005 Basic Probability.mp4
|
9.9 MB
|
005 Basic Probability_en.vtt
|
4.7 KB
|
006 Joint & Conditional Probability.mp4
|
92.6 MB
|
006 Joint & Conditional Probability_en.vtt
|
17.7 KB
|
007 Bayes Theorem.mp4
|
53.6 MB
|
007 Bayes Theorem_en.vtt
|
13.5 KB
|
008 Reading Files (Part 1) Absolute Paths and Relative Paths.mp4
|
41.5 MB
|
008 Reading Files (Part 1) Absolute Paths and Relative Paths_en.vtt
|
10.5 KB
|
009 Reading Files (Part 2) Stream Objects and Email Structure.mp4
|
92.0 MB
|
009 Reading Files (Part 2) Stream Objects and Email Structure_en.vtt
|
13.1 KB
|
010 Extracting the Text in the Email Body.mp4
|
32.0 MB
|
010 Extracting the Text in the Email Body_en.vtt
|
5.3 KB
|
011 [Python] - Generator Functions & the yield Keyword.mp4
|
109.3 MB
|
011 [Python] - Generator Functions & the yield Keyword_en.vtt
|
19.9 KB
|
012 Create a Pandas DataFrame of Email Bodies.mp4
|
39.2 MB
|
012 Create a Pandas DataFrame of Email Bodies_en.vtt
|
6.4 KB
|
013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4
|
94.7 MB
|
013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries_en.vtt
|
15.9 KB
|
014 Cleaning Data (Part 2) Working with a DataFrame Index.mp4
|
48.8 MB
|
014 Cleaning Data (Part 2) Working with a DataFrame Index_en.vtt
|
8.1 KB
|
015 Saving a JSON File with Pandas.mp4
|
45.5 MB
|
015 Saving a JSON File with Pandas_en.vtt
|
6.2 KB
|
016 Data Visualisation (Part 1) Pie Charts.mp4
|
73.5 MB
|
016 Data Visualisation (Part 1) Pie Charts_en.vtt
|
14.4 KB
|
017 Data Visualisation (Part 2) Donut Charts.mp4
|
42.9 MB
|
017 Data Visualisation (Part 2) Donut Charts_en.vtt
|
8.5 KB
|
018 Introduction to Natural Language Processing (NLP).mp4
|
39.3 MB
|
018 Introduction to Natural Language Processing (NLP)_en.vtt
|
7.4 KB
|
019 Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4
|
97.0 MB
|
019 Tokenizing, Removing Stop Words and the Python Set Data Structure_en.vtt
|
17.0 KB
|
020 Word Stemming & Removing Punctuation.mp4
|
48.9 MB
|
020 Word Stemming & Removing Punctuation_en.vtt
|
9.6 KB
|
021 Removing HTML tags with BeautifulSoup.mp4
|
90.8 MB
|
021 Removing HTML tags with BeautifulSoup_en.vtt
|
10.0 KB
|
022 Creating a Function for Text Processing.mp4
|
27.6 MB
|
022 Creating a Function for Text Processing_en.vtt
|
7.4 KB
|
023 A Note for the Next Lesson.html
|
0.5 KB
|
024 Advanced Subsetting on DataFrames the apply() Function.mp4
|
57.9 MB
|
024 Advanced Subsetting on DataFrames the apply() Function_en.vtt
|
12.1 KB
|
025 [Python] - Logical Operators to Create Subsets and Indices.mp4
|
60.2 MB
|
025 [Python] - Logical Operators to Create Subsets and Indices_en.vtt
|
13.7 KB
|
026 Word Clouds & How to install Additional Python Packages.mp4
|
52.5 MB
|
026 Word Clouds & How to install Additional Python Packages_en.vtt
|
10.7 KB
|
027 Creating your First Word Cloud.mp4
|
47.8 MB
|
027 Creating your First Word Cloud_en.vtt
|
12.3 KB
|
028 Styling the Word Cloud with a Mask.mp4
|
111.1 MB
|
028 Styling the Word Cloud with a Mask_en.vtt
|
14.8 KB
|
029 Solving the Hamlet Challenge.mp4
|
49.1 MB
|
