FileMood

Download [FreeCourseSite.com] Udemy - Complete 2022 Data Science & Machine Learning Bootcamp

FreeCourseSite com Udemy Complete 2022 Data Science Machine Learning Bootcamp

Name

[FreeCourseSite.com] Udemy - Complete 2022 Data Science & Machine Learning Bootcamp

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

13.5 GB

Total Files

434

Last Seen

2025-05-15 00:08

Hash

6C07DE4DB88F94A690998017789362B5165A8802

/0. Websites you may like/

[CourseClub.Me].url

0.1 KB

[FreeCourseSite.com].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/01 - Introduction to the Course/

001 What is Machine Learning.mp4

42.3 MB

001 What is Machine Learning_en.vtt

6.2 KB

002 What is Data Science.mp4

41.8 MB

002 What is Data Science_en.vtt

5.2 KB

003 Download the Syllabus.html

1.0 KB

004 Top Tips for Succeeding on this Course.html

2.1 KB

005 Course Resources List.html

1.1 KB

18162714-ML-Data-Science-Syllabus.pdf

106.5 KB

external-assets-links.txt

0.1 KB

/02 - Predict Movie Box Office Revenue with Linear Regression/

001 Introduction to Linear Regression & Specifying the Problem.mp4

27.8 MB

001 Introduction to Linear Regression & Specifying the Problem_en.vtt

7.8 KB

002 Gather & Clean the Data.mp4

42.8 MB

002 Gather & Clean the Data_en.vtt

12.5 KB

003 Explore & Visualise the Data with Python.mp4

110.2 MB

003 Explore & Visualise the Data with Python_en.vtt

27.6 KB

004 The Intuition behind the Linear Regression Model.mp4

13.5 MB

004 The Intuition behind the Linear Regression Model_en.vtt

9.7 KB

005 Analyse and Evaluate the Results.mp4

79.1 MB

005 Analyse and Evaluate the Results_en.vtt

20.0 KB

006 Download the Complete Notebook Here.html

0.2 KB

007 Join the Student Community.html

0.7 KB

008 Any Feedback on this Section.html

0.5 KB

18175084-01-Linear-Regression-checkpoint.ipynb.zip

38.5 KB

18175146-01-Linear-Regression-complete.ipynb.zip

77.1 KB

9246634-cost-revenue-dirty.csv

383.7 KB

9249290-cost-revenue-clean.csv

93.0 KB

external-assets-links.txt

0.2 KB

/03 - Python Programming for Data Science and Machine Learning/

001 Windows Users - Install Anaconda.mp4

33.7 MB

001 Windows Users - Install Anaconda_en.vtt

7.9 KB

002 Mac Users - Install Anaconda.mp4

41.0 MB

002 Mac Users - Install Anaconda_en.vtt

7.2 KB

003 Does LSD Make You Better at Maths.mp4

16.4 MB

003 Does LSD Make You Better at Maths_en.vtt

6.6 KB

004 Download the 12 Rules to Learn to Code.html

1.1 KB

005 [Python] - Variables and Types.mp4

49.9 MB

005 [Python] - Variables and Types_en.vtt

14.8 KB

006 [Python] - Lists and Arrays.mp4

36.8 MB

006 [Python] - Lists and Arrays_en.vtt

10.8 KB

007 [Python & Pandas] - Dataframes and Series.mp4

106.3 MB

007 [Python & Pandas] - Dataframes and Series_en.vtt

25.0 KB

008 [Python] - Module Imports.mp4

195.9 MB

008 [Python] - Module Imports_en.vtt

32.2 KB

009 [Python] - Functions - Part 1 Defining and Calling Functions.mp4

28.7 MB

009 [Python] - Functions - Part 1 Defining and Calling Functions_en.vtt

9.4 KB

010 [Python] - Functions - Part 2 Arguments & Parameters.mp4

104.3 MB

010 [Python] - Functions - Part 2 Arguments & Parameters_en.vtt

18.6 KB

011 [Python] - Functions - Part 3 Results & Return Values.mp4

56.8 MB

011 [Python] - Functions - Part 3 Results & Return Values_en.vtt

