FileMood

Download [ FreeCourseWeb.com ] Machine Learning with R, the tidyverse, and mlr. Video Edition

FreeCourseWeb com Machine Learning with the tidyverse and mlr Video Edition

Name

[ FreeCourseWeb.com ] Machine Learning with R, the tidyverse, and mlr. Video Edition

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

2.6 GB

Total Files

137

Last Seen

2025-04-30 23:47

Hash

5E2425CFF95A526DE185B5568636AE783A71E7EE

/

Get Bonus Downloads Here.url

0.2 KB

/~Get Your Files Here !/

Appendix._Central_tendency.mp4

10.7 MB

Appendix._Distributions.mp4

10.2 MB

Appendix._Logarithms.mp4

9.7 MB

Appendix._Measures_of_dispersion.mp4

22.3 MB

Appendix._Measures_of_the_relationships_between_variables.mp4

11.2 MB

Appendix._Refresher_on_statistical_concepts.mp4

18.2 MB

Appendix._Sigma_notation.mp4

5.6 MB

Appendix.__Vectors.mp4

6.1 MB

Bonus Resources.txt

0.4 KB

Chapter_1._Classes_of_machine_learning_algorithms.mp4

42.4 MB

Chapter_1._Introduction_to_machine_learning.mp4

35.8 MB

Chapter_1._Summary.mp4

5.7 MB

Chapter_1._Thinking_about_the_ethical_impact_of_machine_learning.mp4

21.4 MB

Chapter_1._What_will_you_learn_in_this_book.mp4

2.8 MB

Chapter_1._Which_datasets_will_we_use.mp4

2.1 MB

Chapter_1._Why_use_R_for_machine_learning.mp4

8.3 MB

Chapter_10._Building_your_first_GAM.mp4

20.0 MB

Chapter_10._More_flexibility_Splines_and_generalized_additive_models.mp4

21.8 MB

Chapter_10._Strengths_and_weaknesses_of_GAMs.mp4

4.0 MB

Chapter_10._Summary.mp4

2.7 MB

Chapter_10.__Nonlinear_regression_with_generalized_additive_models.mp4

19.4 MB

Chapter_11._Benchmarking_ridge,_LASSO,_elastic_net,_and_OLS_against_each_other.mp4

7.6 MB

Chapter_11._Building_your_first_ridge,_LASSO,_and_elastic_net_models.mp4

53.9 MB

Chapter_11._Preventing_overfitting_with_ridge_regression,_LASSO,_and_elastic_net.mp4

7.3 MB

Chapter_11._Strengths_and_weaknesses_of_ridge,_LASSO,_and_elastic_net.mp4

5.2 MB

Chapter_11._Summary.mp4

5.0 MB

Chapter_11._What_is_elastic_net.mp4

11.8 MB

Chapter_11._What_is_ridge_regression.mp4

19.4 MB

Chapter_11._What_is_the_L1_norm,_and_how_does_LASSO_use_it.mp4

8.7 MB

Chapter_11._What_is_the_L2_norm,_and_how_does_ridge_regression_use_it.mp4

19.5 MB

Chapter_12._Benchmarking_the_kNN,_random_forest,_and_XGBoost_model-building_processes.mp4

