FileMood

Download [FreeCoursesOnline.Me] Coursera - Machine Learning

FreeCoursesOnline Me Coursera Machine Learning

Name

[FreeCoursesOnline.Me] Coursera - Machine Learning

 DOWNLOAD Copy Link

Total Size

2.0 GB

Total Files

229

Last Seen

2024-11-14 23:47

Hash

1912B056A26877730EF548AFAC2BB75A9106F9DC

/001.Welcome/

001. Welcome to Machine Learning!.mp4

9.6 MB

001. Welcome to Machine Learning!.srt

2.4 KB

/002.Introduction/

002. Welcome.mp4

19.2 MB

002. Welcome.srt

9.7 KB

003. What is Machine Learning.mp4

12.0 MB

003. What is Machine Learning.srt

11.3 KB

004. Supervised Learning.mp4

17.5 MB

004. Supervised Learning.srt

19.3 KB

005. Unsupervised Learning.mp4

24.5 MB

005. Unsupervised Learning.srt

28.1 KB

/003.Model and Cost Function/

006. Model Representation.mp4

12.0 MB

006. Model Representation.srt

9.8 KB

007. Cost Function.mp4

12.1 MB

007. Cost Function.srt

10.4 KB

008. Cost Function - Intuition I.mp4

16.3 MB

008. Cost Function - Intuition I.srt

12.0 KB

009. Cost Function - Intuition II.mp4

17.8 MB

009. Cost Function - Intuition II.srt

11.0 KB

/004.Parameter Learning/

010. Gradient Descent.mp4

19.6 MB

010. Gradient Descent.srt

16.7 KB

011. Gradient Descent Intuition.mp4

17.4 MB

011. Gradient Descent Intuition.srt

16.3 KB

012. Gradient Descent For Linear Regression.mp4

17.2 MB

012. Gradient Descent For Linear Regression.srt

13.7 KB

/005.Linear Algebra Review/

013. Matrices and Vectors.mp4

12.5 MB

013. Matrices and Vectors.srt

15.3 KB

014. Addition and Scalar Multiplication.mp4

9.7 MB

014. Addition and Scalar Multiplication.srt

11.5 KB

015. Matrix Vector Multiplication.mp4

19.8 MB

015. Matrix Vector Multiplication.srt

23.4 KB

016. Matrix Matrix Multiplication.mp4

17.1 MB

016. Matrix Matrix Multiplication.srt

14.0 KB

017. Matrix Multiplication Properties.mp4

12.7 MB

017. Matrix Multiplication Properties.srt

11.8 KB

018. Inverse and Transpose.mp4

17.8 MB

018. Inverse and Transpose.srt

20.3 KB

/006.Multivariate Linear Regression/

019. Multiple Features.mp4

12.1 MB

019. Multiple Features.srt

14.0 KB

020. Gradient Descent for Multiple Variables.mp4

8.0 MB

020. Gradient Descent for Multiple Variables.srt

6.5 KB

021. Gradient Descent in Practice I - Feature Scaling.mp4

13.6 MB

021. Gradient Descent in Practice I - Feature Scaling.srt

16.4 KB

022. Gradient Descent in Practice II - Learning Rate.mp4

13.2 MB

022. Gradient Descent in Practice II - Learning Rate.srt

12.8 KB

023. Features and Polynomial Regression.mp4

12.1 MB

023. Features and Polynomial Regression.srt

15.3 KB

/007.Computing Parameters Analytically/

024. Normal Equation.mp4

24.8 MB

024. Normal Equation.srt

30.2 KB

025. Normal Equation Noninvertibility.mp4

9.2 MB

025. Normal Equation Noninvertibility.srt

8.9 KB

/008.Submitting Programming Assignments/

026. Working on and Submitting Programming Assignments.mp4

9.4 MB

026. Working on and Submitting Programming Assignments.srt

4.4 KB

/009.Octave Matlab Tutorial/

027. Basic Operations.mp4

26.1 MB