14.8 KB

012 [Python] - Objects - Understanding Attributes and Methods.mp4

131.4 MB

012 [Python] - Objects - Understanding Attributes and Methods_en.vtt

26.5 KB

013 How to Make Sense of Python Documentation for Data Visualisation.mp4

144.8 MB

013 How to Make Sense of Python Documentation for Data Visualisation_en.vtt

23.6 KB

014 Working with Python Objects to Analyse Data.mp4

142.0 MB

014 Working with Python Objects to Analyse Data_en.vtt

24.1 KB

015 [Python] - Tips, Code Style and Naming Conventions.mp4

70.4 MB

015 [Python] - Tips, Code Style and Naming Conventions_en.vtt

15.0 KB

016 Download the Complete Notebook Here.html

0.2 KB

017 Any Feedback on this Section.html

0.5 KB

18179882-02-Python-Intro.ipynb.zip

37.3 KB

18204473-12-Rules-to-Learn-to-Code.pdf

2.4 MB

18877814-lsd-math-score-data.csv

0.2 KB

external-assets-links.txt

0.1 KB

/04 - Introduction to Optimisation and the Gradient Descent Algorithm/

001 What's Coming Up.mp4

13.5 MB

001 What's Coming Up_en.vtt

3.4 KB

002 How a Machine Learns.mp4

11.0 MB

002 How a Machine Learns_en.vtt

6.5 KB

003 Introduction to Cost Functions.mp4

40.9 MB

003 Introduction to Cost Functions_en.vtt

8.4 KB

004 LaTeX Markdown and Generating Data with Numpy.mp4

49.3 MB

004 LaTeX Markdown and Generating Data with Numpy_en.vtt

15.2 KB

005 Understanding the Power Rule & Creating Charts with Subplots.mp4

62.4 MB

005 Understanding the Power Rule & Creating Charts with Subplots_en.vtt

16.0 KB

006 [Python] - Loops and the Gradient Descent Algorithm.mp4

97.4 MB

006 [Python] - Loops and the Gradient Descent Algorithm_en.vtt

38.5 KB

007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4

240.6 MB

007 [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1)_en.vtt

38.1 KB

008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4

152.3 MB

008 [Python] - Tuples and the Pitfalls of Optimisation (Part 2)_en.vtt

29.7 KB

009 Understanding the Learning Rate.mp4

199.4 MB

009 Understanding the Learning Rate_en.vtt

33.3 KB

010 How to Create 3-Dimensional Charts.mp4

159.4 MB

010 How to Create 3-Dimensional Charts_en.vtt

23.1 KB

011 Understanding Partial Derivatives and How to use SymPy.mp4

107.7 MB

011 Understanding Partial Derivatives and How to use SymPy_en.vtt

18.0 KB

012 Implementing Batch Gradient Descent with SymPy.mp4

68.7 MB

012 Implementing Batch Gradient Descent with SymPy_en.vtt

11.5 KB

013 [Python] - Loops and Performance Considerations.mp4

111.8 MB

013 [Python] - Loops and Performance Considerations_en.vtt

16.1 KB

014 Reshaping and Slicing N-Dimensional Arrays.mp4

99.7 MB

014 Reshaping and Slicing N-Dimensional Arrays_en.vtt

20.4 KB

015 Concatenating Numpy Arrays.mp4

34.1 MB

015 Concatenating Numpy Arrays_en.vtt

8.0 KB

016 Introduction to the Mean Squared Error (MSE).mp4

45.3 MB

016 Introduction to the Mean Squared Error (MSE)_en.vtt

11.3 KB

017 Transposing and Reshaping Arrays.mp4

60.8 MB

017 Transposing and Reshaping Arrays_en.vtt

12.0 KB

018 Implementing a MSE Cost Function.mp4

57.2 MB

018 Implementing a MSE Cost Function_en.vtt

12.0 KB

019 Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4

51.3 MB

019 Understanding Nested Loops and Plotting the MSE Function (Part 1)_en.vtt

