FileMood

Download [ FreeCourseWeb.com ] Udemy - Complete Machine Learning and Deep Learning With H2O in R

FreeCourseWeb com Udemy Complete Machine Learning and Deep Learning With H2O in

Name

[ FreeCourseWeb.com ] Udemy - Complete Machine Learning and Deep Learning With H2O in R

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

3.3 GB

Total Files

147

Last Seen

2025-05-04 23:42

Hash

C420B4EBBA273AA8F8CEB60924A185C607977C00

/

Get Bonus Downloads Here.url

0.2 KB

/.../01 - Welcome To The Course/

001 Brief Introduction.mp4

28.4 MB

001 Brief Introduction_en.srt

3.0 KB

002 Data and Code.html

0.1 KB

003 Install R and RStudio.mp4

67.6 MB

003 Install R and RStudio_en.srt

7.1 KB

004 Common data types.mp4

48.5 MB

004 Common data types_en.srt

4.2 KB

005 Install H2o.mp4

87.2 MB

005 Install H2o_en.srt

5.4 KB

/.../data_code_H2O-R/section2/

_L10_h2o_externalData.txt

0.6 KB

_L6_csv-excel.txt

0.2 KB

_L7_readHTML_xml.txt

0.2 KB

_L8_readHTML_rcurl.txt

0.2 KB

_L9_readJson.txt

0.6 KB

_Resp1.csv

0.2 KB

_boston1.xls

0.2 KB

_glassClass.csv

0.6 KB

_skorea.json

0.6 KB

_winequality-red.csv

0.2 KB

/.../data_code_H2O-R/section3/

_L11_removeNA.txt

0.3 KB

_L12_pipeop.txt

0.7 KB

_L13_tidyv1.txt

0.6 KB

_L14_EDA.txt

0.2 KB

/.../data_code_H2O-R/section5/

_L18_kmeans.txt

0.3 KB

_L20_pca.txt

0.5 KB

_Seabmass_typ.csv

0.3 KB

_covtype.csv

0.2 KB

/.../data_code_H2O-R/section6/

_L22_glm_binary.txt

0.3 KB

_L24_rf_binary.txt

0.5 KB

_L26_rf_multi.txt

0.3 KB

_L27_gbm_binary.txt

0.5 KB

_LoanDefault.csv

0.2 KB

_covtype.csv

0.2 KB

/.../data_code_H2O-R/section7/

_L31_h2o_ann.txt

0.6 KB

_L32_h2o-dnn-3hidden.txt

0.6 KB

_L33_h2o-dnn-2hidden.txt

0.6 KB

_L34_h2o_varimp.txt

0.6 KB

_L35_h2o_regression.txt

0.6 KB

_dataset.csv

0.6 KB

/.../data_code_H2O-R/section8/

_L38_h2o_ann_unsup.txt

0.6 KB

_L39_h2o_autoencoders.txt

0.6 KB

_cancer_tumor.csv

0.6 KB

_creditcard.csv

0.6 KB

/.../data_code_H2O-R/section2/

L10_h2o_externalData.txt

0.6 KB

L6_csv-excel.txt

0.7 KB

L7_readHTML_xml.txt

0.5 KB

L8_readHTML_rcurl.txt

0.8 KB

L9_readJson.txt

1.3 KB

Resp1.csv

0.3 KB

boston1.xls

59.4 KB

glassClass.csv

10.1 KB

skorea.json

3.7 KB

winequality-red.csv

84.2 KB

/.../data_code_H2O-R/section3/

L11_removeNA.txt

1.5 KB

L12_pipeop.txt

0.9 KB

L13_tidyv1.txt

0.4 KB

L14_EDA.txt

1.1 KB

/.../data_code_H2O-R/section5/

L18_kmeans.txt

0.7 KB

L20_pca.txt

1.8 KB

Seabmass_typ.csv

29.9 KB

covtype.csv

75.2 MB

/.../data_code_H2O-R/section6/

L22_glm_binary.txt

1.8 KB

L24_rf_binary.txt

1.4 KB

L26_rf_multi.txt

2.6 KB

L27_gbm_binary.txt

1.4 KB

LoanDefault.csv

458.7 KB

covtype.csv

75.2 MB

/.../data_code_H2O-R/section7/

L31_h2o_ann.txt

1.2 KB

L32_h2o-dnn-3hidden.txt

2.8 KB

L33_h2o-dnn-2hidden.txt

1.3 KB

L34_h2o_varimp.txt

1.3 KB

L35_h2o_regression.txt

1.0 KB

dataset.csv

133.0 MB

/.../data_code_H2O-R/section8/

L38_h2o_ann_unsup.txt

1.1 KB

L39_h2o_autoencoders.txt

1.1 KB

cancer_tumor.csv

125.2 KB

creditcard.csv

150.8 MB

/.../02 - Read in Data From Different Sources/

001 Read CSV and Excel Data.mp4

116.7 MB

001 Read CSV and Excel Data_en.srt

11.6 KB

002 Read in Data from Online HTML Tables-Part 1.mp4

19.0 MB

002 Read in Data from Online HTML Tables-Part 1_en.srt

4.6 KB

003 Read in Data from Online HTML Tables-Part 2.mp4

87.5 MB

003 Read in Data from Online HTML Tables-Part 2_en.srt

7.7 KB

004 Read External Data into H2o.mp4

63.8 MB

004 Read External Data into H2o_en.srt

5.9 KB

/.../03 - Data Preprocessing (Briefly)/

001 Basic Data Cleaning in R_ Remove NA.mp4

141.1 MB

001 Basic Data Cleaning in R_ Remove NA_en.srt

17.7 KB

002 Pre-processing Tasks and the Pipe Operator.mp4

96.4 MB

002 Pre-processing Tasks and the Pipe Operator_en.srt

9.2 KB

003 Introduction to Pipe Operators.mp4

