FileMood

Download [FreeCoursesOnline.Me] PacktPub - Deep Learning with Real World Projects [Video]

FreeCoursesOnline Me PacktPub Deep Learning with Real World Projects Video

Name

[FreeCoursesOnline.Me] PacktPub - Deep Learning with Real World Projects [Video]

 DOWNLOAD Copy Link

Total Size

7.5 GB

Total Files

161

Last Seen

2024-11-14 23:48

Hash

A6C470F088388A0CB7BA0C8EE31B8F13AEFC0E97

/0. Websites you may like/

0. (1Hack.Us) Premium Tutorials-Guides-Articles & Community based Forum.url

0.4 KB

1. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url

0.3 KB

2. (NulledPremium.com) Download E-Learning, E-Books, Audio-Books, & more.etc.url

0.2 KB

3. (FTUApps.com) Download Cracked Developers Applications For Free.url

0.2 KB

How you can help our Group!.txt

0.2 KB

/1 - Introduction/

Activation Functions.mp4

158.7 MB

Code Password.mp4

737.1 KB

History of Deep learning.mp4

85.4 MB

Introduction.mp4

68.8 MB

Multi-Level Perceptrons.mp4

85.5 MB

Neural Network Playground.mp4

159.5 MB

Perceptrons.mp4

39.5 MB

Representations.mp4

165.8 MB

Training Neural Network - Part 1.mp4

128.5 MB

Training Neural Network - Part 2.mp4

59.5 MB

Training Neural Network - Part 3.mp4

116.1 MB

/10 - CNN-Industry Live Project - Find..Save Life/

Introduction.mp4

11.4 MB

Working with X-Ray images - Case Study - Part 1.mp4

9.5 MB

Working with X-Ray images - Case Study - Part 2.mp4

9.2 MB

Working with X-Ray images - Case Study - Part 3.mp4

14.8 MB

Working with X-Ray images - Case Study - Part 4.mp4

19.2 MB

Working with X-Ray images - Case Study - Part 5.mp4

27.9 MB

Working with X-Ray images - Case Study - Part 6.mp4

19.2 MB

/11 - Recurrent Neural Networks - Introduction/

Architecture.mp4

23.6 MB

Batch data.mp4

8.9 MB

Introduction to RNN.mp4

14.1 MB

One-to-Many.mp4

18.3 MB

RNN - Part 1.mp4

10.3 MB

RNN Formula.mp4

30.6 MB

RNN Part 2.mp4

6.7 MB

Simplified Notations.mp4

30.8 MB

Training RNN.mp4

12.2 MB

Types of RNN - Part 1.mp4

7.8 MB

Types of RNN - Part 2.mp4

13.9 MB

Vanishing Gradient.mp4

22.4 MB

/12 - Recurrent Neural Networks - LSTM/

Bidirectional RNN.mp4

15.0 MB

Gated Recurrent Network (GRU).mp4

28.3 MB

Introduction.mp4

4.6 MB

LSTM - Part 1.mp4

8.0 MB

LSTM - Part 2.mp4

6.3 MB

LSTM - Part 3.mp4

4.4 MB

LSTM - Part 4.mp4

12.1 MB

LSTM - Part 5.mp4

20.6 MB

LSTM Equation.mp4

8.9 MB

Online Offline Mode.mp4

10.7 MB

/13 - Recurrent Neutral Networks - Part-Of-Speech Tagger/

Part-Of-Speech Tagger case- study (Part-2).mp4

91.9 MB

Part-Of-Speech Tagger case- study (Part-3).mp4

44.7 MB

Part-Of-Speech Tagger case- study (Part-4).mp4

59.9 MB

Part-Of-Speech Tagger case- study (Part-5).mp4

114.7 MB

Part-Of-Speech Tagger case- study (Part-6).mp4

26.9 MB

Part-Of-Speech Tagger case- study (Part-7).mp4

62.9 MB

Part-Of-Speech Tagger case- study (Part-8).mp4

125.9 MB

Part-Of-Speech Tagger case- study (Part-9).mp4

32.4 MB

Part-Of-Speech Tagger case-study (Part-1).mp4

58.9 MB

/14 - Text generation using RNN/

Text Generation - Code generator case- study (Part-1).mp4

179.6 MB

Text Generation - Code generator case- study (Part-2).mp4

110.3 MB

Text Generation - Code generator case- study (Part-3).mp4

51.0 MB

Text Generation - Code generator case- study (Part-4).mp4

42.0 MB

/2 - Artificial Neural Networks-Introduction/

Activation Functions.mp4

43.9 MB

Assumptions in Neural Networks.mp4

48.0 MB

Deep Learning.mp4

30.4 MB

Example for Perceptron.mp4

47.2 MB

Homogeneous Co-ordinate.mp4

24.8 MB

Input Layer.mp4

56.2 MB

Introduction.mp4

25.1 MB

Multi Classifier.mp4

39.7 MB

Neural Networks.mp4

51.7 MB

Output Layer.mp4

14.8 MB

Perceptron for Classifiers.mp4

33.5 MB

Perceptron in Depth.mp4

32.2 MB

Perceptron.mp4

31.1 MB

Sigmoid function.mp4

27.8 MB

Training in Neural Networks.mp4

34.3 MB