12.4 KB

020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4

101.6 MB

020 Plotting the Mean Squared Error (MSE) on a Surface (Part 2)_en.vtt

15.3 KB

021 Running Gradient Descent with a MSE Cost Function.mp4

77.9 MB

021 Running Gradient Descent with a MSE Cost Function_en.vtt

19.7 KB

022 Visualising the Optimisation on a 3D Surface.mp4

37.3 MB

022 Visualising the Optimisation on a 3D Surface_en.vtt

9.6 KB

023 Download the Complete Notebook Here.html

0.2 KB

024 Any Feedback on this Section.html

0.5 KB

18179908-03-Gradient-Descent.ipynb.zip

1.2 MB

external-assets-links.txt

0.1 KB

/05 - Predict House Prices with Multivariable Linear Regression/

001 Defining the Problem.mp4

31.5 MB

001 Defining the Problem_en.vtt

5.7 KB

002 Gathering the Boston House Price Data.mp4

49.9 MB

002 Gathering the Boston House Price Data_en.vtt

7.7 KB

003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4

59.5 MB

003 Clean and Explore the Data (Part 1) Understand the Nature of the Dataset_en.vtt

14.0 KB

004 Clean and Explore the Data (Part 2) Find Missing Values.mp4

112.7 MB

004 Clean and Explore the Data (Part 2) Find Missing Values_en.vtt

16.7 KB

005 Visualising Data (Part 1) Historams, Distributions & Outliers.mp4

44.7 MB

005 Visualising Data (Part 1) Historams, Distributions & Outliers_en.vtt

12.7 KB

006 Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4

39.4 MB

006 Visualising Data (Part 2) Seaborn and Probability Density Functions_en.vtt

8.0 KB

007 Working with Index Data, Pandas Series, and Dummy Variables.mp4

108.8 MB

007 Working with Index Data, Pandas Series, and Dummy Variables_en.vtt

18.4 KB

008 Understanding Descriptive Statistics the Mean vs the Median.mp4

43.0 MB

008 Understanding Descriptive Statistics the Mean vs the Median_en.vtt

10.9 KB

009 Introduction to Correlation Understanding Strength & Direction.mp4

13.5 MB

009 Introduction to Correlation Understanding Strength & Direction_en.vtt

7.5 KB

010 Calculating Correlations and the Problem posed by Multicollinearity.mp4

86.5 MB

010 Calculating Correlations and the Problem posed by Multicollinearity_en.vtt

15.9 KB

011 Visualising Correlations with a Heatmap.mp4

113.7 MB

011 Visualising Correlations with a Heatmap_en.vtt

21.7 KB

012 Techniques to Style Scatter Plots.mp4

87.9 MB

012 Techniques to Style Scatter Plots_en.vtt

18.5 KB

013 A Note for the Next Lesson.html

0.5 KB

014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4

183.7 MB

014 Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques_en.vtt

25.6 KB

015 Understanding Multivariable Regression.mp4

33.0 MB

015 Understanding Multivariable Regression_en.vtt

6.7 KB

016 How to Shuffle and Split Training & Testing Data.mp4

47.3 MB

016 How to Shuffle and Split Training & Testing Data_en.vtt

10.2 KB

017 Running a Multivariable Regression.mp4

42.2 MB

017 Running a Multivariable Regression_en.vtt

8.7 KB

018 How to Calculate the Model Fit with R-Squared.mp4

22.5 MB

018 How to Calculate the Model Fit with R-Squared_en.vtt

3.9 KB

019 Introduction to Model Evaluation.mp4

7.7 MB

019 Introduction to Model Evaluation_en.vtt

3.4 KB

020 Improving the Model by Transforming the Data.mp4

85.4 MB

020 Improving the Model by Transforming the Data_en.vtt

