FileMood

Download [FreeCourseSite.com] Udemy - Machine Learning and Data Science Hands-on with Python and R

FreeCourseSite com Udemy Machine Learning and Data Science Hands on with Python and

Name

[FreeCourseSite.com] Udemy - Machine Learning and Data Science Hands-on with Python and R

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

33.1 GB

Total Files

1047

Last Seen

2025-07-18 23:36

Hash

1FEF239CF341E6D4EFB6A9BB7F966EC38DEAC2B6

/1. Machine Learning - Statistics Essentials/

1. Machine Learning Introduction.mp4

21.0 MB

1. Machine Learning Introduction.vtt

4.5 KB

10. Technical Terminology.mp4

57.5 MB

10. Technical Terminology.vtt

11.3 KB

11. Error of Observation and Non Observation.mp4

32.7 MB

11. Error of Observation and Non Observation.vtt

32.7 MB

12. Systematic Sampling.mp4

57.6 MB

12. Systematic Sampling.vtt

8.1 KB

13. Cluster Sampling.mp4

61.6 MB

13. Cluster Sampling.vtt

10.2 KB

14. Statistics Data Types.mp4

26.8 MB

14. Statistics Data Types.vtt

26.8 MB

15. Qualitative Data and Visualization.mp4

39.5 MB

15. Qualitative Data and Visualization.vtt

8.3 KB

16. Machine Learning.mp4

58.8 MB

16. Machine Learning.vtt

8.7 KB

17. Relative Frequency Probability.mp4

66.0 MB

17. Relative Frequency Probability.vtt

9.4 KB

18. Joint Probability.mp4

90.1 MB

18. Joint Probability.vtt

10.0 KB

19. Conditional Probability.mp4

44.9 MB

19. Conditional Probability.vtt

8.3 KB

2. Introduction to Machine Learning with Python.mp4

6.8 MB

2. Introduction to Machine Learning with Python.vtt

3.4 KB

20. Concept of Independence.mp4

42.3 MB

20. Concept of Independence.vtt

5.9 KB

21. Total Probability.mp4

60.5 MB

21. Total Probability.vtt

9.5 KB

22. Random Variable.mp4

49.0 MB

22. Random Variable.vtt

8.5 KB

23. Probability Distribution.mp4

72.1 MB

23. Probability Distribution.vtt

10.7 KB

24. Cumulative Probability Distribution.mp4

39.4 MB

24. Cumulative Probability Distribution.vtt

8.9 KB

25. Bernoulli Distribution.mp4

40.6 MB

25. Bernoulli Distribution.vtt

8.4 KB

26. Gaussian Distribution.mp4

35.3 MB

26. Gaussian Distribution.vtt

8.2 KB

27. Geometric Distribution.mp4

34.8 MB

27. Geometric Distribution.vtt

7.4 KB

28. Continuous and Normal Distribution.mp4

51.5 MB

28. Continuous and Normal Distribution.vtt

9.8 KB

29. Mathematical Expression and Computation.mp4

35.5 MB

29. Mathematical Expression and Computation.vtt

8.9 KB

3. Analytics in Machine Learning.mp4

49.3 MB

3. Analytics in Machine Learning.vtt

8.7 KB

30. Transpose of Matrix.mp4

48.3 MB

30. Transpose of Matrix.vtt

8.6 KB

31. Properties of Matrix.mp4

50.0 MB

31. Properties of Matrix.vtt

11.9 KB

32. Determinants.mp4

50.0 MB

32. Determinants.vtt

8.8 KB

33. Error Types.mp4

55.8 MB

33. Error Types.vtt

8.5 KB

34. Critical Value Approach.mp4

59.9 MB

34. Critical Value Approach.vtt

7.8 KB

35. Right and Left Sided Critical Approach.mp4

62.1 MB

35. Right and Left Sided Critical Approach.vtt

9.6 KB

36. P-Value Approach.mp4

83.7 MB

36. P-Value Approach.vtt

9.0 KB

37. P-Value Approach Continues.mp4

58.5 MB

37. P-Value Approach Continues.vtt

8.0 KB

38. Hypothesis Testing.mp4

45.6 MB

38. Hypothesis Testing.vtt

9.5 KB

39. Left Tail Test.mp4

24.0 MB

39. Left Tail Test.vtt

4.8 KB

4. Big Data Machine Learning.mp4

53.5 MB

4. Big Data Machine Learning.vtt

7.4 KB

40. Two Tail Test.mp4

43.7 MB

40. Two Tail Test.vtt

9.0 KB

41. Confidence Interval.mp4

55.2 MB

41. Confidence Interval.vtt

8.3 KB

42. Example of Confidence Interval.mp4

66.0 MB

42. Example of Confidence Interval.vtt

10.6 KB

43. Normal and Non Normal Distribution.mp4

34.0 MB

43. Normal and Non Normal Distribution.vtt

9.3 KB

44. Normality Test.mp4

47.9 MB

44. Normality Test.vtt

8.9 KB

45. Normality Test Continues.mp4

43.0 MB

45. Normality Test Continues.vtt

9.2 KB

46. Determining the Transformation.mp4

23.2 MB

46. Determining the Transformation.vtt

5.8 KB

47. T-Test.mp4

47.4 MB

47. T-Test.vtt

9.9 KB

48. T-Test Continue.mp4

49.5 MB

48. T-Test Continue.vtt

7.3 KB

49. More on T-Test.mp4

58.2 MB

49. More on T-Test.vtt

8.8 KB

5. Emerging Trends Machine Learning.mp4

75.9 MB

5. Emerging Trends Machine Learning.vtt

8.0 KB

50. Test of Independence.mp4

56.6 MB

50. Test of Independence.vtt

10.6 KB

51. Example of Test of Independence.mp4

53.6 MB

51. Example of Test of Independence.vtt

9.4 KB

52. Goodness of Fit Test.mp4

42.2 MB

52. Goodness of Fit Test.vtt

6.6 KB

53. Example of Goodness of Fit Test.mp4

39.8 MB

53. Example of Goodness of Fit Test.vtt

6.9 KB

54. Co-Variance.mp4

18.9 MB

54. Co-Variance.vtt

5.1 KB

55. Co-Variance Continues.mp4

25.2 MB

55. Co-Variance Continues.vtt

7.5 KB

6. Data Mining.mp4

45.9 MB

6. Data Mining.vtt

8.1 KB

7. Data Mining Continues.mp4

71.0 MB

7. Data Mining Continues.vtt

7.0 KB

8. Supervised and Unsupervised.mp4

47.6 MB

8. Supervised and Unsupervised.vtt

7.6 KB

9. Sampling Method in Machine Learning.mp4

32.6 MB

9. Sampling Method in Machine Learning.vtt

7.6 KB

/10. Natural Language Processing (NLP) Tutorials/

1. Intoroduction to NLP.mp4

34.3 MB

1. Intoroduction to NLP.vtt

7.4 KB

10. Stemming and Lemmatization Continues.mp4

64.2 MB

10. Stemming and Lemmatization Continues.vtt

7.5 KB

11. Convert Token No Stopwords.mp4

65.7 MB

11. Convert Token No Stopwords.vtt

5.9 KB

12. Machine Learning Algorithms.mp4

62.9 MB

12. Machine Learning Algorithms.vtt

6.5 KB

2. Text Preprocessing.mp4

41.3 MB

2. Text Preprocessing.vtt

6.4 KB

3. Feature Extraction.mp4

4.7 MB

3. Feature Extraction.vtt

1.6 KB

4. NLP Installation.mp4

62.6 MB

4. NLP Installation.vtt

10.1 KB

5. NLP - Demo.mp4

93.8 MB

5. NLP - Demo.vtt

10.7 KB

6. Replacing Contractions.mp4

141.6 MB

6. Replacing Contractions.vtt

10.6 KB

7. Tokenize Dataset.mp4

72.8 MB

7. Tokenize Dataset.vtt

5.4 KB

8. Remove Stopwords.mp4

71.6 MB

8. Remove Stopwords.vtt

5.8 KB

9. Stemming and Lemmatization.mp4

100.7 MB

9. Stemming and Lemmatization.vtt

9.3 KB

/11. Bayesian Machine Learning AB Testing/

