FileMood

Download [FreeCourseSite.com] Udemy - Machine Learning with Javascript

FreeCourseSite com Udemy Machine Learning with Javascript

Name

[FreeCourseSite.com] Udemy - Machine Learning with Javascript

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

11.5 GB

Total Files

373

Hash

44F562C8175106661AC3EA453E1D198043CD747A

/1. What is Machine Learning/

1. Getting Started - How to Get Help.mp4

8.8 MB

1. Getting Started - How to Get Help.vtt

1.6 KB

2. Solving Machine Learning Problems.mp4

65.8 MB

2. Solving Machine Learning Problems.vtt

8.4 KB

3. A Complete Walkthrough.mp4

114.4 MB

3. A Complete Walkthrough.vtt

13.7 KB

4. App Setup.mp4

20.2 MB

4. App Setup.vtt

3.1 KB

5. Problem Outline.mp4

32.7 MB

5. Problem Outline.vtt

4.4 KB

6. Identifying Relevant Data.mp4

35.6 MB

6. Identifying Relevant Data.vtt

6.0 KB

7. Dataset Structures.mp4

50.6 MB

7. Dataset Structures.vtt

8.3 KB

8. Recording Observation Data.mp4

34.3 MB

8. Recording Observation Data.vtt

5.5 KB

9. What Type of Problem.mp4

49.3 MB

9. What Type of Problem.vtt

6.9 KB

/10. Natural Binary Classification/

1. Introducing Logistic Regression.mp4

24.6 MB

1. Introducing Logistic Regression.vtt

3.5 KB

10. Encoding Label Values.mp4

51.0 MB

10. Encoding Label Values.vtt

6.2 KB

11. Updating Linear Regression for Logistic Regression.mp4

73.7 MB

11. Updating Linear Regression for Logistic Regression.vtt

10.0 KB

12. The Sigmoid Equation with Logistic Regression.mp4

34.4 MB

12. The Sigmoid Equation with Logistic Regression.vtt

6.1 KB

13. A Touch More Refactoring.mp4

91.7 MB

13. A Touch More Refactoring.vtt

10.6 KB

14. Gauging Classification Accuracy.mp4

38.5 MB

14. Gauging Classification Accuracy.vtt

4.9 KB

15. Implementing a Test Function.mp4

57.4 MB

15. Implementing a Test Function.vtt

7.6 KB

16. Variable Decision Boundaries.mp4

71.6 MB

16. Variable Decision Boundaries.vtt

10.3 KB

17. Mean Squared Error vs Cross Entropy.mp4

63.1 MB

17. Mean Squared Error vs Cross Entropy.vtt

8.1 KB

18. Refactoring with Cross Entropy.mp4

51.9 MB

18. Refactoring with Cross Entropy.vtt

7.4 KB

19. Finishing the Cost Refactor.mp4

51.5 MB

19. Finishing the Cost Refactor.vtt

6.1 KB

2. Logistic Regression in Action.mp4

64.0 MB

2. Logistic Regression in Action.vtt

9.7 KB

20. Plotting Changing Cost History.mp4

45.0 MB

20. Plotting Changing Cost History.vtt

5.1 KB

3. Bad Equation Fits.mp4

58.1 MB

3. Bad Equation Fits.vtt

7.8 KB

4. The Sigmoid Equation.mp4

47.7 MB

4. The Sigmoid Equation.vtt

6.6 KB

5. Decision Boundaries.mp4

83.0 MB

5. Decision Boundaries.vtt

10.8 KB

6. Changes for Logistic Regression.mp4

13.1 MB

6. Changes for Logistic Regression.vtt

1.8 KB

7. Project Setup for Logistic Regression.mp4

62.3 MB

7. Project Setup for Logistic Regression.vtt

8.3 KB