19.2 KB

021 How to Interpret Coefficients using p-Values and Statistical Significance.mp4

51.4 MB

021 How to Interpret Coefficients using p-Values and Statistical Significance_en.vtt

9.7 KB

022 Understanding VIF & Testing for Multicollinearity.mp4

110.5 MB

022 Understanding VIF & Testing for Multicollinearity_en.vtt

22.8 KB

023 Model Simplification & Baysian Information Criterion.mp4

125.5 MB

023 Model Simplification & Baysian Information Criterion_en.vtt

20.7 KB

024 How to Analyse and Plot Regression Residuals.mp4

29.4 MB

024 How to Analyse and Plot Regression Residuals_en.vtt

13.2 KB

025 Residual Analysis (Part 1) Predicted vs Actual Values.mp4

85.4 MB

025 Residual Analysis (Part 1) Predicted vs Actual Values_en.vtt

16.1 KB

026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4

104.0 MB

026 Residual Analysis (Part 2) Graphing and Comparing Regression Residuals_en.vtt

20.2 KB

027 Making Predictions (Part 1) MSE & R-Squared.mp4

132.7 MB

027 Making Predictions (Part 1) MSE & R-Squared_en.vtt

21.0 KB

028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4

66.8 MB

028 Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals_en.vtt

13.2 KB

029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4

107.6 MB

029 Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays_en.vtt

18.3 KB

030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4

94.5 MB

030 [Python] - Conditional Statements - Build a Valuation Tool (Part 2)_en.vtt

18.9 KB

031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4

210.7 MB

031 Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module_en.vtt

25.1 KB

032 Download the Complete Notebook Here.html

0.2 KB

033 Any Feedback on this Section.html

0.5 KB

18179918-04-Multivariable-Regression.ipynb.zip

3.7 MB

18179928-04-Valuation-Tool.ipynb.zip

3.0 KB

18905386-boston-valuation.py

3.1 KB

external-assets-links.txt

0.1 KB

/06 - Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/

001 How to Translate a Business Problem into a Machine Learning Problem.mp4

32.5 MB

001 How to Translate a Business Problem into a Machine Learning Problem_en.vtt

8.7 KB

002 Gathering Email Data and Working with Archives & Text Editors.mp4

100.7 MB

002 Gathering Email Data and Working with Archives & Text Editors_en.vtt

12.6 KB

003 How to Add the Lesson Resources to the Project.mp4

19.9 MB

003 How to Add the Lesson Resources to the Project_en.vtt

4.3 KB

004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4

30.8 MB

004 The Naive Bayes Algorithm and the Decision Boundary for a Classifier_en.vtt

5.5 KB

005 Basic Probability.mp4

9.9 MB

005 Basic Probability_en.vtt

4.7 KB

006 Joint & Conditional Probability.mp4

92.6 MB

006 Joint & Conditional Probability_en.vtt

17.7 KB

007 Bayes Theorem.mp4

53.6 MB

007 Bayes Theorem_en.vtt

13.5 KB

008 Reading Files (Part 1) Absolute Paths and Relative Paths.mp4

41.5 MB

008 Reading Files (Part 1) Absolute Paths and Relative Paths_en.vtt

10.5 KB

009 Reading Files (Part 2) Stream Objects and Email Structure.mp4

92.0 MB

009 Reading Files (Part 2) Stream Objects and Email Structure_en.vtt

13.1 KB

010 Extracting the Text in the Email Body.mp4

32.0 MB

010 Extracting the Text in the Email Body_en.vtt

5.3 KB