1. Introduction to Bayesian Machine Learning.mp4

38.6 MB

1. Introduction to Bayesian Machine Learning.vtt

10.1 KB

2. Example of Bayesian Machine Learning.mp4

33.4 MB

2. Example of Bayesian Machine Learning.vtt

6.8 KB

3. Example of Bayesian Machine Learning Continues.mp4

37.9 MB

3. Example of Bayesian Machine Learning Continues.vtt

4.5 KB

4. MCMC Module of PYMC Implementation.mp4

45.5 MB

4. MCMC Module of PYMC Implementation.vtt

4.2 KB

5. Running the MCMC Module.mp4

44.6 MB

5. Running the MCMC Module.vtt

4.9 KB

6. Multiple Variant Testing Using Hierarchial Model.mp4

48.2 MB

6. Multiple Variant Testing Using Hierarchial Model.vtt

7.6 KB

7. Example of Multiple Variant Testing.mp4

30.8 MB

7. Example of Multiple Variant Testing.vtt

2.4 KB

8. Example of Multiple Variant Testing Continues.mp4

54.8 MB

8. Example of Multiple Variant Testing Continues.vtt

8.1 KB

/12. Machine Learning with R/

1. Introduction to Machine Learning with Python.mp4

61.1 MB

1. Introduction to Machine Learning with Python.vtt

9.4 KB

10. 2.10 Problem and Solution.mp4

83.5 MB

10. 2.10 Problem and Solution.vtt

7.8 KB

100. Diagnostic Checking.mp4

63.5 MB

100. Diagnostic Checking.vtt

8.9 KB

101. Forecasting Using Stock Price.mp4

114.2 MB

101. Forecasting Using Stock Price.vtt

9.9 KB

102. Stock Price Index.mp4

104.7 MB

102. Stock Price Index.vtt

9.0 KB

103. Stock Price Index Continues.mp4

99.8 MB

103. Stock Price Index Continues.vtt

7.3 KB

104. Prophet Stock.mp4

52.5 MB

104. Prophet Stock.vtt

3.7 KB

105. Run Prophet Stock.mp4

82.0 MB

105. Run Prophet Stock.vtt

6.9 KB

106. Time Series Data Denationalization.mp4

106.2 MB

106. Time Series Data Denationalization.vtt

9.6 KB

107. Time Series Data Denationalization Continues.mp4

82.3 MB

107. Time Series Data Denationalization Continues.vtt

6.8 KB

108. Average of Quarter Denationalization.mp4

133.1 MB

108. Average of Quarter Denationalization.vtt

9.6 KB

109. Regression of Denationalization.mp4

108.8 MB

109. Regression of Denationalization.vtt

7.9 KB

11. Exponentiation Right to Left.mp4

55.8 MB

11. Exponentiation Right to Left.vtt

6.6 KB

110. Gradient Boosting Machines.mp4

70.3 MB

110. Gradient Boosting Machines.vtt

9.3 KB

111. Errors in Gradient Boosting Machines.mp4

60.4 MB

111. Errors in Gradient Boosting Machines.vtt

10.5 KB

112. What is Error Rate in Gradient Boosting Machines.mp4

60.4 MB

112. What is Error Rate in Gradient Boosting Machines.vtt

7.0 KB

113. Optimization Gradient Boosting Machines.mp4

54.3 MB

113. Optimization Gradient Boosting Machines.vtt

6.8 KB

114. Gradient Boosting Trees (GBT).mp4

40.3 MB

114. Gradient Boosting Trees (GBT).vtt

5.6 KB

115. Dataset Boosting in Gradient.mp4

101.1 MB

115. Dataset Boosting in Gradient.vtt

10.8 KB

116. Example of Dataset Boosting in Gradient.mp4

100.4 MB

116. Example of Dataset Boosting in Gradient.vtt

11.1 KB

117. Example of Dataset Boosting in Gradient Continues.mp4

118.7 MB

117. Example of Dataset Boosting in Gradient Continues.vtt

12.9 KB

118. Market Basket Analysis Association Rules.mp4

103.2 MB

118. Market Basket Analysis Association Rules.vtt

11.0 KB

119. Market Basket Analysis Association Rules Continues.mp4

82.1 MB

119. Market Basket Analysis Association Rules Continues.vtt

9.8 KB

12. 2.13 Avoiding Some Common Mistakes.mp4

73.2 MB

12. 2.13 Avoiding Some Common Mistakes.vtt

7.3 KB

120. Market Basket Analysis Interpretation.mp4

52.7 MB

120. Market Basket Analysis Interpretation.vtt

6.9 KB

121. Implementation of Market Basket Analysis.mp4

31.8 MB

121. Implementation of Market Basket Analysis.vtt

4.7 KB

122. Example of Market Basket Analysis.mp4

88.9 MB

122. Example of Market Basket Analysis.vtt

9.3 KB

123. Datamining in Market Basket Analysis.mp4

90.1 MB

123. Datamining in Market Basket Analysis.vtt

11.0 KB

124. Market Basket Analysis Using Rstudio.mp4

82.3 MB

124. Market Basket Analysis Using Rstudio.vtt

9.6 KB

125. Market Basket Analysis Using Rstudio Continues.mp4

98.7 MB

125. Market Basket Analysis Using Rstudio Continues.vtt

98.7 MB

126. More on Rstudio in Market Analysis.mp4

128.5 MB

126. More on Rstudio in Market Analysis.vtt

11.5 KB

127. New Development in Machine Learning.mp4

97.8 MB

127. New Development in Machine Learning.vtt

97.8 MB

128. Data Scientist in Machine Learnirng.mp4

77.6 MB

128. Data Scientist in Machine Learnirng.vtt

10.3 KB

129. Types of Detection in Machine Learning.mp4

107.9 MB

129. Types of Detection in Machine Learning.vtt

9.7 KB

13. Simple Linear Regression.mp4

71.5 MB

13. Simple Linear Regression.vtt

10.7 KB

130. Example of New Development in Machine Learning.mp4

83.1 MB

130. Example of New Development in Machine Learning.vtt

9.4 KB

131. Example of New Development in Machine Learning Continues.mp4

55.7 MB

131. Example of New Development in Machine Learning Continues.vtt

4.6 KB

14. Simple Linear Regression Continues.mp4

41.6 MB

14. Simple Linear Regression Continues.vtt

6.2 KB

15. What is Rsquare.mp4

81.4 MB

15. What is Rsquare.vtt

7.9 KB

16. Standard Error.mp4

57.2 MB

16. Standard Error.vtt

7.5 KB

17. General Statistics.mp4

54.9 MB

17. General Statistics.vtt

4.1 KB

18. General Statistics Continues.mp4

52.7 MB

18. General Statistics Continues.vtt

5.9 KB

19. Simple Linear Regression and More of Statistics.mp4

72.6 MB

19. Simple Linear Regression and More of Statistics.vtt

11.0 KB

2. How do Machine Learn.mp4

54.2 MB

2. How do Machine Learn.vtt

8.3 KB

20. Open the Studio.mp4

42.4 MB

20. Open the Studio.vtt

6.0 KB

21. What is R Square.mp4

83.4 MB

21. What is R Square.vtt

8.2 KB

22. What is STD Error.mp4

58.1 MB

22. What is STD Error.vtt

6.9 KB

23. Reject Null Hypothesis.mp4

88.3 MB

23. Reject Null Hypothesis.vtt

8.4 KB

24. Variance Covariance and Correlation.mp4

85.9 MB

24. Variance Covariance and Correlation.vtt

11.8 KB

25. Root names and Types of Distribution Function.mp4

75.2 MB

25. Root names and Types of Distribution Function.vtt

10.8 KB

26. Generating Random Numbers and Combination Function.mp4