96.4 MB

003 Introduction to Pipe Operators_en.srt

9.2 KB

004 The Tidyverse Package.mp4

32.9 MB

004 The Tidyverse Package_en.srt

3.9 KB

005 Exploratory Data Analysis(EDA)_ Basic Visualizations with R.mp4

119.8 MB

005 Exploratory Data Analysis(EDA)_ Basic Visualizations with R_en.srt

6.8 KB

/.../04 - Some Theoretical Foundations/

001 What is Machine Learning_.mp4

73.0 MB

001 What is Machine Learning__en.srt

7.4 KB

002 Difference Between Supervised & Unsupervised Learning.mp4

73.0 MB

002 Difference Between Supervised & Unsupervised Learning_en.srt

7.4 KB

/.../05 - Unsupervised Classification with H2o/

001 Theory of k-Means Clustering.mp4

19.1 MB

001 Theory of k-Means Clustering_en.srt

2.1 KB

002 Implement k-Means Classification.mp4

49.7 MB

002 Implement k-Means Classification_en.srt

5.3 KB

003 Principal Component Analysis (PCA)_ Theory.mp4

25.6 MB

003 Principal Component Analysis (PCA)_ Theory_en.srt

3.4 KB

004 Implement PCA With H2O.mp4

159.8 MB

004 Implement PCA With H2O_en.srt

16.3 KB

/.../06 - Supervised Classification with H2O/

001 Generalized Linear Models (GLMs)_ Theory.mp4

40.8 MB

001 Generalized Linear Models (GLMs)_ Theory_en.srt

6.0 KB

002 GLMs For Binary Classification.mp4

87.0 MB

002 GLMs For Binary Classification_en.srt

10.3 KB

003 Common Algorithms For Supervised Classification.mp4

25.1 MB

003 Common Algorithms For Supervised Classification_en.srt

13.0 KB

004 Implement Random Forest For Binary Classification Problem.mp4

124.6 MB

004 Implement Random Forest For Binary Classification Problem_en.srt

11.8 KB

005 Measures of Accuracy_Binary Classification.mp4

60.9 MB

005 Measures of Accuracy_Binary Classification_en.srt

5.5 KB

006 Implement Random Forest For Multiple Classification Problem.mp4

90.5 MB

006 Implement Random Forest For Multiple Classification Problem_en.srt

10.2 KB

007 Gradient Boosting Machines (GBM) for Binary Classification.mp4

69.7 MB

007 Gradient Boosting Machines (GBM) for Binary Classification_en.srt

6.8 KB

/.../07 - Artificial Neural Networks (ANN) and Deep Neural Networks With H2O/

001 A Brief Introduction to Artificial Intelligence.mp4

100.2 MB

001 A Brief Introduction to Artificial Intelligence_en.srt

10.5 KB

002 Theory Behind ANN and DNN.mp4

98.2 MB

002 Theory Behind ANN and DNN_en.srt

11.6 KB

003 Implement an ANN with H2o For Multi-Class Supervised Classification.mp4

114.5 MB

003 Implement an ANN with H2o For Multi-Class Supervised Classification_en.srt

11.2 KB

004 What Are Activation Functions_ Theory.mp4

91.0 MB

004 What Are Activation Functions_ Theory_en.srt

7.4 KB

005 Implement a DNN with H2o For Multi-Class Supervised Classification.mp4

64.3 MB

005 Implement a DNN with H2o For Multi-Class Supervised Classification_en.srt

7.4 KB

006 Implement a (Less Intensive) DNN with H2o For Supervised Classification.mp4

32.2 MB

006 Implement a (Less Intensive) DNN with H2o For Supervised Classification_en.srt

4.5 KB

007 Identify the Important Predictors.mp4

100.4 MB

007 Identify the Important Predictors_en.srt

8.5 KB

008 DNN For Regression.mp4

60.2 MB

008 DNN For Regression_en.srt

4.5 KB

/.../08 - Deep Learning Based Unsupervised Classification/

001 Autoencoders for Unsupervised Learning.mp4

27.0 MB

001 Autoencoders for Unsupervised Learning_en.srt

2.3 KB

002 Unsupervised Classification with H2o.mp4

112.3 MB

002 Unsupervised Classification with H2o_en.srt

5.8 KB

003 More Autoencoders _ Credit Card Fraud Detection.mp4

58.2 MB

003 More Autoencoders _ Credit Card Fraud Detection_en.srt

4.2 KB

004 Use the Autoencoder Model for Anomaly Detection.mp4

71.4 MB

004 Use the Autoencoder Model for Anomaly Detection_en.srt

6.1 KB

/~Get Your Files Here !/

Bonus Resources.txt

0.4 KB

 

Total files 147


Copyright © 2025 FileMood.com