011 [Python] - Generator Functions & the yield Keyword.mp4

109.3 MB

011 [Python] - Generator Functions & the yield Keyword_en.vtt

19.9 KB

012 Create a Pandas DataFrame of Email Bodies.mp4

39.2 MB

012 Create a Pandas DataFrame of Email Bodies_en.vtt

6.4 KB

013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4

94.7 MB

013 Cleaning Data (Part 1) Check for Empty Emails & Null Entries_en.vtt

15.9 KB

014 Cleaning Data (Part 2) Working with a DataFrame Index.mp4

48.8 MB

014 Cleaning Data (Part 2) Working with a DataFrame Index_en.vtt

8.1 KB

015 Saving a JSON File with Pandas.mp4

45.5 MB

015 Saving a JSON File with Pandas_en.vtt

6.2 KB

016 Data Visualisation (Part 1) Pie Charts.mp4

73.5 MB

016 Data Visualisation (Part 1) Pie Charts_en.vtt

14.4 KB

017 Data Visualisation (Part 2) Donut Charts.mp4

42.9 MB

017 Data Visualisation (Part 2) Donut Charts_en.vtt

8.5 KB

018 Introduction to Natural Language Processing (NLP).mp4

39.3 MB

018 Introduction to Natural Language Processing (NLP)_en.vtt

7.4 KB

019 Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4

97.0 MB

019 Tokenizing, Removing Stop Words and the Python Set Data Structure_en.vtt

17.0 KB

020 Word Stemming & Removing Punctuation.mp4

48.9 MB

020 Word Stemming & Removing Punctuation_en.vtt

9.6 KB

021 Removing HTML tags with BeautifulSoup.mp4

90.8 MB

021 Removing HTML tags with BeautifulSoup_en.vtt

10.0 KB

022 Creating a Function for Text Processing.mp4

27.6 MB

022 Creating a Function for Text Processing_en.vtt

7.4 KB

023 A Note for the Next Lesson.html

0.5 KB

024 Advanced Subsetting on DataFrames the apply() Function.mp4

57.9 MB

024 Advanced Subsetting on DataFrames the apply() Function_en.vtt

12.1 KB

025 [Python] - Logical Operators to Create Subsets and Indices.mp4

60.2 MB

025 [Python] - Logical Operators to Create Subsets and Indices_en.vtt

13.7 KB

026 Word Clouds & How to install Additional Python Packages.mp4

52.5 MB

026 Word Clouds & How to install Additional Python Packages_en.vtt

10.7 KB

027 Creating your First Word Cloud.mp4

47.8 MB

027 Creating your First Word Cloud_en.vtt

12.3 KB

028 Styling the Word Cloud with a Mask.mp4

111.1 MB

028 Styling the Word Cloud with a Mask_en.vtt

14.8 KB

029 Solving the Hamlet Challenge.mp4

49.1 MB

029 Solving the Hamlet Challenge_en.vtt

5.3 KB

030 Styling Word Clouds with Custom Fonts.mp4

104.3 MB

030 Styling Word Clouds with Custom Fonts_en.vtt

13.2 KB

031 Create the Vocabulary for the Spam Classifier.mp4

73.5 MB

031 Create the Vocabulary for the Spam Classifier_en.vtt

15.8 KB

032 Coding Challenge Check for Membership in a Collection.mp4

15.6 MB

032 Coding Challenge Check for Membership in a Collection_en.vtt

5.4 KB

033 Coding Challenge Find the Longest Email.mp4

43.1 MB

033 Coding Challenge Find the Longest Email_en.vtt

6.7 KB

034 Sparse Matrix (Part 1) Split the Training and Testing Data.mp4

60.9 MB

034 Sparse Matrix (Part 1) Split the Training and Testing Data_en.vtt

13.5 KB

035 Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4

96.0 MB

035 Sparse Matrix (Part 2) Data Munging with Nested Loops_en.vtt

19.9 KB

036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4

64.3 MB

036 Sparse Matrix (Part 3) Using groupby() and Saving .txt Files_en.vtt

10.7 KB