66.2 MB

26. Generating Random Numbers and Combination Function.vtt

7.1 KB

27. Probabilities for Discrete Distribution Function.mp4

87.6 MB

27. Probabilities for Discrete Distribution Function.vtt

9.1 KB

28. Quantile Function and Poison Distribution.mp4

81.1 MB

28. Quantile Function and Poison Distribution.vtt

8.6 KB

29. Students T Distribution, Hypothesis and Example.mp4

66.3 MB

29. Students T Distribution, Hypothesis and Example.vtt

7.3 KB

3. Steps to Apply Machine Learning.mp4

47.9 MB

3. Steps to Apply Machine Learning.vtt

7.4 KB

30. Chai-Square Distribution.mp4

43.3 MB

30. Chai-Square Distribution.vtt

5.0 KB

31. Data Visualization.mp4

81.6 MB

31. Data Visualization.vtt

7.3 KB

32. More on Data Visualization.mp4

74.0 MB

32. More on Data Visualization.vtt

6.9 KB

33. Multiple Linear Regression.mp4

94.8 MB

33. Multiple Linear Regression.vtt

8.0 KB

34. Multiple Linear Regression Continues.mp4

73.4 MB

34. Multiple Linear Regression Continues.vtt

6.5 KB

35. Regression Variables.mp4

106.4 MB

35. Regression Variables.vtt

6.3 KB

36. Generalized Linear Model.mp4

98.3 MB

36. Generalized Linear Model.vtt

10.8 KB

37. Generalized Least Square.mp4

93.1 MB

37. Generalized Least Square.vtt

7.6 KB

38. KNN- Various Methods of Distance Measurements.mp4

55.5 MB

38. KNN- Various Methods of Distance Measurements.vtt

9.2 KB

39. Overview of KNN- (Steps involved).mp4

74.6 MB

39. Overview of KNN- (Steps involved).vtt

10.2 KB

4. Regression and Classification Problems.mp4

65.4 MB

4. Regression and Classification Problems.vtt

8.2 KB

40. Data normalization and prediction on Test Data.mp4

90.6 MB

40. Data normalization and prediction on Test Data.vtt

8.2 KB

41. Improvement of Model Performance and ROC.mp4

89.2 MB

41. Improvement of Model Performance and ROC.vtt

10.9 KB

42. Decision Tree Classifier.mp4

60.6 MB

42. Decision Tree Classifier.vtt

7.7 KB

43. More on Decision Tree Classifier.mp4

85.5 MB

43. More on Decision Tree Classifier.vtt

6.8 KB

44. Pruning of Decision Trees.mp4

87.9 MB

44. Pruning of Decision Trees.vtt

6.9 KB

45. Decision Tree Remaining.mp4

64.1 MB

45. Decision Tree Remaining.vtt

5.7 KB

46. Decision Tree Remaining Continues.mp4

49.0 MB

46. Decision Tree Remaining Continues.vtt

5.4 KB

47. General concept of Random Forest.mp4

67.4 MB

47. General concept of Random Forest.vtt

11.2 KB

48. Ada Boosting and Ensemble Learning.mp4

99.8 MB

48. Ada Boosting and Ensemble Learning.vtt

11.1 KB

49. Data Visualization and Preparation.mp4

93.6 MB

49. Data Visualization and Preparation.vtt

10.2 KB

5. Basic Data Manipulation in R.mp4

75.2 MB

5. Basic Data Manipulation in R.vtt

8.3 KB

50. Tuning Random Forest Model.mp4

66.5 MB

50. Tuning Random Forest Model.vtt

7.3 KB

51. Evaluation of Random Forest Model Performance.mp4

69.1 MB

51. Evaluation of Random Forest Model Performance.vtt

6.9 KB

52. Introduction to Kmeans Clustering.mp4

78.7 MB

52. Introduction to Kmeans Clustering.vtt

11.5 KB

53. Kmeans Elbow Point and Dataset.mp4

94.9 MB

53. Kmeans Elbow Point and Dataset.vtt

10.4 KB

54. Example of Kmeans Dataset.mp4

128.6 MB

54. Example of Kmeans Dataset.vtt

11.1 KB

55. Creating a Graph for Kmeans Clustering.mp4

132.8 MB

55. Creating a Graph for Kmeans Clustering.vtt

10.7 KB

56. Creating a Graph for Kmeans Clustering Continues.mp4

95.0 MB

56. Creating a Graph for Kmeans Clustering Continues.vtt

7.2 KB

57. Aggregation Function of Clustering.mp4

82.3 MB

57. Aggregation Function of Clustering.vtt

8.5 KB

58. Conditional Probability with Bayes Algorithm.mp4

87.0 MB

58. Conditional Probability with Bayes Algorithm.vtt

9.7 KB

59. Venn Diagram Naive Bayes Classification.mp4

64.6 MB

59. Venn Diagram Naive Bayes Classification.vtt

8.9 KB

6. More on Data Manipulation in R.mp4

65.2 MB

6. More on Data Manipulation in R.vtt

6.7 KB

60. Component OF Bayes Theorem using Frequency Table.mp4

91.2 MB

60. Component OF Bayes Theorem using Frequency Table.vtt

10.8 KB

61. Naive Bayes Classification Algorithm and Laplace Estimator.mp4

73.8 MB

61. Naive Bayes Classification Algorithm and Laplace Estimator.vtt

8.9 KB

62. Example of Naive Bayes Classification.mp4

85.6 MB

62. Example of Naive Bayes Classification.vtt

10.0 KB

63. Example of Naive Bayes Classification Continues.mp4

105.0 MB

63. Example of Naive Bayes Classification Continues.vtt

11.3 KB

64. Spam and Ham Messages in Word Cloud.mp4

94.6 MB

64. Spam and Ham Messages in Word Cloud.vtt

9.2 KB

65. Implementation of Dictionary and Document Term Matrix.mp4

85.4 MB

65. Implementation of Dictionary and Document Term Matrix.vtt

7.1 KB

66. Executes the Function Naive Bayes.mp4

94.2 MB

66. Executes the Function Naive Bayes.vtt

9.2 KB

67. Support Vector Machine with Black Box Method.mp4

62.5 MB

67. Support Vector Machine with Black Box Method.vtt

9.5 KB

68. Linearly and Non- Linearly Support Vector Machine.mp4

55.6 MB

68. Linearly and Non- Linearly Support Vector Machine.vtt

9.8 KB

69. Kernal Trick.mp4

60.0 MB

69. Kernal Trick.vtt

9.9 KB

7. Basic Data Manipulation in R - Practical.mp4

75.2 MB

7. Basic Data Manipulation in R - Practical.vtt

8.3 KB

70. Gaussian RBF Kernal and OCR with SVMs.mp4

85.1 MB

70. Gaussian RBF Kernal and OCR with SVMs.vtt

9.3 KB

71. Examples of Gaussian RBF Kernal and OCR with SVMs.mp4

80.7 MB

71. Examples of Gaussian RBF Kernal and OCR with SVMs.vtt

7.0 KB

72. Summary of Support Vector Machine.mp4

82.1 MB

72. Summary of Support Vector Machine.vtt

8.2 KB

73. Feature Selection Dimension Reduction Technique.mp4

90.9 MB

73. Feature Selection Dimension Reduction Technique.vtt

10.0 KB

74. Feature Extraction Dimension Reduction Technique.mp4

86.5 MB

74. Feature Extraction Dimension Reduction Technique.vtt

10.1 KB

75. Dimension Reduction Technique Example.mp4

92.4 MB

75. Dimension Reduction Technique Example.vtt

9.0 KB

76. Dimension Reduction Technique Example Continues.mp4

88.3 MB

76. Dimension Reduction Technique Example Continues.vtt

7.9 KB

