FreeTutorials Us from machine learning |
||
Name |
DOWNLOAD
Copy Link
Trouble downloading? see How To |
|
Total Size |
10.9 GB |
|
Total Files |
236 |
|
Hash |
8D94D5B14AF768DCC0370B3CB61CC7688DABBC57 |
/.../004-machine-learning-why-should-you-jump-on-the-bandwagon/ |
|
|
791.2 KB |
/.../005-plunging-in-machine-learning-approaches-to-spam-detection/ |
|
|
775.2 KB |
/.../006-spam-detection-with-machine-learning-continued/ |
|
|
892.7 KB |
/.../007-get-the-lay-of-the-land-types-of-machine-learning-problems/ |
|
|
2.2 MB |
/.../009-random-variables/ |
|
|
973.0 KB |
/.../010-bayes-theorem/ |
|
|
944.5 KB |
/.../011-naive-bayes-classifier/ |
|
|
1.4 MB |
/.../012-naive-bayes-classifier-an-example/ |
|
|
1.9 MB |
/.../013-knearest-neighbors/ |
|
|
835.5 KB |
/.../014-knearest-neighbors-a-few-wrinkles/ |
|
|
924.4 KB |
/.../015-support-vector-machines-introduced/ |
|
|
856.8 KB |
/.../016-support-vector-machines-maximum-margin-hyperplane-and-kernel-trick/ |
|
|
2.1 MB |
/.../017-artificial-neural-networksperceptrons-introduced/ |
|
|
1.5 MB |
|
868.2 KB |
/.../018-clustering-introduction/ |
|
|
3.1 MB |
|
973.9 KB |
/.../019-clustering-kmeans-and-dbscan/ |
|
|
3.1 MB |
/.../020-association-rules-learning/ |
|
|
845.0 KB |
/.../021-dimensionality-reduction/ |
|
|
934.2 KB |
/.../022-principal-component-analysis/ |
|
|
902.1 KB |
/.../023-regression-introduced-linear-and-logistic-regression/ |
|
|
1.2 MB |
/.../024-bias-variance-tradeoff/ |
|
|
369.8 KB |
/.../026-installing-python-anaconda-and-pip/ |
|
|
90.7 MB |
/.../027-natural-language-processing-with-nltk/ |
|
|
3.5 KB |
|
3.5 KB |
/.../028-natural-language-processing-with-nltk-see-it-in-action/ |
|
|
3.5 KB |
|
3.5 KB |
/.../029-web-scraping-with-beautifulsoup/ |
|
|
4.5 KB |
|
4.5 KB |
/.../030-a-serious-nlp-application-text-auto-summarization-using-python/ |
|
|
908.9 KB |
/.../031-python-drill-autosummarize-news-articles-i/ |
|
|
12.9 KB |
|
12.9 KB |
|
118.1 KB |
/.../032-python-drill-autosummarize-news-articles-ii/ |
|
|
12.9 KB |
|
12.9 KB |
/.../033-python-drill-autosummarize-news-articles-iii/ |
|
|
12.9 KB |
|
12.9 KB |
/.../034-put-it-to-work-news-article-classification-using-knearest-neighbors/ |
|
|
895.3 KB |
|
1.1 MB |
/.../035-put-it-to-work-news-article-classification-using-naive-bayes-classifier/ |
|
|
769.6 KB |
/.../036-python-drill-scraping-news-websites/ |
|
|
17.0 KB |
|
17.0 KB |
/.../037-python-drill-feature-extraction-with-nltk/ |
|
|
17.0 KB |
|
17.0 KB |
/.../038-python-drill-classification-with-knn/ |
|
|
17.0 KB |
|
17.0 KB |
/.../039-python-drill-classification-with-naive-bayes/ |
|
|
17.0 KB |
|
17.0 KB |
/.../040-document-distance-using-tfidf/ |
|
|
1.2 MB |
/.../041-put-it-to-work-news-article-clustering-with-kmeans-and-tfidf/ |
|
|
961.5 KB |
/.../042-python-drill-clustering-with-k-means/ |
|
|
17.0 KB |
|
17.0 KB |
/.../044-sentiment-analysis-whats-all-the-fuss-about/ |
|
|
3.0 MB |
/.../045-ml-solutions-for-sentiment-analysis-the-devil-is-in-the-details/ |
|
|
3.0 MB |
/.../046-sentiment-lexicons-with-an-introduction-to-wordnet-and-sentiwordnet/ |
|
|
3.0 MB |
/.../047-regular-expressions/ |
|
|
3.0 MB |
/.../048-regular-expressions-in-python/ |
|
|
3.0 MB |
/.../049-put-it-to-work-twitter-sentiment-analysis/ |
|
|
3.0 MB |
/.../050-twitter-sentiment-analysis-work-the-api/ |
|
|
17.4 KB |
/.../051-twitter-sentiment-analysis-regular-expressions-for-preprocessing/ |