037 Coding Challenge Solution Preparing the Test Data.mp4

19.8 MB

037 Coding Challenge Solution Preparing the Test Data_en.vtt

4.0 KB

038 Checkpoint Understanding the Data.mp4

78.2 MB

038 Checkpoint Understanding the Data_en.vtt

12.2 KB

039 Download the Complete Notebook Here.html

0.2 KB

040 Any Feedback on this Section.html

0.5 KB

18179924-06-Bayes-Classifier-Pre-Processing.ipynb.zip

1.0 MB

18190724-SpamData.zip

22.3 MB

external-assets-links.txt

0.1 KB

/07 - Train a Naive Bayes Classifier to Create a Spam Filter Part 2/

001 Setting up the Notebook and Understanding Delimiters in a Dataset.mp4

56.6 MB

001 Setting up the Notebook and Understanding Delimiters in a Dataset_en.vtt

10.0 KB

002 Create a Full Matrix.mp4

109.9 MB

002 Create a Full Matrix_en.vtt

19.6 KB

003 Count the Tokens to Train the Naive Bayes Model.mp4

66.7 MB

003 Count the Tokens to Train the Naive Bayes Model_en.vtt

16.6 KB

004 Sum the Tokens across the Spam and Ham Subsets.mp4

25.6 MB

004 Sum the Tokens across the Spam and Ham Subsets_en.vtt

7.1 KB

005 Calculate the Token Probabilities and Save the Trained Model.mp4

37.0 MB

005 Calculate the Token Probabilities and Save the Trained Model_en.vtt

8.5 KB

006 Coding Challenge Prepare the Test Data.mp4

30.0 MB

006 Coding Challenge Prepare the Test Data_en.vtt

4.7 KB

007 Download the Complete Notebook Here.html

0.2 KB

008 Any Feedback on this Section.html

0.5 KB

18180042-07-Bayes-Classifier-Training.ipynb.zip

6.0 KB

18190704-SpamData.zip

23.4 MB

external-assets-links.txt

0.1 KB

/08 - Test and Evaluate a Naive Bayes Classifier Part 3/

001 Set up the Testing Notebook.mp4

20.9 MB

001 Set up the Testing Notebook_en.vtt

3.4 KB

002 Joint Conditional Probability (Part 1) Dot Product.mp4

49.3 MB

002 Joint Conditional Probability (Part 1) Dot Product_en.vtt

11.3 KB

003 Joint Conditional Probablity (Part 2) Priors.mp4

48.0 MB

003 Joint Conditional Probablity (Part 2) Priors_en.vtt

9.8 KB

004 Making Predictions Comparing Joint Probabilities.mp4

38.9 MB

004 Making Predictions Comparing Joint Probabilities_en.vtt

9.0 KB

005 The Accuracy Metric.mp4

30.1 MB

005 The Accuracy Metric_en.vtt

6.8 KB

006 Visualising the Decision Boundary.mp4

156.7 MB

006 Visualising the Decision Boundary_en.vtt

31.0 KB

007 False Positive vs False Negatives.mp4

43.4 MB

007 False Positive vs False Negatives_en.vtt

11.7 KB

008 The Recall Metric.mp4

19.3 MB

008 The Recall Metric_en.vtt

5.9 KB

009 The Precision Metric.mp4

36.1 MB

009 The Precision Metric_en.vtt

8.6 KB

010 The F-score or F1 Metric.mp4

17.3 MB

010 The F-score or F1 Metric_en.vtt

4.6 KB

011 A Naive Bayes Implementation using SciKit Learn.mp4

152.8 MB

011 A Naive Bayes Implementation using SciKit Learn_en.vtt

30.0 KB

012 Download the Complete Notebook Here.html

0.2 KB

013 Any Feedback on this Section.html

0.5 KB

18180294-07-Bayes-Classifier-Testing-Inference-Evaluation.ipynb.zip

248.9 KB

18180296-08-Naive-Bayes-with-scikit-learn.ipynb.zip

13.6 KB

18190700-SpamData.zip

23.9 MB

external-assets-links.txt

0.1 KB

/.../0. Websites you may like/

[CourseClub.Me].url

0.1 KB

[FreeCourseSite.com].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/09 - Introduction to Neural Networks and How to Use Pre-Trained Models/