027. Basic Operations.srt

24.5 KB

028. Moving Data Around.mp4

31.0 MB

028. Moving Data Around.srt

27.6 KB

029. Computing on Data.mp4

20.8 MB

029. Computing on Data.srt

17.1 KB

030. Plotting Data.mp4

21.1 MB

030. Plotting Data.srt

16.7 KB

031. Control Statements for, while, if statement.mp4

25.0 MB

031. Control Statements for, while, if statement.srt

22.6 KB

032. Vectorization.mp4

23.3 MB

032. Vectorization.srt

17.7 KB

/010.Classification and Representation/

033. Classification.mp4

11.9 MB

033. Classification.srt

11.7 KB

034. Hypothesis Representation.mp4

11.7 MB

034. Hypothesis Representation.srt

9.8 KB

035. Decision Boundary.mp4

23.3 MB

035. Decision Boundary.srt

18.3 KB

/011.Logistic Regression Model/

036. Cost Function.mp4

16.6 MB

036. Cost Function.srt

13.7 KB

037. Simplified Cost Function and Gradient Descent.mp4

17.0 MB

037. Simplified Cost Function and Gradient Descent.srt

14.3 KB

038. Advanced Optimization.mp4

28.1 MB

038. Advanced Optimization.srt

26.9 KB

/012.Multiclass Classification/

039. Multiclass Classification One-vs-all.mp4

9.5 MB

039. Multiclass Classification One-vs-all.srt

9.5 KB

/013.Solving the Problem of Overfitting/

040. The Problem of Overfitting.mp4

15.7 MB

040. The Problem of Overfitting.srt

18.6 KB

041. Cost Function.mp4

16.3 MB

041. Cost Function.srt

19.1 KB

042. Regularized Linear Regression.mp4

16.4 MB

042. Regularized Linear Regression.srt

14.5 KB

043. Regularized Logistic Regression.mp4

17.6 MB

043. Regularized Logistic Regression.srt

16.6 KB

/014.Motivations/

044. Non-linear Hypotheses.mp4

15.5 MB

044. Non-linear Hypotheses.srt

18.4 KB

045. Neurons and the Brain.mp4

15.3 MB

045. Neurons and the Brain.srt

15.8 KB

/015.Neural Networks/

046. Model Representation I.mp4

18.9 MB

046. Model Representation I.srt

14.8 KB

047. Model Representation II.mp4

19.3 MB

047. Model Representation II.srt

21.6 KB

/016.Applications/

048. Examples and Intuitions I.mp4

10.6 MB

048. Examples and Intuitions I.srt

8.7 KB

049. Examples and Intuitions II.mp4

21.9 MB

049. Examples and Intuitions II.srt

11.7 KB

050. Multiclass Classification.mp4

7.3 MB

050. Multiclass Classification.srt

7.2 KB

/017.Cost Function and Backpropagation/

051. Cost Function.mp4

10.7 MB

051. Cost Function.srt

9.1 KB

052. Backpropagation Algorithm.mp4

20.0 MB

052. Backpropagation Algorithm.srt

22.0 KB

053. Backpropagation Intuition.mp4

23.3 MB

053. Backpropagation Intuition.srt

18.1 KB

/018.Backpropagation in Practice/

054. Implementation Note Unrolling Parameters.mp4

13.5 MB

054. Implementation Note Unrolling Parameters.srt

14.4 KB

055. Gradient Checking.mp4

19.2 MB

055. Gradient Checking.srt

17.4 KB

056. Random Initialization.mp4

10.3 MB

056. Random Initialization.srt

10.6 KB

057. Putting It Together.mp4

24.7 MB

057. Putting It Together.srt

26.8 KB

/019.Application of Neural Networks/

058. Autonomous Driving.mp4

29.7 MB

058. Autonomous Driving.srt

7.0 KB

/020.Evaluating a Learning Algorithm/

059. Deciding What to Try Next.mp4