8. Project Download.html

0.2 KB

8.1 regressions.zip.zip

35.1 KB

9. Importing Vehicle Data.mp4

40.9 MB

9. Importing Vehicle Data.vtt

6.0 KB

/11. Multi-Value Classification/

1. Multinominal Logistic Regression.mp4

26.2 MB

1. Multinominal Logistic Regression.vtt

3.2 KB

10. Sigmoid vs Softmax.mp4

65.8 MB

10. Sigmoid vs Softmax.vtt

8.9 KB

11. Refactoring Sigmoid to Softmax.mp4

51.3 MB

11. Refactoring Sigmoid to Softmax.vtt

6.7 KB

12. Implementing Accuracy Gauges.mp4

30.1 MB

12. Implementing Accuracy Gauges.vtt

3.9 KB

13. Calculating Accuracy.mp4

32.8 MB

13. Calculating Accuracy.vtt

4.6 KB

2. A Smart Refactor to Multinominal Analysis.mp4

52.4 MB

2. A Smart Refactor to Multinominal Analysis.vtt

7.4 KB

3. A Smarter Refactor!.mp4

40.2 MB

3. A Smarter Refactor!.vtt

5.4 KB

4. A Single Instance Approach.mp4

108.6 MB

4. A Single Instance Approach.vtt

108.6 MB

5. Refactoring to Multi-Column Weights.mp4

50.9 MB

5. Refactoring to Multi-Column Weights.vtt

6.9 KB

6. A Problem to Test Multinominal Classification.mp4

50.8 MB

6. A Problem to Test Multinominal Classification.vtt

6.5 KB

7. Classifying Continuous Values.mp4

46.7 MB

7. Classifying Continuous Values.vtt

6.3 KB

8. Training a Multinominal Model.mp4

69.3 MB

8. Training a Multinominal Model.vtt

8.8 KB

9. Marginal vs Conditional Probability.mp4

99.8 MB

9. Marginal vs Conditional Probability.vtt

14.4 KB

/12. Image Recognition In Action/

1. Handwriting Recognition.mp4

25.9 MB

1. Handwriting Recognition.vtt

3.2 KB

10. Backfilling Variance.mp4

27.0 MB

10. Backfilling Variance.vtt

27.0 MB

2. Greyscale Values.mp4

58.0 MB

2. Greyscale Values.vtt

7.2 KB

3. Many Features.mp4

46.9 MB

3. Many Features.vtt

4.8 KB

4. Flattening Image Data.mp4

60.6 MB

4. Flattening Image Data.vtt

8.0 KB

5. Encoding Label Values.mp4

65.0 MB

5. Encoding Label Values.vtt

7.6 KB

6. Implementing an Accuracy Gauge.mp4

83.8 MB

6. Implementing an Accuracy Gauge.vtt

10.3 KB

7. Unchanging Accuracy.mp4

21.3 MB

7. Unchanging Accuracy.vtt

3.0 KB

8. Debugging the Calculation Process.mp4

93.4 MB

8. Debugging the Calculation Process.vtt

11.6 KB

9. Dealing with Zero Variances.mp4

50.2 MB

9. Dealing with Zero Variances.vtt

9.0 KB

/13. Performance Optimization/

1. Handing Large Datasets.mp4

46.6 MB

1. Handing Large Datasets.vtt

6.3 KB

10. Tensorflow's Eager Memory Usage.mp4

49.1 MB

10. Tensorflow's Eager Memory Usage.vtt

6.3 KB

11. Cleaning up Tensors with Tidy.mp4

25.4 MB

11. Cleaning up Tensors with Tidy.vtt

4.0 KB

12. Implementing TF Tidy.mp4

39.4 MB

12. Implementing TF Tidy.vtt

4.9 KB

13. Tidying the Training Loop.mp4

48.2 MB

13. Tidying the Training Loop.vtt

5.6 KB

14. Measuring Reduced Memory Usage.mp4

19.0 MB

14. Measuring Reduced Memory Usage.vtt

2.2 KB

15. One More Optimization.mp4

28.8 MB