029 Solving the Hamlet Challenge_en.vtt
|
5.3 KB
|
030 Styling Word Clouds with Custom Fonts.mp4
|
104.3 MB
|
030 Styling Word Clouds with Custom Fonts_en.vtt
|
13.2 KB
|
031 Create the Vocabulary for the Spam Classifier.mp4
|
73.5 MB
|
031 Create the Vocabulary for the Spam Classifier_en.vtt
|
15.8 KB
|
032 Coding Challenge Check for Membership in a Collection.mp4
|
15.6 MB
|
032 Coding Challenge Check for Membership in a Collection_en.vtt
|
5.4 KB
|
033 Coding Challenge Find the Longest Email.mp4
|
43.1 MB
|
033 Coding Challenge Find the Longest Email_en.vtt
|
6.7 KB
|
034 Sparse Matrix (Part 1) Split the Training and Testing Data.mp4
|
60.9 MB
|
034 Sparse Matrix (Part 1) Split the Training and Testing Data_en.vtt
|
13.5 KB
|
035 Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4
|
96.0 MB
|
035 Sparse Matrix (Part 2) Data Munging with Nested Loops_en.vtt
|
19.9 KB
|
036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4
|
64.3 MB
|
036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files_en.vtt
|
10.7 KB
|
037 Coding Challenge Solution Preparing the Test Data.mp4
|
19.8 MB
|
037 Coding Challenge Solution Preparing the Test Data_en.vtt
|
4.0 KB
|
038 Checkpoint Understanding the Data.mp4
|
78.2 MB
|
038 Checkpoint Understanding the Data_en.vtt
|
12.2 KB
|
039 Download the Complete Notebook Here.html
|
0.2 KB
|
040 Any Feedback on this Section.html
|
0.5 KB
|
18179924-06-Bayes-Classifier-Pre-Processing.ipynb.zip
|
1.0 MB
|
18190724-SpamData.zip
|
22.3 MB
|
external-assets-links.txt
|
0.1 KB
|
/07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/
|
001 Setting up the Notebook and Understanding Delimiters in a Dataset.mp4
|
56.6 MB
|
001 Setting up the Notebook and Understanding Delimiters in a Dataset_en.vtt
|
10.0 KB
|
002 Create a Full Matrix.mp4
|
109.9 MB
|
002 Create a Full Matrix_en.vtt
|
19.6 KB
|
003 Count the Tokens to Train the Naive Bayes Model.mp4
|
66.7 MB
|
003 Count the Tokens to Train the Naive Bayes Model_en.vtt
|
16.6 KB
|
004 Sum the Tokens across the Spam and Ham Subsets.mp4
|
25.6 MB
|
004 Sum the Tokens across the Spam and Ham Subsets_en.vtt
|
7.1 KB
|
005 Calculate the Token Probabilities and Save the Trained Model.mp4
|
37.0 MB
|
005 Calculate the Token Probabilities and Save the Trained Model_en.vtt
|
8.5 KB
|
006 Coding Challenge Prepare the Test Data.mp4
|
30.0 MB
|
006 Coding Challenge Prepare the Test Data_en.vtt
|
4.7 KB
|
007 Download the Complete Notebook Here.html
|
0.2 KB
|
008 Any Feedback on this Section.html
|
0.5 KB
|
18180042-07-Bayes-Classifier-Training.ipynb.zip
|
6.0 KB
|
18190704-SpamData.zip
|
23.4 MB
|
external-assets-links.txt
|
0.1 KB
|
/08 - Test and Evaluate a Naive Bayes Classifier Part 3/
|
001 Set up the Testing Notebook.mp4
|
20.9 MB
|
001 Set up the Testing Notebook_en.vtt
|
3.4 KB
|
002 Joint Conditional Probability (Part 1) Dot Product.mp4
|
49.3 MB
|
002 Joint Conditional Probability (Part 1) Dot Product_en.vtt
|
11.3 KB
|
003 Joint Conditional Probablity (Part 2) Priors.mp4
|
48.0 MB
|
003 Joint Conditional Probablity (Part 2) Priors_en.vtt
