FileMood

Download [FreeTutorials.Us] Udemy - Feature Engineering for Machine Learning

FreeTutorials Us Udemy Feature Engineering for Machine Learning

Name

[FreeTutorials.Us] Udemy - Feature Engineering for Machine Learning

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

4.0 GB

Total Files

338

Last Seen

2025-05-20 23:39

Hash

C4069CAC192C286F32CBE87A76FF1DDC6F293EA8

/0. Websites you may like/

0. (1Hack.Us) Premium Tutorials-Guides-Articles & Community based Forum.url

0.4 KB

1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url

0.3 KB

2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url

0.3 KB

3. (NulledPremium.com) Download E-Learning, E-Books, Audio-Books, Comics, Articles and more... etc.url

0.2 KB

4. (FTUApps.com) Download Cracked Developers Applications For Free.url

0.2 KB

How you can help Team-FTU.txt

0.2 KB

/1. Introduction/

1. Introduction.mp4

34.5 MB

1. Introduction.srt

7.0 KB

1. Introduction.vtt

6.2 KB

2. Course curriculum overview.mp4

35.0 MB

2. Course curriculum overview.srt

7.4 KB

2. Course curriculum overview.vtt

6.6 KB

3. Course requirements.mp4

11.2 MB

3. Course requirements.srt

4.2 KB

3. Course requirements.vtt

3.7 KB

4. How to approach this course.html

1.8 KB

5. Setting up your computer.html

3.6 KB

6. Download Jupyter notebooks.html

1.3 KB

6.1 HandsOnPythonCode.zip.zip

9.7 MB

7. Download datasets.html

2.0 KB

8. Download course presentations.html

0.8 KB

8.1 FeatureEngineeringSlides.zip.zip

31.0 MB

9. FAQ Data Science, Python programming, datasets, presentations and more....html

1.7 KB

/10. Feature Scaling/

1. Feature scaling Introduction.mp4

21.6 MB

1. Feature scaling Introduction.srt

4.7 KB

1. Feature scaling Introduction.vtt

4.2 KB

10. Scaling to median and quantiles.mp4

13.6 MB

10. Scaling to median and quantiles.srt

3.2 KB

10. Scaling to median and quantiles.vtt

2.9 KB

11. Robust Scaling Demo.mp4

17.4 MB

11. Robust Scaling Demo.srt

2.5 KB

11. Robust Scaling Demo.vtt

2.2 KB

12. Scaling to vector unit length.mp4

33.5 MB

12. Scaling to vector unit length.srt

6.8 KB

12. Scaling to vector unit length.vtt

6.0 KB

13. Scaling to vector unit length Demo.mp4

48.6 MB

13. Scaling to vector unit length Demo.srt

6.2 KB

13. Scaling to vector unit length Demo.vtt

5.5 KB

14. Additional reading resources.html

1.4 KB

2. Standardisation.mp4

27.8 MB

2. Standardisation.srt

6.7 KB

2. Standardisation.vtt

6.0 KB

3. Standardisation Demo.mp4

43.6 MB

3. Standardisation Demo.srt

5.6 KB

3. Standardisation Demo.vtt

5.0 KB

4. Mean normalisation.mp4

20.8 MB

4. Mean normalisation.srt

5.0 KB

4. Mean normalisation.vtt

4.5 KB

5. Mean normalisation Demo.mp4

47.3 MB

5. Mean normalisation Demo.srt

6.3 KB

5. Mean normalisation Demo.vtt

5.6 KB

6. Scaling to minimum and maximum values.mp4

17.9 MB

6. Scaling to minimum and maximum values.srt

3.9 KB

6. Scaling to minimum and maximum values.vtt

3.5 KB

7. MinMaxScaling Demo.mp4

27.1 MB

7. MinMaxScaling Demo.srt

3.6 KB

7. MinMaxScaling Demo.vtt

3.2 KB

8. Maximum absolute scaling.mp4

15.3 MB

8. Maximum absolute scaling.srt

3.4 KB

8. Maximum absolute scaling.vtt

3.0 KB

9. MaxAbsScaling Demo.mp4

33.0 MB

9. MaxAbsScaling Demo.srt

4.7 KB

9. MaxAbsScaling Demo.vtt

4.1 KB

/11. Engineering mixed variables/

1. Engineering mixed variables.mp4

16.0 MB

1. Engineering mixed variables.srt