9.8 MB

059. Deciding What to Try Next.srt

12.0 KB

060. Evaluating a Hypothesis.mp4

11.6 MB

060. Evaluating a Hypothesis.srt

11.2 KB

061. Model Selection and Train Validation Test Sets.mp4

20.0 MB

061. Model Selection and Train Validation Test Sets.srt

17.3 KB

/021.Bias vs. Variance/

062. Diagnosing Bias vs. Variance.mp4

12.8 MB

062. Diagnosing Bias vs. Variance.srt

11.5 KB

063. Regularization and Bias Variance.mp4

17.2 MB

063. Regularization and Bias Variance.srt

15.3 KB

064. Learning Curves.mp4

17.2 MB

064. Learning Curves.srt

23.9 KB

065. Deciding What to Do Next Revisited.mp4

12.0 MB

065. Deciding What to Do Next Revisited.srt

13.6 KB

/022.Building a Spam Classifier/

066. Prioritizing What to Work On.mp4

15.8 MB

066. Prioritizing What to Work On.srt

19.0 KB

067. Error Analysis.mp4

22.3 MB

067. Error Analysis.srt

19.8 KB

/023.Handling Skewed Data/

068. Error Metrics for Skewed Classes.mp4

18.8 MB

068. Error Metrics for Skewed Classes.srt

21.3 KB

069. Trading Off Precision and Recall.mp4

22.3 MB

069. Trading Off Precision and Recall.srt

20.1 KB

/024.Using Large Data Sets/

070. Data For Machine Learning.mp4

18.2 MB

070. Data For Machine Learning.srt

22.4 KB

/025.Large Margin Classification/

071. Optimization Objective.mp4

23.0 MB

071. Optimization Objective.srt

20.3 KB

072. Large Margin Intuition.mp4

15.9 MB

072. Large Margin Intuition.srt

20.6 KB

073. Mathematics Behind Large Margin Classification.mp4

29.9 MB

073. Mathematics Behind Large Margin Classification.srt

34.6 KB

/026.Kernels/

074. Kernels I.mp4

23.9 MB

074. Kernels I.srt

28.0 KB

075. Kernels II.mp4

23.7 MB

075. Kernels II.srt

29.6 KB

/027.SVMs in Practice/

076. Using An SVM.mp4

33.5 MB

076. Using An SVM.srt

42.1 KB

/028.Clustering/

077. Unsupervised Learning Introduction.mp4

5.4 MB

077. Unsupervised Learning Introduction.srt

5.1 KB

078. K-Means Algorithm.mp4

18.5 MB

078. K-Means Algorithm.srt

25.3 KB

079. Optimization Objective.mp4

11.4 MB

079. Optimization Objective.srt

9.5 KB

080. Random Initialization.mp4

11.7 MB

080. Random Initialization.srt

15.7 KB

081. Choosing the Number of Clusters.mp4

12.8 MB

081. Choosing the Number of Clusters.srt

17.3 KB

/029.Motivation/

082. Motivation I Data Compression.mp4

22.5 MB

082. Motivation I Data Compression.srt

19.4 KB

083. Motivation II Visualization.mp4

8.7 MB

083. Motivation II Visualization.srt

9.8 KB

/030.Principal Component Analysis/

084. Principal Component Analysis Problem Formulation.mp4

14.7 MB

084. Principal Component Analysis Problem Formulation.srt

13.4 KB

085. Principal Component Analysis Algorithm.mp4

25.5 MB

085. Principal Component Analysis Algorithm.srt

27.6 KB

/031.Applying PCA/

086. Reconstruction from Compressed Representation.mp4

7.5 MB

086. Reconstruction from Compressed Representation.srt

5.2 KB

087. Choosing the Number of Principal Components.mp4

16.4 MB

087. Choosing the Number of Principal Components.srt

20.4 KB

088. Advice for Applying PCA.mp4

20.7 MB