Understanding Human Brain.mp4

27.9 MB

Understanding MNIST.mp4

21.4 MB

Understanding Notations.mp4

104.8 MB

/3 - ANN - Feed Forward Network/

Bidirectional RNN.mp4

45.6 MB

Introduction.mp4

52.9 MB

Online Offline Mode.mp4

37.8 MB

Pseudocode for Batch.mp4

30.2 MB

Pseudocode.mp4

42.6 MB

Understanding Dimensions.mp4

61.5 MB

Vectorised Methods.mp4

85.3 MB

/4 - Back Propagation/

Back Propagation Training - Part 1.mp4

48.8 MB

Back Propagation Training - Part 10.mp4

24.2 MB

Back Propagation Training - Part 2.mp4

39.9 MB

Back Propagation Training - Part 3.mp4

15.5 MB

Back Propagation Training - Part 4.mp4

36.4 MB

Back Propagation Training - Part 5.mp4

36.4 MB

Back Propagation Training - Part 6.mp4

24.4 MB

Back Propagation Training - Part 7.mp4

21.6 MB

Back Propagation Training - Part 8.mp4

28.3 MB

Back Propagation Training - Part 9.mp4

30.4 MB

Finding Global Minima.mp4

10.8 MB

Introducing Loss Function.mp4

46.3 MB

Introduction.mp4

37.1 MB

Pseudocode.mp4

13.3 MB

SGD.mp4

40.8 MB

Sigmoid Function.mp4

27.2 MB

Training for Batches.mp4

23.9 MB

/5 - Regularisation/

Batch Normalisation - Part 1.mp4

37.8 MB

Batch Normalisation - Part 2.mp4

39.4 MB

Batch Normalisation - Part 3.mp4

53.1 MB

Dropouts Part 1.mp4

25.4 MB

Dropouts Part 2.mp4

14.1 MB

Introducing Keras.mp4

128.9 MB

Introducing TensorFlow.mp4

47.6 MB

Introduction to Regularisation.mp4

51.4 MB

/6 - Convolution Neural Networks/

Applications for CNN.mp4

57.1 MB

Combining Network.mp4

55.8 MB

Convolution - Part 1.mp4

45.5 MB

Convolution - Part 2.mp4

83.4 MB

Feature Map.mp4

133.8 MB

Formulas.mp4

19.5 MB

Idea behind CNN - Part 1.mp4

48.1 MB

Idea behind CNN - Part 2.mp4

79.6 MB

Images.mp4

168.9 MB

Introduction.mp4

45.0 MB

Padding.mp4

15.9 MB

Pooling.mp4

74.0 MB

Stride and Padding.mp4

35.8 MB

Video.mp4

41.9 MB

Weight and Bias.mp4

86.5 MB

/7 - CNN-Keras/

Introduction.mp4

8.1 MB

Practical on CNN - Case Study - Part 1.mp4

10.8 MB

Practical on CNN - Case Study - Part 2.mp4

29.7 MB

Practical on CNN - Case Study - Part 3.mp4

37.8 MB

Practical on CNN - Case Study - Part 4.mp4

13.9 MB

Practical on CNN - Case Study - Part 5.mp4

7.9 MB

VGG16 (Visual Geometry Group).mp4

46.8 MB

/8 - CNN-Transfer Learning/

AlexNet.mp4

77.4 MB

Analysis - Part 1.mp4

115.1 MB

Analysis - Part 2.mp4

48.2 MB

Case Study - Part 1.mp4

203.5 MB

Case Study - Part 2.mp4

100.6 MB

Case Study - Part 3.mp4

41.0 MB

GoogleNet.mp4

51.1 MB

Introduction.mp4

46.8 MB

ResNet - Part 1.mp4

33.9 MB

ResNet - Part 2.mp4

29.5 MB

Transfer Learning - Part 1.mp4

7.8 MB

Transfer Learning - Part 2.mp4

20.8 MB

Transfer Learning - Part 3.mp4

37.0 MB

Transfer Learning - Part 4.mp4

41.8 MB

Transfer Learning - Part 5.mp4

28.4 MB

Transfer Learning - Part 6.mp4

38.1 MB

/9 - CNN-Industry Live Project - Playing..Natural Images/

Introduction.mp4

20.6 MB

Working with Flower Images - Case Study - Part 1.mp4

52.0 MB

Working with Flower Images - Case Study - Part 10.mp4

59.5 MB

Working with Flower Images - Case Study - Part 11.mp4

64.7 MB

Working with Flower Images - Case Study - Part 12.mp4

167.2 MB

Working with Flower Images - Case Study - Part 13.mp4

33.3 MB

Working with Flower Images - Case Study - Part 14.mp4

78.8 MB

Working with Flower Images - Case Study - Part 2.mp4

124.5 MB

Working with Flower Images - Case Study - Part 3.mp4

52.6 MB

Working with Flower Images - Case Study - Part 4.mp4

50.9 MB

Working with Flower Images - Case Study - Part 5.mp4

41.2 MB

Working with Flower Images - Case Study - Part 6.mp4

75.6 MB

Working with Flower Images - Case Study - Part 7.mp4

27.6 MB

Working with Flower Images - Case Study - Part 8.mp4

95.8 MB

Working with Flower Images - Case Study - Part 9.mp4

85.0 MB

 

Total files 161


Copyright © 2024 FileMood.com