|
9.8 KB
|
004 Making Predictions Comparing Joint Probabilities.mp4
|
38.9 MB
|
004 Making Predictions Comparing Joint Probabilities_en.vtt
|
9.0 KB
|
005 The Accuracy Metric.mp4
|
30.1 MB
|
005 The Accuracy Metric_en.vtt
|
6.8 KB
|
006 Visualising the Decision Boundary.mp4
|
156.7 MB
|
006 Visualising the Decision Boundary_en.vtt
|
31.0 KB
|
007 False Positive vs False Negatives.mp4
|
43.4 MB
|
007 False Positive vs False Negatives_en.vtt
|
11.7 KB
|
008 The Recall Metric.mp4
|
19.3 MB
|
008 The Recall Metric_en.vtt
|
5.9 KB
|
009 The Precision Metric.mp4
|
36.1 MB
|
009 The Precision Metric_en.vtt
|
8.6 KB
|
010 The F-score or F1 Metric.mp4
|
17.3 MB
|
010 The F-score or F1 Metric_en.vtt
|
4.6 KB
|
011 A Naive Bayes Implementation using SciKit Learn.mp4
|
152.8 MB
|
011 A Naive Bayes Implementation using SciKit Learn_en.vtt
|
30.0 KB
|
012 Download the Complete Notebook Here.html
|
0.2 KB
|
013 Any Feedback on this Section.html
|
0.5 KB
|
18180294-07-Bayes-Classifier-Testing-Inference-Evaluation.ipynb.zip
|
248.9 KB
|
18180296-08-Naive-Bayes-with-scikit-learn.ipynb.zip
|
13.6 KB
|
18190700-SpamData.zip
|
23.9 MB
|
external-assets-links.txt
|
0.1 KB
|
/.../0. Websites you may like/
|
[CourseClub.Me].url
|
0.1 KB
|
[FreeCourseSite.com].url
|
0.1 KB
|
[GigaCourse.Com].url
|
0.0 KB
|
/09 - Introduction to Neural Networks and How to Use Pre-Trained Models/
|
001 The Human Brain and the Inspiration for Artificial Neural Networks.mp4
|
34.3 MB
|
001 The Human Brain and the Inspiration for Artificial Neural Networks_en.vtt
|
10.2 KB
|
002 Layers, Feature Generation and Learning.mp4
|
130.4 MB
|
002 Layers, Feature Generation and Learning_en.vtt
|
25.2 KB
|
003 Costs and Disadvantages of Neural Networks.mp4
|
80.3 MB
|
003 Costs and Disadvantages of Neural Networks_en.vtt
|
17.4 KB
|
004 Preprocessing Image Data and How RGB Works.mp4
|
72.6 MB
|
004 Preprocessing Image Data and How RGB Works_en.vtt
|
14.7 KB
|
005 Importing Keras Models and the Tensorflow Graph.mp4
|
51.6 MB
|
005 Importing Keras Models and the Tensorflow Graph_en.vtt
|
10.6 KB
|
006 Making Predictions using InceptionResNet.mp4
|
108.2 MB
|
006 Making Predictions using InceptionResNet_en.vtt
|
17.5 KB
|
007 Coding Challenge Solution Using other Keras Models.mp4
|
86.0 MB
|
007 Coding Challenge Solution Using other Keras Models_en.vtt
|
12.1 KB
|
008 Download the Complete Notebook Here.html
|
0.3 KB
|
009 Any Feedback on this Section.html
|
0.5 KB
|
18180490-09-Neural-Nets-Pretrained-Image-Classification.ipynb.zip
|
585.6 KB
|
18188466-TF-Keras-Classification-Images.zip
|
513.1 KB
|
external-assets-links.txt
|
0.1 KB
|
/10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/
|
001 Solving a Business Problem with Image Classification.mp4
|
20.4 MB
|
001 Solving a Business Problem with Image Classification_en.vtt
|
4.6 KB
|
002 Installing Tensorflow and Keras for Jupyter.mp4
|
33.5 MB
|
002 Installing Tensorflow and Keras for Jupyter_en.vtt
|
6.0 KB
|
003 Gathering the CIFAR 10 Dataset.mp4
|
21.6 MB
|
003 Gathering the CIFAR 10 Dataset_en.vtt