15. One More Optimization.vtt

28.8 MB

16. Final Memory Report.mp4

38.0 MB

16. Final Memory Report.vtt

4.0 KB

17. Plotting Cost History.mp4

49.9 MB

17. Plotting Cost History.vtt

5.9 KB

18. NaN in Cost History.mp4

48.6 MB

18. NaN in Cost History.vtt

6.2 KB

19. Fixing Cost History.mp4

49.0 MB

19. Fixing Cost History.vtt

6.4 KB

2. Minimizing Memory Usage.mp4

40.0 MB

2. Minimizing Memory Usage.vtt

6.8 KB

20. Massaging Learning Parameters.mp4

23.7 MB

20. Massaging Learning Parameters.vtt

2.5 KB

21. Improving Model Accuracy.mp4

57.7 MB

21. Improving Model Accuracy.vtt

6.1 KB

3. Creating Memory Snapshots.mp4

51.4 MB

3. Creating Memory Snapshots.vtt

7.3 KB

4. The Javascript Garbage Collector.mp4

58.5 MB

4. The Javascript Garbage Collector.vtt

9.2 KB

5. Shallow vs Retained Memory Usage.mp4

59.7 MB

5. Shallow vs Retained Memory Usage.vtt

8.2 KB

6. Measuring Memory Usage.mp4

101.3 MB

6. Measuring Memory Usage.vtt

12.3 KB

7. Releasing References.mp4

37.7 MB

7. Releasing References.vtt

4.5 KB

8. Measuring Footprint Reduction.mp4

45.4 MB

8. Measuring Footprint Reduction.vtt

5.6 KB

9. Optimization Tensorflow Memory Usage.mp4

19.4 MB

9. Optimization Tensorflow Memory Usage.vtt

2.4 KB

/14. Appendix Custom CSV Loader/

1. Loading CSV Files.mp4

16.6 MB

1. Loading CSV Files.vtt

3.0 KB

10. Splitting Test and Training.mp4

79.3 MB

10. Splitting Test and Training.vtt

10.7 KB

2. A Test Dataset.mp4

10.1 MB

2. A Test Dataset.vtt

2.6 KB

3. Reading Files from Disk.mp4

19.5 MB

3. Reading Files from Disk.vtt

4.0 KB

4. Splitting into Columns.mp4

21.3 MB

4. Splitting into Columns.vtt

3.8 KB

5. Dropping Trailing Columns.mp4

19.3 MB

5. Dropping Trailing Columns.vtt

3.5 KB

6. Parsing Number Values.mp4

32.9 MB

6. Parsing Number Values.vtt

4.9 KB

7. Custom Value Parsing.mp4

38.5 MB

7. Custom Value Parsing.vtt

5.9 KB

8. Extracting Data Columns.mp4

60.1 MB

8. Extracting Data Columns.vtt

7.0 KB

9. Shuffling Data via Seed Phrase.mp4

54.7 MB

9. Shuffling Data via Seed Phrase.vtt

7.6 KB

/2. Algorithm Overview/

1. How K-Nearest Neighbor Works.mp4

97.9 MB

1. How K-Nearest Neighbor Works.vtt

11.7 KB

10. Gauging Accuracy.mp4

56.6 MB

10. Gauging Accuracy.vtt

7.2 KB

11. Printing a Report.mp4

34.9 MB

11. Printing a Report.vtt

4.5 KB

12. Refactoring Accuracy Reporting.mp4

54.8 MB

12. Refactoring Accuracy Reporting.vtt

6.9 KB

13. Investigating Optimal K Values.mp4

135.4 MB

13. Investigating Optimal K Values.vtt

16.1 KB

14. Updating KNN for Multiple Features.mp4

74.1 MB

14. Updating KNN for Multiple Features.vtt

9.3 KB

15. Multi-Dimensional KNN.mp4

46.4 MB

15. Multi-Dimensional KNN.vtt

46.4 MB

16. N-Dimension Distance.mp4

82.7 MB

16. N-Dimension Distance.vtt

13.7 KB

17. Arbitrary Feature Spaces.mp4

74.7 MB

17. Arbitrary Feature Spaces.vtt

