FileMood

Download [ FreeCourseWeb.com ] Oreilly - Distributed Machine Learning Patterns, Video Edition

FreeCourseWeb com Oreilly Distributed Machine Learning Patterns Video Edition

Name

[ FreeCourseWeb.com ] Oreilly - Distributed Machine Learning Patterns, Video Edition

 DOWNLOAD Copy Link

Total Size

987.6 MB

Total Files

58

Last Seen

2025-01-18 23:49

Hash

1581E53F329C9DBAF6283E6BE36D42995E54AAB9

/

Get Bonus Downloads Here.url

0.2 KB

/~Get Your Files Here !/

001. Part 1. Basic concepts and background.mp4

2.5 MB

002. Chapter 1. Introduction to distributed machine learning systems.mp4

29.2 MB

003. Chapter 1. Distributed systems.mp4

7.6 MB

004. Chapter 1. Distributed machine learning systems.mp4

13.9 MB

005. Chapter 1. What we will learn in this book.mp4

7.9 MB

006. Chapter 1. Summary.mp4

2.2 MB

007. Part 2. Patterns of distributed machine learning systems.mp4

10.0 MB

008. Chapter 2. Data ingestion patterns.mp4

15.5 MB

009. Chapter 2. The Fashion-MNIST dataset.mp4

13.8 MB

010. Chapter 2. Batching pattern.mp4

30.7 MB

011. Chapter 2. Sharding pattern Splitting extremely large datasets among multiple machines.mp4

33.8 MB

012. Chapter 2. Caching pattern.mp4

26.3 MB

013. Chapter 2. Answers to exercises.mp4

1.2 MB

014. Chapter 2. Summary.mp4

2.3 MB

015. Chapter 3. Distributed training patterns.mp4

13.7 MB

016. Chapter 3. Parameter server pattern Tagging entities in 8 million YouTube videos.mp4

41.4 MB

017. Chapter 3. Collective communication pattern.mp4

37.7 MB

018. Chapter 3. Elasticity and fault-tolerance pattern.mp4

28.4 MB

019. Chapter 3. Answers to exercises.mp4

2.2 MB

020. Chapter 3. Summary.mp4

2.0 MB

021. Chapter 4. Model serving patterns.mp4

13.2 MB

022. Chapter 4. Replicated services pattern Handling the growing number of serving requests.mp4

29.9 MB

023. Chapter 4. Sharded services pattern.mp4

28.6 MB

024. Chapter 4. The event-driven processing pattern.mp4

52.9 MB

025. Chapter 4. Answers to exercises.mp4

1.9 MB

026. Chapter 4. Summary.mp4

2.8 MB

027. Chapter 5. Workflow patterns.mp4

19.7 MB

028. Chapter 5. Fan-in and fan-out patterns Composing complex machine learning workflows.mp4

35.8 MB

029. Chapter 5. Synchronous and asynchronous patterns Accelerating workflows with concurrency.mp4

26.6 MB

030. Chapter 5. Step memoization pattern Skipping redundant workloads via memoized steps.mp4

29.5 MB

031. Chapter 5. Answers to exercises.mp4

6.9 MB

032. Chapter 5. Summary.mp4

2.1 MB

033. Chapter 6. Operation patterns.mp4

19.0 MB

034. Chapter 6. Scheduling patterns Assigning resources effectively in a shared cluster.mp4

52.2 MB

035. Chapter 6. Metadata pattern Handle failures appropriately to minimize the negative effect on users.mp4

33.0 MB

036. Chapter 6. Answers to exercises.mp4

2.7 MB

037. Chapter 6. Summary.mp4

1.5 MB

038. Part 3. Building a distributed machine learning workflow.mp4

4.4 MB

039. Chapter 7. Project overview and system architecture.mp4

18.9 MB

040. Chapter 7. Data ingestion.mp4

21.7 MB

041. Chapter 7. Model training.mp4

14.5 MB

042. Chapter 7. Model serving.mp4

10.6 MB

043. Chapter 7. End-to-end workflow.mp4

21.3 MB

044. Chapter 7. Answers to exercises.mp4

988.5 KB

045. Chapter 7. Summary.mp4

2.2 MB

046. Chapter 8. Overview of relevant technologies.mp4

26.8 MB

047. Chapter 8. Kubernetes The distributed container orchestration system.mp4

19.4 MB

048. Chapter 8. Kubeflow Machine learning workloads on Kubernetes.mp4

25.4 MB

049. Chapter 8. Argo Workflows Container-native workflow engine.mp4

26.5 MB

050. Chapter 8. Answers to exercises.mp4

1.3 MB

051. Chapter 8. Summary.mp4

1.3 MB

052. Chapter 9. A complete implementation.mp4

25.5 MB

053. Chapter 9. Model training.mp4

36.4 MB

054. Chapter 9. Model serving.mp4

21.5 MB

055. Chapter 9. The end-to-end workflow.mp4

24.4 MB

056. Chapter 9. Summary.mp4

3.4 MB

Bonus Resources.txt

0.4 KB

 

Total files 58


Copyright © 2025 FileMood.com