088. Advice for Applying PCA.srt

25.4 KB

/032.Density Estimation/

089. Problem Motivation.mp4

11.1 MB

089. Problem Motivation.srt

15.5 KB

090. Gaussian Distribution.mp4

15.9 MB

090. Gaussian Distribution.srt

14.9 KB

091. Algorithm.mp4

19.9 MB

091. Algorithm.srt

22.7 KB

/033.Building an Anomaly Detection System/

092. Developing and Evaluating an Anomaly Detection System.mp4

21.5 MB

092. Developing and Evaluating an Anomaly Detection System.srt

26.4 KB

093. Anomaly Detection vs. Supervised Learning.mp4

13.8 MB

093. Anomaly Detection vs. Supervised Learning.srt

11.5 KB

094. Choosing What Features to Use.mp4

20.0 MB

094. Choosing What Features to Use.srt

24.3 KB

/034.Multivariate Gaussian Distribution (Optional)/

095. Multivariate Gaussian Distribution.mp4

22.9 MB

095. Multivariate Gaussian Distribution.srt

26.5 KB

096. Anomaly Detection using the Multivariate Gaussian Distribution.mp4

23.5 MB

096. Anomaly Detection using the Multivariate Gaussian Distribution.srt

25.4 KB

/035.Predicting Movie Ratings/

097. Problem Formulation.mp4

17.2 MB

097. Problem Formulation.srt

16.3 KB

098. Content Based Recommendations.mp4

24.3 MB

098. Content Based Recommendations.srt

20.0 KB

/036.Collaborative Filtering/

099. Collaborative Filtering.mp4

16.3 MB

099. Collaborative Filtering.srt

19.5 KB

100. Collaborative Filtering Algorithm.mp4

15.4 MB

100. Collaborative Filtering Algorithm.srt

15.9 KB

/037.Low Rank Matrix Factorization/

101. Vectorization Low Rank Matrix Factorization.mp4

13.4 MB

101. Vectorization Low Rank Matrix Factorization.srt

15.7 KB

102. Implementational Detail Mean Normalization.mp4

13.5 MB

102. Implementational Detail Mean Normalization.srt

16.0 KB

/038.Gradient Descent with Large Datasets/

103. Learning With Large Datasets.mp4

9.0 MB

103. Learning With Large Datasets.srt

7.8 KB

104. Stochastic Gradient Descent.mp4

22.0 MB

104. Stochastic Gradient Descent.srt

18.0 KB

105. Mini-Batch Gradient Descent.mp4

10.2 MB

105. Mini-Batch Gradient Descent.srt

7.7 KB

106. Stochastic Gradient Descent Convergence.mp4

19.0 MB

106. Stochastic Gradient Descent Convergence.srt

16.0 KB

/039.Advanced Topics/

107. Online Learning.mp4

21.5 MB

107. Online Learning.srt

26.7 KB

108. Map Reduce and Data Parallelism.mp4

22.3 MB

108. Map Reduce and Data Parallelism.srt

27.9 KB

/040.Photo OCR/

109. Problem Description and Pipeline.mp4

10.9 MB

109. Problem Description and Pipeline.srt

14.2 KB

110. Sliding Windows.mp4

23.0 MB

110. Sliding Windows.srt

30.4 KB

111. Getting Lots of Data and Artificial Data.mp4

26.5 MB

111. Getting Lots of Data and Artificial Data.srt

34.0 KB

112. Ceiling Analysis What Part of the Pipeline to Work on Next.mp4

23.0 MB

112. Ceiling Analysis What Part of the Pipeline to Work on Next.srt

22.3 KB

/041.Conclusion/

113. Summary and Thank You.mp4

9.5 MB

113. Summary and Thank You.srt

7.9 KB

/

[FreeCoursesOnline.Me].url

0.1 KB

[FreeTutorials.Us].url

0.1 KB

[FTU Forum].url

0.3 KB

 

Total files 229


Copyright © 2024 FileMood.com