001 The Human Brain and the Inspiration for Artificial Neural Networks.mp4

34.3 MB

001 The Human Brain and the Inspiration for Artificial Neural Networks_en.vtt

10.2 KB

002 Layers, Feature Generation and Learning.mp4

130.4 MB

002 Layers, Feature Generation and Learning_en.vtt

25.2 KB

003 Costs and Disadvantages of Neural Networks.mp4

80.3 MB

003 Costs and Disadvantages of Neural Networks_en.vtt

17.4 KB

004 Preprocessing Image Data and How RGB Works.mp4

72.6 MB

004 Preprocessing Image Data and How RGB Works_en.vtt

14.7 KB

005 Importing Keras Models and the Tensorflow Graph.mp4

51.6 MB

005 Importing Keras Models and the Tensorflow Graph_en.vtt

10.6 KB

006 Making Predictions using InceptionResNet.mp4

108.2 MB

006 Making Predictions using InceptionResNet_en.vtt

17.5 KB

007 Coding Challenge Solution Using other Keras Models.mp4

86.0 MB

007 Coding Challenge Solution Using other Keras Models_en.vtt

12.1 KB

008 Download the Complete Notebook Here.html

0.3 KB

009 Any Feedback on this Section.html

0.5 KB

18180490-09-Neural-Nets-Pretrained-Image-Classification.ipynb.zip

585.6 KB

18188466-TF-Keras-Classification-Images.zip

513.1 KB

external-assets-links.txt

0.1 KB

/10 - Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/

001 Solving a Business Problem with Image Classification.mp4

20.4 MB

001 Solving a Business Problem with Image Classification_en.vtt

4.6 KB

002 Installing Tensorflow and Keras for Jupyter.mp4

33.5 MB

002 Installing Tensorflow and Keras for Jupyter_en.vtt

6.0 KB

003 Gathering the CIFAR 10 Dataset.mp4

21.6 MB

003 Gathering the CIFAR 10 Dataset_en.vtt

5.6 KB

004 Exploring the CIFAR Data.mp4

85.1 MB

004 Exploring the CIFAR Data_en.vtt

16.5 KB

005 Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4

64.3 MB

005 Pre-processing Scaling Inputs and Creating a Validation Dataset_en.vtt

18.2 KB

006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4

79.7 MB

006 Compiling a Keras Model and Understanding the Cross Entropy Loss Function_en.vtt

17.0 KB

007 Interacting with the Operating System and the Python Try-Catch Block.mp4

48.0 MB

007 Interacting with the Operating System and the Python Try-Catch Block_en.vtt

22.0 KB

008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4

80.3 MB

008 Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems_en.vtt

13.1 KB

009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4

159.9 MB

009 Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques_en.vtt

25.7 KB

010 Use the Model to Make Predictions.mp4

182.3 MB

010 Use the Model to Make Predictions_en.vtt

30.9 KB

011 Model Evaluation and the Confusion Matrix.mp4

42.0 MB

011 Model Evaluation and the Confusion Matrix_en.vtt

9.8 KB

012 Model Evaluation and the Confusion Matrix.mp4

202.6 MB

012 Model Evaluation and the Confusion Matrix_en.vtt

36.3 KB

013 Download the Complete Notebook Here.html

0.2 KB

014 Any Feedback on this Section.html

0.5 KB

18187728-10-Neural-Nets-Keras-CIFAR10-Classification.ipynb.zip

123.0 KB

external-assets-links.txt

0.1 KB

/11 - Use Tensorflow to Classify Handwritten Digits/

001 What's coming up.mp4

5.5 MB

001 What's coming up_en.vtt

2.4 KB

002 Getting the Data and Loading it into Numpy Arrays.mp4

41.6 MB

002 Getting the Data and Loading it into Numpy Arrays_en.vtt

8.4 KB

003 Data Exploration and Understanding the Structure of the Input Data.mp4

21.6 MB

003 Data Exploration and Understanding the Structure of the Input Data_en.vtt

5.9 KB

004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.mp4

51.7 MB

004 Data Preprocessing One-Hot Encoding and Creating the Validation Dataset_en.vtt

11.8 KB

005 What is a Tensor.mp4

39.7 MB

005 What is a Tensor_en.vtt

8.4 KB

006 Creating Tensors and Setting up the Neural Network Architecture.mp4