77. Introduction Principal Component Analysis.mp4

70.0 MB

77. Introduction Principal Component Analysis.vtt

11.3 KB

78. Steps of PCA.mp4

64.4 MB

78. Steps of PCA.vtt

10.2 KB

79. Steps of PCA Continues.mp4

62.8 MB

79. Steps of PCA Continues.vtt

9.4 KB

8. Create a Vector.mp4

66.7 MB

8. Create a Vector.vtt

6.9 KB

80. Eigen Values.mp4

39.6 MB

80. Eigen Values.vtt

7.1 KB

81. Eigen Vectors.mp4

41.5 MB

81. Eigen Vectors.vtt

7.1 KB

82. Principal Component Analysis using Pr-Comp.mp4

109.1 MB

82. Principal Component Analysis using Pr-Comp.vtt

10.0 KB

83. Principal Component Analysis using Pr-Comp Continues.mp4

80.3 MB

83. Principal Component Analysis using Pr-Comp Continues.vtt

8.3 KB

84. C Bind Type in PCA.mp4

94.0 MB

84. C Bind Type in PCA.vtt

7.8 KB

85. R Type Model.mp4

127.2 MB

85. R Type Model.vtt

10.8 KB

86. Black Box Method in Neural Network.mp4

91.6 MB

86. Black Box Method in Neural Network.vtt

8.6 KB

87. Characteristics of a Neural Networks.mp4

76.2 MB

87. Characteristics of a Neural Networks.vtt

9.0 KB

88. Network Topology of a Neural Networks.mp4

73.9 MB

88. Network Topology of a Neural Networks.vtt

10.6 KB

89. Weight Adjustment and Case Update.mp4

84.9 MB

89. Weight Adjustment and Case Update.vtt

11.2 KB

9. 2.7 Problem and Solution.mp4

73.3 MB

9. 2.7 Problem and Solution.vtt

6.6 KB

90. Introduction Model Building in R.mp4

105.8 MB

90. Introduction Model Building in R.vtt

9.9 KB

91. Installing the Package of Model Building in R.mp4

92.8 MB

91. Installing the Package of Model Building in R.vtt

10.2 KB

92. Nodes in Model Building in R.mp4

74.2 MB

92. Nodes in Model Building in R.vtt

7.9 KB

93. Example of Model Building in R.mp4

85.6 MB

93. Example of Model Building in R.vtt

8.3 KB

94. Time Series Analysis.mp4

71.8 MB

94. Time Series Analysis.vtt

7.6 KB

95. Pattern in Time Series Data.mp4

53.5 MB

95. Pattern in Time Series Data.vtt

7.5 KB

96. Time Series Modelling.mp4

58.7 MB

96. Time Series Modelling.vtt

8.5 KB

97. Moving Average Model.mp4

70.5 MB

97. Moving Average Model.vtt

9.6 KB

98. Auto Correlation Function.mp4

45.2 MB

98. Auto Correlation Function.vtt

8.4 KB

99. Inference of ACF and PFCF.mp4

47.4 MB

99. Inference of ACF and PFCF.vtt

7.3 KB

/13. BIP - Business Intelligence Publisher using Siebel/

1. Introduction to BIP.mp4

22.0 MB

1. Introduction to BIP.vtt

5.0 KB

10. Siebel Applets ‚ Business Obejct and Business Components Part 2.mp4

94.7 MB

10. Siebel Applets ‚ Business Obejct and Business Components Part 2.vtt

10.1 KB

11. IntegrationObjectsANDIntegrationObjectComponents.mp4

106.0 MB

11. IntegrationObjectsANDIntegrationObjectComponents.vtt

11.1 KB

12. Siebel Views and View Associations to Reports.mp4

86.8 MB

12. Siebel Views and View Associations to Reports.vtt

7.6 KB

13. Siebel HI-OpenUI framworks for BIP Reports and demo of AddIn.mp4

44.8 MB

13. Siebel HI-OpenUI framworks for BIP Reports and demo of AddIn.vtt

6.3 KB

14. Process_Flow_Overview.mp4

54.3 MB

14. Process_Flow_Overview.vtt

8.5 KB

15. Process_Flow_ConnectedMode.mp4

44.3 MB

15. Process_Flow_ConnectedMode.vtt

6.3 KB

16. Process_Flow_DisconnectedMode.mp4

44.2 MB

16. Process_Flow_DisconnectedMode.vtt

7.1 KB

17. Siebel Report Business Service.mp4

81.1 MB

17. Siebel Report Business Service.vtt

8.2 KB

2. User Types.mp4

10.9 MB

2. User Types.vtt

3.9 KB

3. Running Modes.mp4

35.1 MB

3. Running Modes.vtt

6.7 KB

4. Learning about BIP Add-Ins.mp4

62.7 MB

4. Learning about BIP Add-Ins.vtt

7.0 KB

5. BIP_Into_5_BIP_AddIn2 and BIP_Into_6.mp4

67.5 MB

5. BIP_Into_5_BIP_AddIn2 and BIP_Into_6.vtt

7.2 KB

6. BIP_Into_7_Customized Reports Overview.mp4

62.2 MB

6. BIP_Into_7_Customized Reports Overview.vtt

6.8 KB

7. BIP_Into_8_Developing Reports Overview.mp4

20.1 MB

7. BIP_Into_8_Developing Reports Overview.vtt

4.8 KB

8. Showing Report Views on Application.mp4

115.4 MB

8. Showing Report Views on Application.vtt

11.6 KB

9. Siebel Applets ‚ Business Obejct and Business Components Part 1.mp4

91.6 MB

9. Siebel Applets ‚ Business Obejct and Business Components Part 1.vtt

10.5 KB

/14. BI - Business Intelligence/

1. BI Intro,definition.mp4

53.7 MB

1. BI Intro,definition.vtt

10.7 KB

10. planning deliverables,stage 3.mp4

35.8 MB

10. planning deliverables,stage 3.vtt

6.9 KB

100. Regression Model(Continues).mp4

46.9 MB

100. Regression Model(Continues).vtt

10.6 KB

101. Market Basket Analysis Applications.mp4

49.0 MB

101. Market Basket Analysis Applications.vtt

11.7 KB

102. Market Basket Analysis Applications(Continues).mp4

37.7 MB

102. Market Basket Analysis Applications(Continues).vtt

10.7 KB

11. Project Requirement,Data Analysis,Application part 1.mp4

55.5 MB

11. Project Requirement,Data Analysis,Application part 1.vtt

11.0 KB

12. Project Requirement,Data Analysis,Application part 2.mp4

68.3 MB

12. Project Requirement,Data Analysis,Application part 2.vtt

8.9 KB

13. Project Requirement,Data Analysis,Application part 3.mp4

49.3 MB

13. Project Requirement,Data Analysis,Application part 3.vtt

8.0 KB

14. Meta Data.mp4

11.6 MB

14. Meta Data.vtt

2.1 KB

15. data standardisation,meta data,etl,business analysis part 1.mp4

64.5 MB

15. data standardisation,meta data,etl,business analysis part 1.vtt

11.0 KB

16. data standardisation,meta data,etl,business analysis part 2.mp4

53.6 MB

16. data standardisation,meta data,etl,business analysis part 2.vtt

9.7 KB

17. data standardisation,meta data,etl,business analysis part 3.mp4

21.5 MB

17. data standardisation,meta data,etl,business analysis part 3.vtt

3.4 KB

18. ETL Design,Meta DATA ,STAGE 5 CONSTRUCTION DEVELOPMENT RECONCILATION Part 1.mp4

49.4 MB

18. ETL Design,Meta DATA ,STAGE 5 CONSTRUCTION DEVELOPMENT RECONCILATION Part 1.vtt

10.1 KB

19. ETL Design,Meta DATA ,STAGE 5 CONSTRUCTION DEVELOPMENT RECONCILATION Part 2.mp4

68.5 MB

19. ETL Design,Meta DATA ,STAGE 5 CONSTRUCTION DEVELOPMENT RECONCILATION Part 2.vtt

12.0 KB

2. multidimensional db part 1.mp4

52.5 MB

2. multidimensional db part 1.vtt

9.0 KB

20. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 1.mp4

48.9 MB

20. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 1.vtt

9.9 KB

21. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 2.mp4

18.2 MB

21. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 2.vtt

4.3 KB

22. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 3.mp4

63.8 MB

22. ETL,APPLICATION dEVELOPMENT,DATA gaps,meta data repository,deployment Part 3.vtt

11.3 KB

23. database & recovery,release evaluation.mp4

32.0 MB

23. database & recovery,release evaluation.vtt

32.0 MB

24. post implementation review,toyota case.mp4

47.1 MB

24. post implementation review,toyota case.vtt

8.2 KB

25. frame work for BI Part 1.mp4

61.6 MB

25. frame work for BI Part 1.vtt

11.9 KB

26. frame work for BI Part 2.mp4

58.8 MB

26. frame work for BI Part 2.vtt

9.5 KB

27. frame work for BI Part 3.mp4

34.7 MB

27. frame work for BI Part 3.vtt

5.3 KB

28. frame work for BI Part 4.mp4

40.0 MB

28. frame work for BI Part 4.vtt

5.1 KB

29. strategic imperitive of BI Part 1.mp4

51.7 MB

29. strategic imperitive of BI Part 1.vtt

8.0 KB

3. multidimensional db part 2.mp4

64.2 MB

3. multidimensional db part 2.vtt

11.0 KB

30. strategic imperitive of BI Part 2.mp4

43.8 MB

30. strategic imperitive of BI Part 2.vtt

6.7 KB

31. Target System.mp4

50.1 MB

31. Target System.vtt

7.9 KB

32. Data warehouse and ETL.mp4

34.6 MB

32. Data warehouse and ETL.vtt

6.4 KB

33. Facebook dataspace management with open source tools.mp4

40.2 MB

33. Facebook dataspace management with open source tools.vtt

6.2 KB

34. Agile Development Process.mp4

36.2 MB

34. Agile Development Process.vtt

5.9 KB

35. Agile Development Process Continues.mp4

46.8 MB

35. Agile Development Process Continues.vtt

7.5 KB

36. Challenges on dash board.mp4

33.8 MB

36. Challenges on dash board.vtt

4.6 KB

37. Building Users Expert Profile.mp4

65.8 MB

37. Building Users Expert Profile.vtt

8.3 KB

38. Semantic Technologies.mp4

55.7 MB

38. Semantic Technologies.vtt

7.2 KB

39. Semantic Tools.mp4

56.3 MB

39. Semantic Tools.vtt

6.9 KB

4. multidimensional db part 3.mp4

58.8 MB

4. multidimensional db part 3.vtt

10.5 KB

40. BI Algorithm By Example.mp4

44.1 MB

40. BI Algorithm By Example.vtt

8.7 KB

41. Benefits of BI.mp4

29.0 MB

41. Benefits of BI.vtt

8.3 KB

42. Benefits of BI Continues.mp4

45.8 MB

42. Benefits of BI Continues.vtt

8.3 KB

43. Amazon.com and Net Flix.mp4

40.9 MB

43. Amazon.com and Net Flix.vtt

7.4 KB

44. What is Information Governance.mp4

52.4 MB

44. What is Information Governance.vtt

7.9 KB

45. Other BI Applications are used to store.mp4

47.5 MB

45. Other BI Applications are used to store.vtt

7.1 KB

46. Designing and Implementing BI Program.mp4

49.0 MB

46. Designing and Implementing BI Program.vtt

6.0 KB

47. ETL.mp4

39.2 MB

47. ETL.vtt

7.7 KB

48. ETL Continues.mp4

32.3 MB

48. ETL Continues.vtt

6.3 KB

49. Loading.mp4

36.8 MB

49. Loading.vtt

7.2 KB

5. dbms platform.mp4

12.4 MB

5. dbms platform.vtt

2.9 KB

50. Type 2 Dimension.mp4

54.4 MB

50. Type 2 Dimension.vtt

8.8 KB

51. Loading Fact Tables.mp4

49.7 MB

51. Loading Fact Tables.vtt

7.5 KB

52. Genearl Idea.mp4

43.4 MB

52. Genearl Idea.vtt

7.4 KB

53. Conceptual Model.mp4

38.7 MB

53. Conceptual Model.vtt

8.0 KB

54. Conceptual Model Continues.mp4

52.4 MB

54. Conceptual Model Continues.vtt

8.6 KB

55. On Going Or Future Works.mp4

53.9 MB

55. On Going Or Future Works.vtt

11.6 KB

56. Why Meta Data.mp4

44.8 MB

56. Why Meta Data.vtt

12.7 KB

57. Essentials Capabilities.mp4

28.8 MB

57. Essentials Capabilities.vtt

7.6 KB

58. Common Warehouse Metamodels.mp4

32.3 MB

58. Common Warehouse Metamodels.vtt

7.0 KB

59. Data Advantage Group.mp4

56.6 MB

59. Data Advantage Group.vtt

10.4 KB

6. technical non technical infrastructre part 1.mp4

45.2 MB

6. technical non technical infrastructre part 1.vtt

12.4 KB

60. DBMS Meta Data Tips.mp4

67.4 MB

60. DBMS Meta Data Tips.vtt

10.7 KB

61. For Building The Dataware house(Extraction Team).mp4

54.2 MB

61. For Building The Dataware house(Extraction Team).vtt

8.3 KB

62. Meta Data Essentials For IT.mp4

51.0 MB

62. Meta Data Essentials For IT.vtt

8.1 KB

63. Business Metadata.mp4

43.1 MB

63. Business Metadata.vtt

9.7 KB

64. Business Meta Data (Continues).mp4

25.4 MB

64. Business Meta Data (Continues).vtt

5.3 KB

65. Project Planning.mp4

59.6 MB

65. Project Planning.vtt

9.3 KB

66. Project Planning (Continues).mp4

32.7 MB

66. Project Planning (Continues).vtt

5.8 KB

67. Deployment Process.mp4

78.1 MB

67. Deployment Process.vtt

13.8 KB

68. Chapter Outline.mp4

41.3 MB

68. Chapter Outline.vtt

9.2 KB

69. Break-Even Analysis.mp4

39.7 MB

69. Break-Even Analysis.vtt

9.0 KB

7. technical non technical infrastructre part 2.mp4

53.7 MB

7. technical non technical infrastructre part 2.vtt

10.4 KB

70. Examples Of Break-Even Analysis.mp4

45.8 MB

70. Examples Of Break-Even Analysis.vtt

9.9 KB

71. Multivirate Analysis.mp4

52.4 MB

71. Multivirate Analysis.vtt

8.5 KB

72. Multivirate Analysis (Continues).mp4

32.4 MB

72. Multivirate Analysis (Continues).vtt

7.7 KB

73. Graphs.mp4

43.5 MB

73. Graphs.vtt

10.7 KB

74. Why Meta Data Is Important.mp4

41.4 MB

74. Why Meta Data Is Important.vtt

7.6 KB

75. System Development.mp4

31.4 MB

75. System Development.vtt

8.8 KB

76. Project Risk Assesment Factors.mp4

48.6 MB

76. Project Risk Assesment Factors.vtt

11.1 KB

77. Managing Project Time.mp4

38.7 MB

77. Managing Project Time.vtt

9.0 KB

78. Prototyping Benefits.mp4

64.4 MB

78. Prototyping Benefits.vtt

12.3 KB

79. Incremental Development.mp4

60.8 MB

79. Incremental Development.vtt

12.1 KB

8. change control board part 1.mp4

60.0 MB

8. change control board part 1.vtt

9.7 KB

80. Incremental Development(Continues).mp4

50.2 MB

80. Incremental Development(Continues).vtt

10.3 KB

81. What is Cluster Analysis.mp4

51.3 MB

81. What is Cluster Analysis.vtt

10.2 KB

82. Types Of Clusters.mp4

51.7 MB

82. Types Of Clusters.vtt

7.4 KB