12.0 KB

18. Magnitude Offsets in Features.mp4

67.2 MB

18. Magnitude Offsets in Features.vtt

7.8 KB

19. Feature Normalization.mp4

76.5 MB

19. Feature Normalization.vtt

10.4 KB

2. Lodash Review.mp4

68.1 MB

2. Lodash Review.vtt

68.1 MB

20. Normalization with MinMax.mp4

70.3 MB

20. Normalization with MinMax.vtt

9.3 KB

21. Applying Normalization.mp4

47.6 MB

21. Applying Normalization.vtt

6.2 KB

22. Feature Selection with KNN.mp4

84.3 MB

22. Feature Selection with KNN.vtt

11.5 KB

23. Objective Feature Picking.mp4

69.2 MB

23. Objective Feature Picking.vtt

8.4 KB

24. Evaluating Different Feature Values.mp4

29.3 MB

24. Evaluating Different Feature Values.vtt

3.8 KB

3. Implementing KNN.mp4

62.2 MB

3. Implementing KNN.vtt

9.5 KB

4. Finishing KNN Implementation.mp4

52.7 MB

4. Finishing KNN Implementation.vtt

7.9 KB

5. Testing the Algorithm.mp4

47.2 MB

5. Testing the Algorithm.vtt

6.4 KB

6. Interpreting Bad Results.mp4

42.7 MB

6. Interpreting Bad Results.vtt

5.9 KB

7. Test and Training Data.mp4

47.4 MB

7. Test and Training Data.vtt

5.5 KB

8. Randomizing Test Data.mp4

37.8 MB

8. Randomizing Test Data.vtt

5.1 KB

9. Generalizing KNN.mp4

40.9 MB

9. Generalizing KNN.vtt

5.1 KB

/3. Onwards to Tensorflow JS!/

1. Let's Get Our Bearings.mp4

80.3 MB

1. Let's Get Our Bearings.vtt

11.1 KB

10. Creating Slices of Data.mp4

61.8 MB

10. Creating Slices of Data.vtt

10.4 KB

11. Tensor Concatenation.mp4

46.3 MB

11. Tensor Concatenation.vtt

7.6 KB

12. Summing Values Along an Axis.mp4

43.4 MB

12. Summing Values Along an Axis.vtt

7.4 KB

13. Massaging Dimensions with ExpandDims.mp4

59.8 MB

13. Massaging Dimensions with ExpandDims.vtt

11.0 KB

2. A Plan to Move Forward.mp4

51.0 MB

2. A Plan to Move Forward.vtt

7.0 KB

3. Tensor Shape and Dimension.mp4

119.8 MB

3. Tensor Shape and Dimension.vtt

17.1 KB

4. Tensor Dimension and Shapes.html

0.1 KB

5. Elementwise Operations.mp4

61.2 MB

5. Elementwise Operations.vtt

10.7 KB

6. Broadcasting Operations.mp4

65.1 MB

6. Broadcasting Operations.vtt

9.6 KB

7. Broadcasting Elementwise Operations.html

0.1 KB

8. Logging Tensor Data.mp4

27.3 MB

8. Logging Tensor Data.vtt

5.6 KB

9. Tensor Accessors.mp4

31.9 MB

9. Tensor Accessors.vtt

7.7 KB

/4. Applications of Tensorflow/

1. KNN with Regression.mp4

57.7 MB

1. KNN with Regression.vtt

7.2 KB

10. Reporting Error Percentages.mp4

67.6 MB

10. Reporting Error Percentages.vtt

8.4 KB

11. Normalization or Standardization.mp4

97.5 MB

11. Normalization or Standardization.vtt

10.6 KB

12. Numerical Standardization with Tensorflow.mp4

55.6 MB

12. Numerical Standardization with Tensorflow.vtt

10.6 KB

13. Applying Standardization.mp4

43.5 MB

13. Applying Standardization.vtt

43.5 MB

14. Debugging Calculations.mp4

90.9 MB