116.0 MB

006 Creating Tensors and Setting up the Neural Network Architecture_en.vtt

26.8 KB

007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4

52.0 MB

007 Defining the Cross Entropy Loss Function, the Optimizer and the Metrics_en.vtt

13.0 KB

008 TensorFlow Sessions and Batching Data.mp4

77.2 MB

008 TensorFlow Sessions and Batching Data_en.vtt

18.7 KB

009 Tensorboard Summaries and the Filewriter.mp4

103.5 MB

009 Tensorboard Summaries and the Filewriter_en.vtt

21.8 KB

010 Understanding the Tensorflow Graph Nodes and Edges.mp4

93.8 MB

010 Understanding the Tensorflow Graph Nodes and Edges_en.vtt

19.0 KB

011 Name Scoping and Image Visualisation in Tensorboard.mp4

70.1 MB

011 Name Scoping and Image Visualisation in Tensorboard_en.vtt

24.4 KB

012 Different Model Architectures Experimenting with Dropout.mp4

182.3 MB

012 Different Model Architectures Experimenting with Dropout_en.vtt

27.7 KB

013 Prediction and Model Evaluation.mp4

91.6 MB

013 Prediction and Model Evaluation_en.vtt

17.2 KB

014 Download the Complete Notebook Here.html

0.2 KB

015 Any Feedback on this Section.html

0.5 KB

18187740-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip

6.8 KB

18194656-MNIST.zip

15.5 MB

external-assets-links.txt

0.1 KB

/12 - Serving a Tensorflow Model through a Website/

001 What you'll make.mp4

37.2 MB

001 What you'll make_en.vtt

8.9 KB

002 Saving Tensorflow Models.mp4

108.7 MB

002 Saving Tensorflow Models_en.vtt

19.5 KB

003 Loading a SavedModel.mp4

89.2 MB

003 Loading a SavedModel_en.vtt

23.7 KB

004 Converting a Model to Tensorflow.js.mp4

98.2 MB

004 Converting a Model to Tensorflow.js_en.vtt

19.2 KB

005 Introducing the Website Project and Tooling.mp4

72.1 MB

005 Introducing the Website Project and Tooling_en.vtt

16.1 KB

006 HTML and CSS Styling.mp4

143.4 MB

006 HTML and CSS Styling_en.vtt

34.7 KB

007 Loading a Tensorflow.js Model and Starting your own Server.mp4

183.9 MB

007 Loading a Tensorflow.js Model and Starting your own Server_en.vtt

34.5 KB

008 Adding a Favicon.mp4

25.5 MB

008 Adding a Favicon_en.vtt

6.7 KB

009 Styling an HTML Canvas.mp4

181.1 MB

009 Styling an HTML Canvas_en.vtt

36.2 KB

010 Drawing on an HTML Canvas.mp4

167.0 MB

010 Drawing on an HTML Canvas_en.vtt

34.0 KB

011 Data Pre-Processing for Tensorflow.js.mp4

26.8 MB

011 Data Pre-Processing for Tensorflow.js_en.vtt

11.0 KB

012 Introduction to OpenCV.mp4

139.7 MB

012 Introduction to OpenCV_en.vtt

35.3 KB

013 Resizing and Adding Padding to Images.mp4

155.0 MB

013 Resizing and Adding Padding to Images_en.vtt

24.8 KB

014 Calculating the Centre of Mass and Shifting the Image.mp4

220.7 MB

014 Calculating the Centre of Mass and Shifting the Image_en.vtt

32.9 KB

015 Making a Prediction from a Digit drawn on the HTML Canvas.mp4

103.2 MB

015 Making a Prediction from a Digit drawn on the HTML Canvas_en.vtt

15.7 KB

016 Adding the Game Logic.mp4

165.9 MB

016 Adding the Game Logic_en.vtt

34.4 KB

017 Publish and Share your Website!.mp4

34.9 MB

017 Publish and Share your Website!_en.vtt

8.4 KB

018 Any Feedback on this Section.html

0.5 KB

21028850-11-Neural-Networks-TF-Handwriting-Recognition.ipynb.zip

6.5 KB

21028876-MNIST-Model-Load-Files.zip

3.0 MB

21028894-TFJS.zip

1.6 MB

21028914-math-garden-stub.zip

45.1 KB

21028926-math-garden-stub-complete.zip

4.3 MB

21028932-math-garden-stub-12.12-checkpoint.zip

4.3 MB

21028968-12-TF-SavedModel-Export-Completed.ipynb.zip

6.3 KB

21028978-x-test0-ylabel7.txt

4.7 KB

21028982-x-test1-ylabel2.txt

4.7 KB

21028988-x-test2-ylabel1.txt

4.7 KB

/13 - Next Steps/

001 Where next.html

4.0 KB

002 What Modules Do You Want to See.html

0.4 KB

003 Stay in Touch!.html

1.1 KB

 

Total files 434


Copyright © 2025 FileMood.com