|
|
17.4 KB |
/.../052-twitter-sentiment-analysis-naive-bayes-svm-and-sentiwordnet/ |
|
|
17.4 KB |
/.../055-growing-the-tree-decision-tree-learning/ |
|
|
19.6 MB |
/.../056-branching-out-information-gain/ |
|
|
19.6 MB |
/.../057-decision-tree-algorithms/ |
|
|
19.6 MB |
/.../058-titanic-decision-trees-predict-survival-kaggle-i/ |
|
|
12.6 KB |
|
12.5 KB |
/.../059-titanic-decision-trees-predict-survival-kaggle-ii/ |
|
|
12.6 KB |
|
12.5 KB |
/.../060-titanic-decision-trees-predict-survival-kaggle-iii/ |
|
|
12.6 KB |
|
12.5 KB |
/.../061-overfitting-the-bane-of-machine-learning/ |
|
|
3.0 MB |
/.../062-overfitting-continued/ |
|
|
3.0 MB |
/.../063-cross-validation/ |
|
|
3.0 MB |
/.../064-simplicity-is-a-virtue-regularization/ |
|
|
3.0 MB |
/.../065-the-wisdom-of-crowds-ensemble-learning/ |
|
|
3.0 MB |
/.../066-ensemble-learning-continued-bagging-boosting-and-stacking/ |
|
|
3.0 MB |
/.../067-random-forests-much-more-than-trees/ |
|
|
3.0 MB |
/.../068-back-on-the-titanic-cross-validation-and-random-forests/ |
|
|
17.9 KB |
|
17.9 KB |
/.../070-what-do-amazon-and-netflix-have-in-common/ |
|
|
29.6 MB |
/.../071-recommendation-engines-a-look-inside/ |
|
|
29.6 MB |
/.../072-what-are-you-made-of-contentbased-filtering/ |
|
|
29.6 MB |
/.../073-with-a-little-help-from-friends-collaborative-filtering/ |
|
|
29.6 MB |
/.../074-a-neighbourhood-model-for-collaborative-filtering/ |
|
|
29.6 MB |
/.../075-top-picks-for-you-recommendations-with-neighbourhood-models/ |
|
|
29.6 MB |
/.../076-discover-the-underlying-truth-latent-factor-collaborative-filtering/ |
|
|
29.6 MB |
/.../077-latent-factor-collaborative-filtering-contd/ |
|
|
29.6 MB |
/.../078-gray-sheep-and-shillings-challenges-with-collaborative-filtering/ |
|
|
29.6 MB |
/.../079-the-apriori-algorithm-for-association-rules/ |
|
|
29.6 MB |
/.../080-back-to-basics-numpy-in-python/ |
|
|
7.2 KB |
|
7.2 KB |
/.../081-back-to-basics-numpy-and-scipy-in-python/ |
|
|
7.2 KB |
|
7.2 KB |
/.../082-movielens-and-pandas/ |
|
|
18.8 KB |
|
18.8 KB |
/.../083-code-along-whats-my-favorite-movie-data-analysis-with-pandas/ |
|
|
18.8 KB |
|
18.8 KB |
/.../084-code-along-movie-recommendation-with-nearest-neighbour-cf/ |
|
|
18.8 KB |
|
18.8 KB |
/.../085-code-along-top-movie-picks-nearest-neighbour-cf/ |
|
|
18.8 KB |
|
18.8 KB |
/.../086-code-along-movie-recommendations-with-matrix-factorization/ |
|
|
18.8 KB |
|
18.8 KB |
/.../087-code-along-association-rules-with-the-apriori-algorithm/ |
|
|
18.8 KB |
|
18.8 KB |
/.../088-computer-vision-an-introduction/ |
|
|
9.5 MB |
/.../089-perceptron-revisited/ |
|
|
9.5 MB |
/.../090-deep-learning-networks-introduced/ |
|
|
9.5 MB |
/.../091-code-along-handwritten-digit-recognition-i/ |
|
|
10.4 KB |
|
10.6 KB |
/.../092-code-along-handwritten-digit-recognition-ii/ |
|
|
10.4 KB |
|
10.6 KB |
/.../093-code-along-handwritten-digit-recognition-iii/ |
|
|
10.4 KB |
|
10.6 KB |
/16-quizzes/quizzes/ |
|
|
2.6 KB |
|
3.0 KB |
|
2.4 KB |
|
2.6 KB |
|
2.4 KB |
|
2.2 KB |
|
2.2 KB |
|
2.3 KB |
|
3.0 KB |
|
2.6 KB |
|
2.3 KB |
|
2.2 KB |
|
2.3 KB |
|
2.2 KB |
|
2.4 KB |
|
2.4 KB |
|
2.5 KB |
|
2.2 KB |
|
2.6 KB |
|
2.2 KB |
|
2.2 KB |
|
2.3 KB |
|
2.2 KB |
|
2.4 KB |
|
2.3 KB |
|
2.7 KB |
|
2.3 KB |
/01-introduction/ |
|
|
16.1 MB |
|
28.6 MB |
/02-jump-right-in-machine-learning-for-spam-detection/ |
|
|
14.5 MB |