14. Debugging Calculations.vtt

11.7 KB

15. What Now.mp4

44.4 MB

15. What Now.vtt

5.8 KB

2. A Change in Data Structure.mp4

43.4 MB

2. A Change in Data Structure.vtt

43.4 MB

3. KNN with Tensorflow.mp4

82.5 MB

3. KNN with Tensorflow.vtt

13.3 KB

4. Maintaining Order Relationships.mp4

60.6 MB

4. Maintaining Order Relationships.vtt

9.5 KB

5. Sorting Tensors.mp4

65.9 MB

5. Sorting Tensors.vtt

10.9 KB

6. Averaging Top Values.mp4

61.0 MB

6. Averaging Top Values.vtt

10.5 KB

7. Moving to the Editor.mp4

36.0 MB

7. Moving to the Editor.vtt

4.8 KB

8. Loading CSV Data.mp4

93.7 MB

8. Loading CSV Data.vtt

13.5 KB

9. Running an Analysis.mp4

55.1 MB

9. Running an Analysis.vtt

8.4 KB

/5. Getting Started with Gradient Descent/

1. Linear Regression.mp4

26.6 MB

1. Linear Regression.vtt

26.6 MB

10. Answering Common Questions.mp4

42.9 MB

10. Answering Common Questions.vtt

5.4 KB

11. Gradient Descent with Multiple Terms.mp4

46.4 MB

11. Gradient Descent with Multiple Terms.vtt

6.7 KB

12. Multiple Terms in Action.mp4

129.1 MB

12. Multiple Terms in Action.vtt

129.2 MB

2. Why Linear Regression.mp4

52.8 MB

2. Why Linear Regression.vtt

6.9 KB

3. Understanding Gradient Descent.mp4

132.9 MB

3. Understanding Gradient Descent.vtt

17.4 KB

4. Guessing Coefficients with MSE.mp4

98.0 MB

4. Guessing Coefficients with MSE.vtt

13.9 KB

5. Observations Around MSE.mp4

58.8 MB

5. Observations Around MSE.vtt

8.4 KB

6. Derivatives!.mp4

81.7 MB

6. Derivatives!.vtt

81.7 MB

7. Gradient Descent in Action.mp4

121.0 MB

7. Gradient Descent in Action.vtt

16.5 KB

8. Quick Breather and Review.mp4

69.0 MB

8. Quick Breather and Review.vtt

8.2 KB

9. Why a Learning Rate.mp4

196.4 MB

9. Why a Learning Rate.vtt

23.2 KB

/6. Gradient Descent with Tensorflow/

1. Project Overview.mp4

59.8 MB

1. Project Overview.vtt

48.4 MB

10. More on Matrix Multiplication.mp4

66.3 MB

10. More on Matrix Multiplication.vtt

8.4 KB

11. Matrix Form of Slope Equations.mp4

62.5 MB

11. Matrix Form of Slope Equations.vtt

8.7 KB

12. Simplification with Matrix Multiplication.mp4

95.2 MB

12. Simplification with Matrix Multiplication.vtt

12.9 KB

13. How it All Works Together!.mp4

150.8 MB

13. How it All Works Together!.vtt

18.7 KB

2. Data Loading.mp4

45.6 MB

2. Data Loading.vtt

7.0 KB

3. Default Algorithm Options.mp4

65.7 MB

3. Default Algorithm Options.vtt

11.5 KB

4. Formulating the Training Loop.mp4

29.0 MB

4. Formulating the Training Loop.vtt

4.5 KB

5. Initial Gradient Descent Implementation.mp4

92.2 MB

5. Initial Gradient Descent Implementation.vtt

12.8 KB

6. Calculating MSE Slopes.mp4

70.4 MB

6. Calculating MSE Slopes.vtt

8.7 KB

7. Updating Coefficients.mp4

35.5 MB

7. Updating Coefficients.vtt

35.5 MB

8. Interpreting Results.mp4

106.7 MB

8. Interpreting Results.vtt

13.9 KB