|
5.6 KB
|
004 Exploring the CIFAR Data.mp4
|
85.1 MB
|
004 Exploring the CIFAR Data_en.vtt
|
16.5 KB
|
005 Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4
|
64.3 MB
|
005 Pre-processing Scaling Inputs and Creating a Validation Dataset_en.vtt
|
18.2 KB
|
006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4
|
79.7 MB
|
006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function_en.vtt
|
17.0 KB
|
007 Interacting with the Operating System and the Python Try-Catch Block.mp4
|
48.0 MB
|
007 Interacting with the Operating System and the Python Try-Catch Block_en.vtt
|
22.0 KB
|
008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4
|
80.3 MB
|
008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems_en.vtt
|
13.1 KB
|
009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4
|
159.9 MB
|
009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques_en.vtt
|
25.7 KB
|
010 Use the Model to Make Predictions.mp4
|
182.3 MB
|
010 Use the Model to Make Predictions_en.vtt
|
30.9 KB
|
011 Model Evaluation and the Confusion Matrix.mp4
|
42.0 MB
|
011 Model Evaluation and the Confusion Matrix_en.vtt
|
9.8 KB
|
012 Model Evaluation and the Confusion Matrix.mp4
|
202.6 MB
|
012 Model Evaluation and the Confusion Matrix_en.vtt
|
36.3 KB
|
013 Download the Complete Notebook Here.html
|
0.2 KB
|
014 Any Feedback on this Section.html
|
0.5 KB
|
18187728-10-Neural-Nets-Keras-CIFAR10-Classification.ipynb.zip
|
123.0 KB
|
external-assets-links.txt
|
0.1 KB
|
/11 - Use Tensorflow to Classify Handwritten Digits/
|
001 What's coming up.mp4
|
5.5 MB
|
001 What's coming up_en.vtt
|
2.4 KB
|
002 Getting the Data and Loading it into Numpy Arrays.mp4
|
41.6 MB
|
002 Getting the Data and Loading it into Numpy Arrays_en.vtt
|
8.4 KB
|
003 Data Exploration and Understanding the Structure of the Input Data.mp4
|
21.6 MB
|
003 Data Exploration and Understanding the Structure of the Input Data_en.vtt
|
5.9 KB
|
004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4
|
51.7 MB
|
004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset_en.vtt
|
11.8 KB
|
005 What is a Tensor.mp4
|
39.7 MB
|
005 What is a Tensor_en.vtt
|
8.4 KB
|
006 Creating Tensors and Setting up the Neural Network Architecture.mp4
|
116.0 MB
|
006 Creating Tensors and Setting up the Neural Network Architecture_en.vtt
|
26.8 KB
|
007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4
|
52.0 MB
|
007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics_en.vtt
|
13.0 KB
|
008 TensorFlow Sessions and Batching Data.mp4
|
77.2 MB
|
008 TensorFlow Sessions and Batching Data_en.vtt
|
18.7 KB
|
009 Tensorboard Summaries and the Filewriter.mp4
|
103.5 MB
|
009 Tensorboard Summaries and the Filewriter_en.vtt
|
21.8 KB
|
010 Understanding the Tensorflow Graph Nodes and Edges.mp4
|
93.8 MB
|
010 Understanding the Tensorflow Graph Nodes and Edges_en.vtt
|
19.0 KB
|
011 Name Scoping and Image Visualisation in Tensorboard.mp4
|
70.1 MB
|
011 Name Scoping and Image Visualisation in Tensorboard_en.vtt
|
24.4 KB
|
012 Different Model Architectures Experimenting with Dropout.mp4