004-machine-learning-why-should-you-jump-on-the-bandwagon.mp4 |
22.6 MB |
005-plunging-in-machine-learning-approaches-to-spam-detection.mp4 |
33.8 MB |
|
30.5 MB |
007-get-the-lay-of-the-land-types-of-machine-learning-problems.mp4 |
31.5 MB |
/03-solving-classification-problems/ |
|
|
6.2 MB |
|
37.1 MB |
|
26.0 MB |
|
16.8 MB |
|
29.8 MB |
|
117.2 MB |
|
161.7 MB |
|
96.4 MB |
016-support-vector-machines-maximum-margin-hyperplane-and-kernel-trick.mp4 |
181.9 MB |
|
124.2 MB |
/04-clustering-as-a-form-of-unsupervised-learning/ |
|
|
198.4 MB |
|
148.5 MB |
/05-association-detection/ |
|
|
99.6 MB |
/06-dimensionality-reduction/ |
|
|
103.3 MB |
|
181.0 MB |
/07-regression-as-a-form-of-supervised-learning/ |
|
023-regression-introduced-linear-and-logistic-regression.mp4 |
147.6 MB |
|
116.1 MB |
/08-natural-language-processing-and-python/ |
|
|
6.5 MB |
|
41.1 MB |
|
79.9 MB |
028-natural-language-processing-with-nltk-see-it-in-action.mp4 |
124.0 MB |
|
158.1 MB |
030-a-serious-nlp-application-text-auto-summarization-using-python.mp4 |
127.2 MB |
|
113.5 MB |
|
126.6 MB |
|
208.0 MB |
034-put-it-to-work-news-article-classification-using-knearest-neighbors.mp4 |
218.1 MB |
035-put-it-to-work-news-article-classification-using-naive-bayes-classifier.mp4 |
212.1 MB |
|
139.7 MB |
|
120.8 MB |
|
32.3 MB |
|
58.6 MB |
|
111.9 MB |
041-put-it-to-work-news-article-clustering-with-kmeans-and-tfidf.mp4 |
148.2 MB |
|
57.0 MB |
/09-sentiment-analysis/ |
|
|
56.8 MB |
|
163.6 MB |
045-ml-solutions-for-sentiment-analysis-the-devil-is-in-the-details.mp4 |
182.0 MB |
046-sentiment-lexicons-with-an-introduction-to-wordnet-and-sentiwordnet.mp4 |
163.2 MB |
|
161.0 MB |
|
48.3 MB |
|
156.1 MB |
|
216.2 MB |
051-twitter-sentiment-analysis-regular-expressions-for-preprocessing.mp4 |
114.8 MB |
052-twitter-sentiment-analysis-naive-bayes-svm-and-sentiwordnet.mp4 |
191.8 MB |
/10-decision-trees/ |
|
|
6.5 MB |
|
143.4 MB |
|
168.6 MB |
|
212.1 MB |
|
68.8 MB |
|
119.7 MB |
|
100.8 MB |
|
79.4 MB |
/11-a-few-useful-things-to-know-about-overfitting/ |
|
|
159.0 MB |
|
102.4 MB |
|
152.0 MB |
|
50.3 MB |
|
149.7 MB |
066-ensemble-learning-continued-bagging-boosting-and-stacking.mp4 |
191.0 MB |
/12-random-forests/ |
|
|
108.8 MB |
068-back-on-the-titanic-cross-validation-and-random-forests.mp4 |
210.6 MB |
/13-recommendation-systems/ |
|
|
6.8 MB |
|
177.9 MB |
|
103.0 MB |
|
112.1 MB |
073-with-a-little-help-from-friends-collaborative-filtering.mp4 |
101.5 MB |
|
166.4 MB |
075-top-picks-for-you-recommendations-with-neighbourhood-models.mp4 |
101.8 MB |
076-discover-the-underlying-truth-latent-factor-collaborative-filtering.mp4 |
207.1 MB |
|
148.4 MB |
078-gray-sheep-and-shillings-challenges-with-collaborative-filtering.mp4 |
75.1 MB |
|
189.9 MB |
/14-recommendation-systems-in-python/ |
|
|
128.6 MB |
|
88.9 MB |
|
134.6 MB |
083-code-along-whats-my-favorite-movie-data-analysis-with-pandas.mp4 |
27.7 MB |
084-code-along-movie-recommendation-with-nearest-neighbour-cf.mp4 |
166.8 MB |
|
58.8 MB |
086-code-along-movie-recommendations-with-matrix-factorization.mp4 |
174.0 MB |
087-code-along-association-rules-with-the-apriori-algorithm.mp4 |
50.9 MB |
/15-a-taste-of-deep-learning-and-computer-vision/ |
|
|
122.8 MB |
|
107.8 MB |
|
106.7 MB |
|
106.9 MB |
|
119.3 MB |
|
35.9 MB |
/ |
|
|
0.1 KB |
|
0.1 KB |
Total files 236 |
Copyright © 2025 FileMood.com