4.1 KB

1. Engineering mixed variables.vtt

3.6 KB

2. Engineering mixed variables Demo.mp4

47.7 MB

2. Engineering mixed variables Demo.srt

7.4 KB

2. Engineering mixed variables Demo.vtt

6.6 KB

/12. Engineering datetime variables/

1. Engineering datetime variables.mp4

24.3 MB

1. Engineering datetime variables.srt

5.6 KB

1. Engineering datetime variables.vtt

5.0 KB

2. Engineering dates Demo.mp4

56.6 MB

2. Engineering dates Demo.srt

9.3 KB

2. Engineering dates Demo.vtt

8.2 KB

3. Engineering time variables and different timezones.mp4

35.1 MB

3. Engineering time variables and different timezones.srt

5.5 KB

3. Engineering time variables and different timezones.vtt

4.8 KB

/13. Assembling a feature engineering pipeline/

1. Classification pipeline.mp4

142.6 MB

1. Classification pipeline.srt

15.9 KB

1. Classification pipeline.vtt

14.2 KB

2. Regression pipeline.mp4

165.2 MB

2. Regression pipeline.srt

17.2 KB

2. Regression pipeline.vtt

15.2 KB

3. Beat the performance by engineering features.html

0.2 KB

/14. Final section Next steps/

1. BONUS Discounts on my other courses!.html

1.0 KB

/2. Variable Types/

1. Variables Intro.mp4

16.0 MB

1. Variables Intro.srt

3.6 KB

1. Variables Intro.vtt

3.2 KB

2. Numerical variables.mp4

28.2 MB

2. Numerical variables.srt

6.9 KB

2. Numerical variables.vtt

6.1 KB

3. Categorical variables.mp4

19.3 MB

3. Categorical variables.srt

4.7 KB

3. Categorical variables.vtt

4.2 KB

4. Date and time variables.mp4

10.3 MB

4. Date and time variables.srt

2.5 KB

4. Date and time variables.vtt

2.2 KB

5. Mixed variables.mp4

11.8 MB

5. Mixed variables.srt

3.0 KB

5. Mixed variables.vtt

2.7 KB

5.1 sample_s2.csv.csv

10.4 MB

6. Bonus More about the Lending Club dataset.html

0.8 KB

7. Quiz about variable types.html

0.2 KB

/3. Variable Characteristics/

1. Variable characteristics.mp4

21.9 MB

1. Variable characteristics.srt

3.7 KB

1. Variable characteristics.vtt

3.3 KB

10. Bonus Additional reading resources.html

4.8 KB

11. FAQ How can I learn more about machine learning.html

0.8 KB

2. Missing data.mp4

42.1 MB

2. Missing data.srt

9.2 KB

2. Missing data.vtt

8.1 KB

3. Cardinality - categorical variables.mp4

32.5 MB

3. Cardinality - categorical variables.srt

6.5 KB

3. Cardinality - categorical variables.vtt

5.8 KB

4. Rare Labels - categorical variables.mp4

35.5 MB

4. Rare Labels - categorical variables.srt

6.2 KB

4. Rare Labels - categorical variables.vtt

5.5 KB

5. Linear models assumptions.mp4

72.2 MB

5. Linear models assumptions.srt

11.8 KB

5. Linear models assumptions.vtt

10.5 KB

6. Variable distribution.mp4

34.4 MB

6. Variable distribution.srt

6.6 KB

6. Variable distribution.vtt

5.9 KB

7. Outliers.mp4

50.7 MB

7. Outliers.srt

10.7 KB

7. Outliers.vtt

9.5 KB

8. Variable magnitude.mp4

20.9 MB

8. Variable magnitude.srt

4.0 KB

8. Variable magnitude.vtt

3.5 KB

9. Bonus Machine learning algorithms overview.html

0.1 KB

9.1 ML_Comparison.pdf.pdf

304.8 KB

/4. Missing Data Imputation/

1. Introduction to missing data imputation.mp4

30.8 MB

1. Introduction to missing data imputation.srt

5.4 KB

1. Introduction to missing data imputation.vtt

4.8 KB

10. Mean or median imputation with Scikit-learn.mp4

92.4 MB

10. Mean or median imputation with Scikit-learn.srt

13.2 KB

10. Mean or median imputation with Scikit-learn.vtt

11.6 KB