|
182.3 MB
|
012 Different Model Architectures Experimenting with Dropout_en.vtt
|
27.7 KB
|
013 Prediction and Model Evaluation.mp4
|
91.6 MB
|
013 Prediction and Model Evaluation_en.vtt
|
17.2 KB
|
014 Download the Complete Notebook Here.html
|
0.2 KB
|
015 Any Feedback on this Section.html
|
0.5 KB
|
18187740-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip
|
6.8 KB
|
18194656-MNIST.zip
|
15.5 MB
|
external-assets-links.txt
|
0.1 KB
|
/12 - Serving a Tensorflow Model through a Website/
|
001 What you'll make.mp4
|
37.2 MB
|
001 What you'll make_en.vtt
|
8.9 KB
|
002 Saving Tensorflow Models.mp4
|
108.7 MB
|
002 Saving Tensorflow Models_en.vtt
|
19.5 KB
|
003 Loading a SavedModel.mp4
|
89.2 MB
|
003 Loading a SavedModel_en.vtt
|
23.7 KB
|
004 Converting a Model to Tensorflow.js.mp4
|
98.2 MB
|
004 Converting a Model to Tensorflow.js_en.vtt
|
19.2 KB
|
005 Introducing the Website Project and Tooling.mp4
|
72.1 MB
|
005 Introducing the Website Project and Tooling_en.vtt
|
16.1 KB
|
006 HTML and CSS Styling.mp4
|
143.4 MB
|
006 HTML and CSS Styling_en.vtt
|
34.7 KB
|
007 Loading a Tensorflow.js Model and Starting your own Server.mp4
|
183.9 MB
|
007 Loading a Tensorflow.js Model and Starting your own Server_en.vtt
|
34.5 KB
|
008 Adding a Favicon.mp4
|
25.5 MB
|
008 Adding a Favicon_en.vtt
|
6.7 KB
|
009 Styling an HTML Canvas.mp4
|
181.1 MB
|
009 Styling an HTML Canvas_en.vtt
|
36.2 KB
|
010 Drawing on an HTML Canvas.mp4
|
167.0 MB
|
010 Drawing on an HTML Canvas_en.vtt
|
34.0 KB
|
011 Data Pre-Processing for Tensorflow.js.mp4
|
26.8 MB
|
011 Data Pre-Processing for Tensorflow.js_en.vtt
|
11.0 KB
|
012 Introduction to OpenCV.mp4
|
139.7 MB
|
012 Introduction to OpenCV_en.vtt
|
35.3 KB
|
013 Resizing and Adding Padding to Images.mp4
|
155.0 MB
|
013 Resizing and Adding Padding to Images_en.vtt
|
24.8 KB
|
014 Calculating the Centre of Mass and Shifting the Image.mp4
|
220.7 MB
|
014 Calculating the Centre of Mass and Shifting the Image_en.vtt
|
32.9 KB
|
015 Making a Prediction from a Digit drawn on the HTML Canvas.mp4
|
103.2 MB
|
015 Making a Prediction from a Digit drawn on the HTML Canvas_en.vtt
|
15.7 KB
|
016 Adding the Game Logic.mp4
|
165.9 MB
|
016 Adding the Game Logic_en.vtt
|
34.4 KB
|
017 Publish and Share your Website!.mp4
|
34.9 MB
|
017 Publish and Share your Website!_en.vtt
|
8.4 KB
|
018 Any Feedback on this Section.html
|
0.5 KB
|
21028850-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip
|
6.5 KB
|
21028876-MNIST-Model-Load-Files.zip
|
3.0 MB
|
21028894-TFJS.zip
|
1.6 MB
|
21028914-math-garden-stub.zip
|
45.1 KB
|
21028926-math-garden-stub-complete.zip
|
4.3 MB
|
21028932-math-garden-stub-12.12-checkpoint.zip
|
4.3 MB
|
21028968-12-TF-SavedModel-Export-Completed.ipynb.zip
|
6.3 KB
|
21028978-x-test0-ylabel7.txt
|
4.7 KB
|
21028982-x-test1-ylabel2.txt
|
4.7 KB
|
21028988-x-test2-ylabel1.txt
|
4.7 KB
|
/13 - Next Steps/
|
001 Where next.html
|
4.0 KB
|
002 What Modules Do You Want to See.html
|
0.4 KB
|
003 Stay in Touch!.html
|
1.1 KB
|
Total files 434
|