83. Cluster Benefits.mp4

37.4 MB

83. Cluster Benefits.vtt

6.8 KB

84. Kmeans Clustering Method.mp4

90.1 MB

84. Kmeans Clustering Method.vtt

14.0 KB

85. What Is The Problem With PAM.mp4

64.6 MB

85. What Is The Problem With PAM.vtt

12.5 KB

86. BIRCH (1996).mp4

59.4 MB

86. BIRCH (1996).vtt

8.8 KB

87. Density Rechable And Density Conected.mp4

55.4 MB

87. Density Rechable And Density Conected.vtt

9.1 KB

88. Denclue Technical Issues.mp4

69.0 MB

88. Denclue Technical Issues.vtt

11.6 KB

89. The Wave Cluster Algorithm.mp4

50.6 MB

89. The Wave Cluster Algorithm.vtt

8.0 KB

9. change control board part 2.mp4

50.9 MB

9. change control board part 2.vtt

10.3 KB

90. More On Conceptual Clustering.mp4

63.8 MB

90. More On Conceptual Clustering.vtt

9.3 KB

91. Clustering in Quest.mp4

61.2 MB

91. Clustering in Quest.vtt

11.8 KB

92. Why Constraints Based Cluster Analysis.mp4

54.3 MB

92. Why Constraints Based Cluster Analysis.vtt

8.4 KB

93. What Is Outlier Discovery.mp4

44.0 MB

93. What Is Outlier Discovery.vtt

7.4 KB

94. Segmentation In Data Mining.mp4

48.7 MB

94. Segmentation In Data Mining.vtt

10.7 KB

95. Bottle Neck Of GSP & Spade.mp4

54.1 MB

95. Bottle Neck Of GSP & Spade.vtt

54.1 MB

96. Why Deal with Sequential Data.mp4

43.6 MB

96. Why Deal with Sequential Data.vtt

11.7 KB

97. Algorithm Definition.mp4

43.9 MB

97. Algorithm Definition.vtt

10.3 KB

98. Introduction To Regression Analysis.mp4

37.1 MB

98. Introduction To Regression Analysis.vtt

7.6 KB

99. Regression Model.mp4

55.6 MB

99. Regression Model.vtt

11.2 KB

/2. Machine Learning with Tensorflow for Beginners/

1. Introduction to Machine Learning with Tensorflow.mp4

18.7 MB

1. Introduction to Machine Learning with Tensorflow.vtt

5.5 KB

10. Understanding what Anaconda cloud is.mp4

84.7 MB

10. Understanding what Anaconda cloud is.vtt

8.7 KB

100. Run Optimizer.mp4

14.3 MB

100. Run Optimizer.vtt

1.9 KB

101. Create a Range.mp4

53.9 MB

101. Create a Range.vtt

6.5 KB

102. Introduction to Neural Networks.mp4

5.9 MB

102. Introduction to Neural Networks.vtt

1.3 KB

103. Basic-Concepts.mp4

106.5 MB

103. Basic-Concepts.vtt

13.2 KB

104. Activative Functions.mp4

104.8 MB

104. Activative Functions.vtt

11.1 KB

105. Activative Functions Input to Output.mp4

60.5 MB

105. Activative Functions Input to Output.vtt

60.5 MB

106. Classification Functions.mp4

64.7 MB

106. Classification Functions.vtt

8.6 KB

107. Tensorflow-Playground.mp4

143.3 MB

107. Tensorflow-Playground.vtt

14.5 KB

108. Mnist-Dataset.mp4

57.0 MB

108. Mnist-Dataset.vtt

11.0 KB

109. Mnist-Dataset Continue.mp4

98.3 MB

109. Mnist-Dataset Continue.vtt

12.4 KB

11. Installation of Anaconda for Windows.mp4

52.7 MB

11. Installation of Anaconda for Windows.vtt

7.5 KB

110. More on Mnist-Dataset.mp4

85.9 MB

110. More on Mnist-Dataset.vtt

7.9 KB

12. Installation of Anaconda in Linux.mp4

30.6 MB

12. Installation of Anaconda in Linux.vtt

4.0 KB

13. Using the Jupyter notebook.mp4

27.3 MB

13. Using the Jupyter notebook.vtt

3.4 KB

14. Getting started with Anaconda.mp4

142.8 MB

14. Getting started with Anaconda.vtt

11.3 KB

15. Determining options for Cloudberry.mp4

41.4 MB

15. Determining options for Cloudberry.vtt

0.0 KB

16. Introduction to Third Party Libraries.mp4

8.6 MB

16. Introduction to Third Party Libraries.vtt

3.6 KB

17. Numpy-Array.mp4.mtd

0.4 KB

17. Numpy-Array.vtt

13.6 KB

18. Numpy-Array Continue.mp4

88.2 MB

18. Numpy-Array Continue.vtt

9.4 KB

19. Arrays.mp4

115.7 MB

19. Arrays.vtt

13.8 KB

2. Understanding Machine Learning.mp4

16.3 MB

2. Understanding Machine Learning.vtt

8.7 KB

20. Arrays Continue.mp4

58.1 MB

20. Arrays Continue.vtt

6.3 KB

21. Indexing.mp4

66.4 MB

21. Indexing.vtt

7.6 KB

22. Indexing Continue.mp4

89.2 MB

22. Indexing Continue.vtt

9.4 KB

23. Universal Functions.mp4

114.9 MB

23. Universal Functions.vtt

11.0 KB

24. Introoduction to Pandas.mp4

27.3 MB

24. Introoduction to Pandas.vtt

4.8 KB

25. Pandas Series.mp4

35.1 MB

25. Pandas Series.vtt

4.8 KB

26. Pandas Series Continue.mp4

39.9 MB

26. Pandas Series Continue.vtt

5.7 KB

27. Import Randin.mp4

68.1 MB

27. Import Randin.vtt

9.6 KB

28. Import Randin Continue.mp4

75.9 MB

28. Import Randin Continue.vtt

10.5 KB

29. Paratmeters.mp4

92.0 MB

29. Paratmeters.vtt

10.6 KB

3. How do Machines Learns.mp4

54.4 MB

3. How do Machines Learns.vtt

14.7 KB

30. Indexing and Database.mp4

39.7 MB

30. Indexing and Database.vtt

4.7 KB

31. Missing Data.mp4

31.8 MB

31. Missing Data.vtt

5.3 KB

32. Missing Data-Groupby.mp4

21.2 MB

32. Missing Data-Groupby.vtt

3.3 KB

33. Missing Data-Groupby Continue.mp4

28.2 MB

33. Missing Data-Groupby Continue.vtt

4.2 KB

34. Concat-Merge-Join.mp4

83.8 MB

34. Concat-Merge-Join.vtt

11.3 KB

35. Operations.mp4

50.4 MB

35. Operations.vtt

6.3 KB

36. Import-Export.mp4

109.7 MB

36. Import-Export.vtt

11.8 KB

37. Python Visualisation.mp4

51.4 MB

37. Python Visualisation.vtt

4.9 KB

38. Mat Plotting.mp4

66.5 MB

38. Mat Plotting.vtt

11.7 KB

39. Multiple Plot Subsections.mp4

65.4 MB

39. Multiple Plot Subsections.vtt

7.8 KB

4. Uses of Machine Learning.mp4

31.7 MB

4. Uses of Machine Learning.vtt

10.2 KB

40. API Functionality.mp4

67.9 MB

40. API Functionality.vtt

8.2 KB

41. Title of the Plot.mp4

96.2 MB

41. Title of the Plot.vtt

180.9 MB

42. Change Size of Articles.mp4

62.7 MB

42. Change Size of Articles.vtt

8.1 KB

43. Two Different Crops.mp4

57.6 MB

43. Two Different Crops.vtt

7.7 KB

44. Mat Plotting Label.mp4

51.7 MB

44. Mat Plotting Label.vtt

6.6 KB

45. Marker Color.mp4

76.2 MB

45. Marker Color.vtt

9.4 KB

46. Create a New Dataframe.mp4

42.2 MB

46. Create a New Dataframe.vtt

4.9 KB

47. Change the Style.mp4

46.6 MB

47. Change the Style.vtt

6.1 KB

48. Index and Value.mp4

43.4 MB

48. Index and Value.vtt

5.3 KB

49. Seaborn-Statistical Data Visualization.mp4

61.9 MB

49. Seaborn-Statistical Data Visualization.vtt

7.6 KB

5. Examples with tensorflow by Google.mp4

60.1 MB

5. Examples with tensorflow by Google.vtt