9. Matrix Multiplication.mp4

70.7 MB

9. Matrix Multiplication.vtt

10.1 KB

/7. Increasing Performance with Vectorized Solutions/

1. Refactoring the Linear Regression Class.mp4

76.3 MB

1. Refactoring the Linear Regression Class.vtt

10.5 KB

10. Reapplying Standardization.mp4

60.8 MB

10. Reapplying Standardization.vtt

7.7 KB

11. Fixing Standardization Issues.mp4

50.2 MB

11. Fixing Standardization Issues.vtt

8.1 KB

12. Massaging Learning Rates.mp4

38.2 MB

12. Massaging Learning Rates.vtt

4.3 KB

13. Moving Towards Multivariate Regression.mp4

127.3 MB

13. Moving Towards Multivariate Regression.vtt

16.3 KB

14. Refactoring for Multivariate Analysis.mp4

86.4 MB

14. Refactoring for Multivariate Analysis.vtt

10.7 KB

15. Learning Rate Optimization.mp4

80.4 MB

15. Learning Rate Optimization.vtt

11.3 KB

16. Recording MSE History.mp4

54.5 MB

16. Recording MSE History.vtt

7.3 KB

17. Updating Learning Rate.mp4

65.2 MB

17. Updating Learning Rate.vtt

9.1 KB

2. Refactoring to One Equation.mp4

88.9 MB

2. Refactoring to One Equation.vtt

12.5 KB

3. A Few More Changes.mp4

69.4 MB

3. A Few More Changes.vtt

9.1 KB

4. Same Results Or Not.mp4

35.5 MB

4. Same Results Or Not.vtt

4.9 KB

5. Calculating Model Accuracy.mp4

84.3 MB

5. Calculating Model Accuracy.vtt

11.9 KB

6. Implementing Coefficient of Determination.mp4

79.5 MB

6. Implementing Coefficient of Determination.vtt

10.6 KB

7. Dealing with Bad Accuracy.mp4

74.9 MB

7. Dealing with Bad Accuracy.vtt

10.7 KB

8. Reminder on Standardization.mp4

46.7 MB

8. Reminder on Standardization.vtt

6.3 KB

9. Data Processing in a Helper Method.mp4

39.0 MB

9. Data Processing in a Helper Method.vtt

5.0 KB

/8. Plotting Data with Javascript/

1. Observing Changing Learning Rate and MSE.mp4

48.1 MB

1. Observing Changing Learning Rate and MSE.vtt

6.1 KB

2. Plotting MSE Values.mp4

64.4 MB

2. Plotting MSE Values.vtt

7.4 KB

3. Plotting MSE History against B Values.mp4

50.1 MB

3. Plotting MSE History against B Values.vtt

6.4 KB

/9. Gradient Descent Alterations/

1. Batch and Stochastic Gradient Descent.mp4

81.0 MB

1. Batch and Stochastic Gradient Descent.vtt

10.4 KB

2. Refactoring Towards Batch Gradient Descent.mp4

57.8 MB

2. Refactoring Towards Batch Gradient Descent.vtt

7.3 KB

3. Determining Batch Size and Quantity.mp4

69.3 MB

3. Determining Batch Size and Quantity.vtt

8.0 KB

4. Iterating Over Batches.mp4

70.7 MB

4. Iterating Over Batches.vtt

10.8 KB

5. Evaluating Batch Gradient Descent Results.mp4

69.5 MB

5. Evaluating Batch Gradient Descent Results.vtt

8.2 KB

6. Making Predictions with the Model.mp4

83.3 MB

6. Making Predictions with the Model.vtt

10.7 KB

/

[CourseClub.NET].url

0.1 KB

[FCS Forum].url

0.1 KB

[FreeCourseSite.com].url

0.1 KB

 

Total files 373


Copyright © 2025 FileMood.com