4.6 MB

Chapter_12._Building_your_first_XGBoost_regression_model.mp4

12.8 MB

Chapter_12._Building_your_first_kNN_regression_model.mp4

33.9 MB

Chapter_12._Building_your_first_random_forest_regression_model.mp4

10.3 MB

Chapter_12._Regression_with_kNN,_random_forest,_and_XGBoost.mp4

14.8 MB

Chapter_12._Strengths_and_weaknesses_of_kNN,_random_forest,_and_XGBoost.mp4

2.7 MB

Chapter_12._Summary.mp4

3.9 MB

Chapter_12._Using_tree-based_learners_to_predict_a_continuous_variable.mp4

12.9 MB

Chapter_13._Building_your_first_PCA_model.mp4

45.7 MB

Chapter_13._Maximizing_variance_with_principal_component_analysis.mp4

32.9 MB

Chapter_13._Strengths_and_weaknesses_of_PCA.mp4

2.8 MB

Chapter_13._Summary.mp4

3.8 MB

Chapter_13._What_is_principal_component_analysis.mp4

28.9 MB

Chapter_14._Building_your_first_UMAP_model.mp4

18.2 MB

Chapter_14._Building_your_first_t-SNE_embedding.mp4

26.4 MB

Chapter_14._Maximizing_similarity_with_t-SNE_and_UMAP.mp4

37.0 MB

Chapter_14._Strengths_and_weaknesses_of_t-SNE_and_UMAP.mp4

3.5 MB

Chapter_14._Summary.mp4

3.3 MB

Chapter_14._What_is_UMAP.mp4

17.3 MB

Chapter_15._Building_an_LLE_of_our_flea_data.mp4

5.8 MB

Chapter_15._Building_your_first_LLE.mp4

19.9 MB

Chapter_15._Building_your_first_SOM.mp4

64.8 MB

Chapter_15._Self-organizing_maps_and_locally_linear_embedding.mp4

13.3 MB

Chapter_15._Strengths_and_weaknesses_of_SOMs_and_LLE.mp4

5.9 MB

Chapter_15._Summary.mp4

4.1 MB

Chapter_15._What_are_self-organizing_maps.mp4

32.6 MB

Chapter_15._What_is_locally_linear_embedding.mp4

12.0 MB

Chapter_16._Building_your_first_k-means_model.mp4

85.9 MB

Chapter_16._Clustering_by_finding_centers_with_k-means.mp4

34.4 MB

Chapter_16._Strengths_and_weaknesses_of_k-means_clustering.mp4

3.6 MB

Chapter_16._Summary.mp4

3.0 MB

Chapter_17._Building_your_first_agglomerative_hierarchical_clustering_model.mp4

59.3 MB

Chapter_17._Hierarchical_clustering.mp4

35.6 MB

Chapter_17._How_stable_are_our_clusters.mp4

12.1 MB

Chapter_17._Strengths_and_weaknesses_of_hierarchical_clustering.mp4

6.3 MB

Chapter_17._Summary.mp4

4.0 MB

Chapter_18._Building_your_first_DBSCAN_model.mp4

73.2 MB

Chapter_18._Building_your_first_OPTICS_model.mp4

10.2 MB

Chapter_18._Clustering_based_on_density_DBSCAN_and_OPTICS.mp4

57.4 MB

Chapter_18._Strengths_and_weaknesses_of_density-based_clustering.mp4

3.8 MB

Chapter_18._Summary.mp4

5.3 MB

Chapter_19._Building_your_first_Gaussian_mixture_model_for_clustering.mp4

21.3 MB

Chapter_19._Clustering_based_on_distributions_with_mixture_modeling.mp4

46.7 MB

Chapter_19._Strengths_and_weaknesses_of_mixture_model_clustering.mp4

4.7 MB

Chapter_19._Summary.mp4

3.9 MB

Chapter_2._Loading_the_tidyverse.mp4

549.7 KB

Chapter_2._Summary.mp4

7.9 MB

Chapter_2._Tidying,_manipulating,_and_plotting_data_with_the_tidyverse.mp4

15.1 MB

Chapter_2._What_the_dplyr_package_is_and_what_it_does.mp4

19.9 MB

Chapter_2._What_the_ggplot2_package_is_and_what_it_does.mp4

16.6 MB

Chapter_2._What_the_purrr_package_is_and_what_it_does.mp4

26.5 MB

Chapter_2._What_the_tibble_package_is_and_what_it_does.mp4

12.8 MB

Chapter_2._What_the_tidyr_package_is_and_what_it_does.mp4

7.8 MB

Chapter_20._Final_notes_and_further_reading.mp4

69.0 MB

Chapter_20._The_last_word.mp4

1.5 MB

Chapter_20._Where_can_you_go_from_here.mp4

23.2 MB

Chapter_3._Balancing_two_sources_of_model_error_The_bias-variance_trade-off.mp4

16.8 MB

Chapter_3._Building_your_first_kNN_model.mp4

27.3 MB

Chapter_3._Classifying_based_on_similarities_with_k-nearest_neighbors.mp4

23.9 MB

Chapter_3._Cross-validating_our_kNN_model.mp4

41.4 MB

Chapter_3._Strengths_and_weaknesses_of_kNN.mp4

5.7 MB

Chapter_3._Summary.mp4

9.8 MB

Chapter_3._Tuning_k_to_improve_the_model.mp4

24.1 MB

Chapter_3._Using_cross-validation_to_tell_if_we_re_overfitting_or_underfitting.mp4