9.2 KB

50. seaborn library.mp4

100.6 MB

50. seaborn library.vtt

12.9 KB

51. Jointplot.mp4

85.9 MB

51. Jointplot.vtt

10.1 KB

52. Pairplot.mp4

115.1 MB

52. Pairplot.vtt

11.9 KB

53. Barplot.mp4

102.3 MB

53. Barplot.vtt

10.7 KB

54. Boxplot.mp4

51.8 MB

54. Boxplot.vtt

5.9 KB

55. Stripplot.mp4

81.8 MB

55. Stripplot.vtt

7.3 KB

56. Matrix.mp4

97.3 MB

56. Matrix.vtt

0.0 KB

57. Matrix Continue.mp4

34.9 MB

57. Matrix Continue.vtt

3.3 KB

58. Grid.mp4

116.2 MB

58. Grid.vtt

8.9 KB

59. Grid Continue.mp4

59.4 MB

59. Grid Continue.vtt

5.9 KB

6. Setting up the Workstation.mp4

7.4 MB

6. Setting up the Workstation.vtt

3.4 KB

60. Style.mp4

15.6 MB

60. Style.vtt

1.5 KB

61. Python Libraries Conclusion.mp4

13.7 MB

61. Python Libraries Conclusion.vtt

1.8 KB

62. Introduction To Conda Envirement.mp4

21.7 MB

62. Introduction To Conda Envirement.vtt

3.8 KB

63. Scikit Learn.mp4

18.1 MB

63. Scikit Learn.vtt

6.3 KB

64. Scikit Learn Continue.mp4

43.8 MB

64. Scikit Learn Continue.vtt

8.5 KB

65. Datasets.mp4

31.7 MB

65. Datasets.vtt

10.2 KB

66. California Dataset.mp4

63.4 MB

66. California Dataset.vtt

9.1 KB

67. Data Visualization.mp4

92.8 MB

67. Data Visualization.vtt

9.8 KB

68. Datavisualization Continue.mp4

58.2 MB

68. Datavisualization Continue.vtt

8.5 KB

69. Downloading a Test Data.mp4

95.0 MB

69. Downloading a Test Data.vtt

11.1 KB

7. Understanding program languages.mp4

6.8 MB

7. Understanding program languages.vtt

3.8 KB

70. Population Parameter.mp4

82.6 MB

70. Population Parameter.vtt

7.9 KB

71. Processing.mp4

108.6 MB

71. Processing.vtt

48.6 MB

72. Null Values with Median Value.mp4

84.0 MB

72. Null Values with Median Value.vtt

9.5 KB

73. Replace Missing Values.mp4

34.1 MB

73. Replace Missing Values.vtt

3.6 KB

74. Label Enconder.mp4

27.3 MB

74. Label Enconder.vtt

4.2 KB

75. Import Labelencoder.mp4

95.1 MB

75. Import Labelencoder.vtt

10.2 KB

76. Custom Transformation.mp4

29.6 MB

76. Custom Transformation.vtt

3.1 KB

77. Transformer Custom Transformer.mp4

58.7 MB

77. Transformer Custom Transformer.vtt

5.8 KB

78. Housing with Custom Colums.mp4

59.8 MB

78. Housing with Custom Colums.vtt

4.6 KB

79. Numeric Hosing Data.mp4

126.1 MB

79. Numeric Hosing Data.vtt

9.8 KB

8. Understanding and Functions of Jupyter.mp4

68.4 MB

8. Understanding and Functions of Jupyter.vtt

8.7 KB

80. Liner Regression.mp4

52.0 MB

80. Liner Regression.vtt

7.6 KB

81. Fine Tuning Model.mp4

43.4 MB

81. Fine Tuning Model.vtt

5.3 KB

82. Fine Tuning Model Continue.mp4

60.8 MB

82. Fine Tuning Model Continue.vtt

7.3 KB

83. Quick-Recap.mp4

5.6 MB

83. Quick-Recap.vtt

2.0 KB

84. Tensorflow.mp4

60.6 MB

84. Tensorflow.vtt

9.7 KB

85. Tensorflow-Hello-World.mp4

57.3 MB

85. Tensorflow-Hello-World.vtt

11.4 KB

86. Basic Ops.mp4

82.1 MB

86. Basic Ops.vtt

12.6 KB

87. Basic Ops Continue.mp4

73.7 MB

87. Basic Ops Continue.vtt

66.4 MB

88. More on Basic Ops.mp4

71.1 MB

88. More on Basic Ops.vtt

9.0 KB

89. Eager-Mode.mp4

51.2 MB

89. Eager-Mode.vtt

6.2 KB

9. Learning of Jupyter installation.mp4

5.3 MB

9. Learning of Jupyter installation.vtt

2.9 KB

90. Concept.mp4

39.3 MB

90. Concept.vtt

9.6 KB

91. Linear-Regression.mp4

26.5 MB

91. Linear-Regression.vtt

4.8 KB

92. Linear-Model.mp4

47.6 MB

92. Linear-Model.vtt

8.3 KB

93. Matrix Multiplication Function.mp4

79.2 MB

93. Matrix Multiplication Function.vtt

12.1 KB

94. Practice for a Simple Linear Model.mp4

25.6 MB

94. Practice for a Simple Linear Model.vtt

4.1 KB

95. Cost Function.mp4

24.1 MB

95. Cost Function.vtt

4.1 KB

96. Creative Optimizer.mp4

37.9 MB

96. Creative Optimizer.vtt

5.4 KB

97. RR Input and Output Value.mp4

28.8 MB

97. RR Input and Output Value.vtt

4.6 KB

98. Logistic-Regression.mp4

54.1 MB

98. Logistic-Regression.vtt

7.0 KB

99. Global Variabales Initializer.mp4

38.3 MB

99. Global Variabales Initializer.vtt

4.6 KB

/3. Machine Learning Project #1 - Shipping and Time Estimation/

1. Introduction to Shipping and pricing.mp4

27.0 MB

1. Introduction to Shipping and pricing.vtt

3.9 KB

10. Demand Forecasting.mp4

89.3 MB

10. Demand Forecasting.vtt

8.9 KB

11. Distribution of Attributes.mp4

66.8 MB

11. Distribution of Attributes.vtt

6.6 KB

12. Spending Distribution.mp4

86.7 MB

12. Spending Distribution.vtt

5.5 KB

13. Normalization and Discretization.mp4

125.3 MB

13. Normalization and Discretization.vtt

5.8 KB

2. Inventory Status.mp4

109.7 MB

2. Inventory Status.vtt

8.2 KB

3. Defining Data Type.mp4

100.1 MB

3. Defining Data Type.vtt

6.9 KB

4. Data for Validation.mp4

108.3 MB

4. Data for Validation.vtt

6.8 KB

5. Finding the Corelation.mp4

76.2 MB

5. Finding the Corelation.vtt

7.9 KB

6. Density for Numeric Attribute.mp4

92.2 MB

6. Density for Numeric Attribute.vtt

6.8 KB

7. Method for Train Control.mp4

53.0 MB

7. Method for Train Control.vtt

2.8 KB

8. Assigning a Training Set.mp4

131.3 MB

8. Assigning a Training Set.vtt

6.0 KB

9. Mean Absolute Error.mp4

74.9 MB

9. Mean Absolute Error.vtt

6.7 KB

/4. Machine Learning Project #2 - Supply Chain-Demand Trends Analysis/

1. Introduction to Supply Chain.mp4

105.2 MB

1. Introduction to Supply Chain.vtt

6.6 KB

2. G Plot of Heatmap.mp4

82.6 MB

2. G Plot of Heatmap.vtt

4.8 KB

3. Checking the Function Argument.mp4

127.1 MB

3. Checking the Function Argument.vtt

4.0 KB

4. Heatmap for Discretized Dataset.mp4

92.9 MB

4. Heatmap for Discretized Dataset.vtt

8.1 KB

5. Distinguished Methods with Single.mp4

45.7 MB

5. Distinguished Methods with Single.vtt

4.1 KB

6. Analyzing both the Plots.mp4

76.4 MB

6. Analyzing both the Plots.vtt

6.0 KB

7. Defining the Lengths.mp4

106.4 MB

7. Defining the Lengths.vtt

6.7 KB

8. Using Different Clusters.mp4

56.8 MB

8. Using Different Clusters.vtt

4.0 KB

/5. Machine Learning Project #3 - Predicting Prices using Regression/

1. Introduction to Predicting Prices Using Regression.mp4

61.8 MB

1. Introduction to Predicting Prices Using Regression.vtt

11.0 KB

10. Replacing Features with Values.mp4

87.8 MB

10. Replacing Features with Values.vtt

9.0 KB

11. Assigning Quantatative Variables.mp4

48.1 MB

11. Assigning Quantatative Variables.vtt

5.4 KB

12. Converting Columns to Cordinal Forms.mp4

51.2 MB

12. Converting Columns to Cordinal Forms.vtt

4.7 KB

13. Evaluating the Garage Finish Colummn.mp4

69.4 MB

13. Evaluating the Garage Finish Colummn.vtt

7.2 KB

14. Checking Shape of Data Frame.mp4

15.6 MB

14. Checking Shape of Data Frame.vtt

2.2 KB

15. Spliting Data to Train and Test.mp4

72.2 MB

15. Spliting Data to Train and Test.vtt

8.8 KB

16. Algorithm for Predicting Test Values.mp4

29.4 MB

16. Algorithm for Predicting Test Values.vtt

4.2 KB

2. Proximity to Various Conditions.mp4

67.5 MB

2. Proximity to Various Conditions.vtt

11.1 KB

3. Number of Fire Places.mp4

31.7 MB

3. Number of Fire Places.vtt

5.2 KB

4. Adding the Test Value.mp4

86.6 MB

4. Adding the Test Value.vtt

86.6 MB

5. Index to the ID Column.mp4

71.5 MB

5. Index to the ID Column.vtt

8.5 KB

6. Model on Data Set.mp4

86.2 MB

6. Model on Data Set.vtt

8.9 KB

7. Missing Value Imputation.mp4

59.1 MB

7. Missing Value Imputation.vtt

6.2 KB

8. Substituting Features with Value.mp4

96.2 MB

8. Substituting Features with Value.vtt

9.1 KB

9. Imputing a Row using at Command.mp4

75.1 MB

9. Imputing a Row using at Command.vtt

7.4 KB

/6. Machine Learning Project #4 - Banking and Credit Frauds/

1. Introduction to Banking System.mp4

17.9 MB

1. Introduction to Banking System.vtt

6.6 KB

2. Laon Status Grade.mp4

98.0 MB

2. Laon Status Grade.vtt

8.1 KB

3. Logistic Regression and Logistic Question.mp4

67.7 MB

3. Logistic Regression and Logistic Question.vtt

5.7 KB

4. Beta Value.mp4

50.6 MB

4. Beta Value.vtt

2.9 KB

5. Predict Value.mp4

81.6 MB

5. Predict Value.vtt

5.7 KB

6. Performance Value.mp4

66.7 MB

6. Performance Value.vtt

4.4 KB

7. Fals Positive Rate.mp4

45.5 MB

7. Fals Positive Rate.vtt

3.6 KB

/7. Machine Learning Project #5 - Fraud Detection in Credit Payments/

1. Introduction to Fraud Detection in Credit Payments.mp4

18.2 MB

1. Introduction to Fraud Detection in Credit Payments.vtt

6.6 KB

10. VRS.mp4

112.7 MB

10. VRS.vtt

7.0 KB

11. CRS Efficiency and Efficiency.mp4

55.7 MB

11. CRS Efficiency and Efficiency.vtt

5.8 KB

2. Installation of Packages.mp4

76.3 MB

2. Installation of Packages.vtt

7.4 KB

3. Risk Analytics.mp4

86.5 MB

3. Risk Analytics.vtt

10.5 KB

4. Trading Companies and Stocks.mp4

102.4 MB

4. Trading Companies and Stocks.vtt

9.4 KB

5. DEA with Input or Profit and Loss.mp4

92.0 MB

5. DEA with Input or Profit and Loss.vtt

7.5 KB

6. Efficiency Profit and Loss.mp4

67.9 MB

6. Efficiency Profit and Loss.vtt

5.4 KB

7. Rank Functions.mp4

80.2 MB

7. Rank Functions.vtt

6.9 KB

8. RHS Constaints.mp4

93.7 MB

8. RHS Constaints.vtt

8.5 KB

9. Profit and Loss Report.mp4

76.7 MB

9. Profit and Loss Report.vtt

6.1 KB

/8. AWS Machine Learning/

1. Introduction to Amazon Machine Learning (AML).mp4

40.0 MB

1. Introduction to Amazon Machine Learning (AML).vtt

8.5 KB

10. Example of Data Insight In AML.mp4

70.1 MB

10. Example of Data Insight In AML.vtt

11.5 KB

11. More on Data Insight In AML.mp4

57.2 MB

11. More on Data Insight In AML.vtt

8.3 KB

12. ML Model Example in Data Sources.mp4

95.1 MB

12. ML Model Example in Data Sources.vtt

12.8 KB

13. Creating ML Model Evaluating.mp4

88.7 MB

13. Creating ML Model Evaluating.vtt

8.6 KB

14. Advanced Setting In ML Model.mp4

40.3 MB

14. Advanced Setting In ML Model.vtt

4.9 KB

15. Creating ML Model for Batch Prediction.mp4

89.0 MB

15. Creating ML Model for Batch Prediction.vtt

9.9 KB

16. Batch Prediction Result.mp4

49.9 MB

16. Batch Prediction Result.vtt

5.7 KB

17. Overvies of ML Model Handson.mp4

68.5 MB

17. Overvies of ML Model Handson.vtt

7.4 KB

18. ML objects Handson in ML.mp4

47.8 MB

18. ML objects Handson in ML.vtt

4.2 KB

2. Lifecycle of AML.mp4

45.6 MB

2. Lifecycle of AML.vtt

11.9 KB

3. Connecting to Data Source in AML.mp4

19.7 MB

3. Connecting to Data Source in AML.vtt

3.7 KB

4. Creating Data Scheme in AML.mp4

28.2 MB

4. Creating Data Scheme in AML.vtt

6.3 KB

5. Invaild Value and Varible Target in AML.mp4

4.6 MB

5. Invaild Value and Varible Target in AML.vtt

1.1 KB

6. ML Models in AML.mp4

61.6 MB

6. ML Models in AML.vtt

12.7 KB

7. Manging ML Object in AML.mp4

12.6 MB

7. Manging ML Object in AML.vtt

2.6 KB

8. Creating DataSource Handson.mp4

109.2 MB

8. Creating DataSource Handson.vtt

11.5 KB

9. Creating DataSource Handson Continues.mp4

73.3 MB

9. Creating DataSource Handson Continues.vtt

8.1 KB

/9. Deep Learning Tutorials/

1. Introduction to Deep Learning.mp4

29.4 MB

1. Introduction to Deep Learning.vtt

5.1 KB

10. Data for Classifier.mp4

52.2 MB

10. Data for Classifier.vtt

5.4 KB

11. Implementing with Keras.mp4

47.8 MB

11. Implementing with Keras.vtt

3.8 KB

12. Values in Data Set.mp4

75.9 MB

12. Values in Data Set.vtt

6.3 KB

13. Components in Data Set.mp4

83.0 MB

13. Components in Data Set.vtt

6.9 KB

14. Models in Data Set.mp4

65.1 MB

14. Models in Data Set.vtt

5.9 KB

2. Structure of Neural Network.mp4

36.9 MB

2. Structure of Neural Network.vtt

5.1 KB

3. Moving Through Neural Network.mp4

39.9 MB

3. Moving Through Neural Network.vtt

6.0 KB

4. Types of Activation Functions.mp4

21.4 MB

4. Types of Activation Functions.vtt

3.3 KB

5. Optimizing Back Propagation.mp4

47.2 MB

5. Optimizing Back Propagation.vtt

7.0 KB

6. Briefing on Tensor Flow.mp4

37.5 MB

6. Briefing on Tensor Flow.vtt

5.2 KB

7. Installation of Tensor Flow.mp4

24.4 MB

7. Installation of Tensor Flow.vtt

2.8 KB

8. Implementatiion on Neural Package.mp4

85.8 MB

8. Implementatiion on Neural Package.vtt

7.0 KB

9. Implementatiion on Neural Package Continues.mp4

72.4 MB

9. Implementatiion on Neural Package Continues.vtt

7.6 KB

/

[CourseClub.NET].url

0.1 KB

[FCS Forum].url

0.1 KB

[FreeCourseSite.com].url

0.1 KB

 

Total files 1047


Copyright © 2025 FileMood.com