7.0 MB

Chapter_3._What_algorithms_can_learn,_and_what_they_must_be_told_Parameters-_s_and_hyperparameters.mp4

11.2 MB

Chapter_4._Building_your_first_logistic_regression_model.mp4

42.8 MB

Chapter_4._Classifying_based_on_odds_with_logistic_regression.mp4

57.9 MB

Chapter_4._Cross-validating_the_logistic_regression_model.mp4

12.0 MB

Chapter_4._Interpreting_the_model_The_odds_ratio.mp4

12.2 MB

Chapter_4._Strengths_and_weaknesses_of_logistic_regression.mp4

5.2 MB

Chapter_4._Summary.mp4

7.2 MB

Chapter_4._Using_our_model_to_make_predictions.mp4

2.4 MB

Chapter_5._Building_your_first_linear_and_quadratic_discriminant_models.mp4

22.0 MB

Chapter_5._Classifying_by_maximizing_separation_with_discriminant_analysis.mp4

59.5 MB

Chapter_5._Strengths_and_weaknesses_of_LDA_and_QDA.mp4

5.2 MB

Chapter_5._Summary.mp4

5.7 MB

Chapter_6._Building_your_first_SVM_model.mp4

34.6 MB

Chapter_6._Building_your_first_naive_Bayes_model.mp4

17.9 MB

Chapter_6._Classifying_with_naive_Bayes_and_support_vector_machines.mp4

33.5 MB

Chapter_6._Cross-validating_our_SVM_model.mp4

7.4 MB

Chapter_6._Strengths_and_weaknesses_of_naive_Bayes.mp4

2.9 MB

Chapter_6._Strengths_and_weaknesses_of_the_SVM_algorithm.mp4

3.7 MB

Chapter_6._Summary.mp4

6.2 MB

Chapter_6._What_is_the_support_vector_machine_(SVM)_algorithm.mp4

62.3 MB

Chapter_7._Building_your_first_decision_tree_model.mp4

2.9 MB

Chapter_7._Classifying_with_decision_trees.mp4

52.6 MB

Chapter_7._Cross-validating_our_decision_tree_model.mp4

7.7 MB

Chapter_7._Loading_and_exploring_the_zoo_dataset.mp4

3.3 MB

Chapter_7._Strengths_and_weaknesses_of_tree-based_algorithms.mp4

1.9 MB

Chapter_7._Summary.mp4

2.3 MB

Chapter_7._Training_the_decision_tree_model.mp4

31.5 MB

Chapter_8._Benchmarking_algorithms_against_each_other.mp4

7.4 MB

Chapter_8._Building_your_first_XGBoost_model.mp4

22.6 MB

Chapter_8._Building_your_first_random_forest_model.mp4

13.4 MB

Chapter_8._Improving_decision_trees_with_random_forests_and_boosting.mp4

62.6 MB

Chapter_8._Strengths_and_weaknesses_of_tree-based_algorithms.mp4

3.1 MB

Chapter_8._Summary.mp4

3.5 MB

Chapter_9._Building_your_first_linear_regression_model.mp4

126.0 MB

Chapter_9._Linear_regression.mp4

51.5 MB

Chapter_9._Strengths_and_weaknesses_of_linear_regression.mp4

3.3 MB

Chapter_9._Summary.mp4

4.1 MB

Part_1._Introduction.mp4

5.7 MB

Part_2._Classification.mp4

5.6 MB

Part_3._Regression.mp4

4.5 MB

Part_4._Dimension_reduction.mp4

3.8 MB

Part_5._Clustering.mp4

3.1 MB

 

Total files 137


Copyright © 2025 FileMood.com