11. Arbitrary value imputation with Scikit-learn.mp4

54.7 MB

11. Arbitrary value imputation with Scikit-learn.srt

6.7 KB

11. Arbitrary value imputation with Scikit-learn.vtt

5.9 KB

12. Frequent category imputation with Scikit-learn.mp4

35.8 MB

12. Frequent category imputation with Scikit-learn.srt

4.2 KB

12. Frequent category imputation with Scikit-learn.vtt

3.8 KB

13. Missing category imputation with Scikit-learn.mp4

25.8 MB

13. Missing category imputation with Scikit-learn.srt

3.1 KB

13. Missing category imputation with Scikit-learn.vtt

2.8 KB

14. Adding a missing indicator with Scikit-learn.mp4

37.4 MB

14. Adding a missing indicator with Scikit-learn.srt

4.8 KB

14. Adding a missing indicator with Scikit-learn.vtt

4.2 KB

15. Automatic determination of imputation method with Sklearn.mp4

84.3 MB

15. Automatic determination of imputation method with Sklearn.srt

9.2 KB

15. Automatic determination of imputation method with Sklearn.vtt

8.2 KB

16. Introduction to Feature-engine.mp4

42.4 MB

16. Introduction to Feature-engine.srt

6.6 KB

16. Introduction to Feature-engine.vtt

5.8 KB

17. Mean or median imputation with Feature-engine.mp4

40.5 MB

17. Mean or median imputation with Feature-engine.srt

5.2 KB

17. Mean or median imputation with Feature-engine.vtt

4.6 KB

18. Arbitrary value imputation with Feature-engine.mp4

28.0 MB

18. Arbitrary value imputation with Feature-engine.srt

3.3 KB

18. Arbitrary value imputation with Feature-engine.vtt

3.0 KB

19. End of distribution imputation with Feature-engine.mp4

40.8 MB

19. End of distribution imputation with Feature-engine.srt

5.4 KB

19. End of distribution imputation with Feature-engine.vtt

4.8 KB

2. Complete Case Analysis.mp4

48.9 MB

2. Complete Case Analysis.srt

8.7 KB

2. Complete Case Analysis.vtt

7.7 KB

20. Frequent category imputation with Feature-engine.mp4

16.9 MB

20. Frequent category imputation with Feature-engine.srt

2.1 KB

20. Frequent category imputation with Feature-engine.vtt

1.9 KB

21. Missing category imputation with Feature-engine.mp4

21.4 MB

21. Missing category imputation with Feature-engine.srt

2.6 KB

21. Missing category imputation with Feature-engine.vtt

2.3 KB

22. Random sample imputation with Feature-engine.mp4

16.9 MB

22. Random sample imputation with Feature-engine.srt

2.4 KB

22. Random sample imputation with Feature-engine.vtt

2.1 KB

23. Adding a missing indicator with Feature-engine.mp4

27.2 MB

23. Adding a missing indicator with Feature-engine.srt

4.0 KB

23. Adding a missing indicator with Feature-engine.vtt

3.6 KB

24. Overview of missing value imputation methods.html

0.1 KB

24.1 NA_methods_Comparison.pdf.pdf

280.4 KB

25. Conclusion when to use each missing data imputation method.html

2.7 KB

3. Mean or median imputation.mp4

54.7 MB

3. Mean or median imputation.srt

10.5 KB

3. Mean or median imputation.vtt

9.3 KB

4. Arbitrary value imputation.mp4

42.0 MB

4. Arbitrary value imputation.srt

8.6 KB

4. Arbitrary value imputation.vtt

7.7 KB

5. End of distribution imputation.mp4

29.5 MB

5. End of distribution imputation.srt

6.2 KB

5. End of distribution imputation.vtt

5.5 KB

6. Frequent category imputation.mp4

52.2 MB

6. Frequent category imputation.srt

8.4 KB

6. Frequent category imputation.vtt

7.5 KB

7. Missing category imputation.mp4

29.5 MB

7. Missing category imputation.srt

4.9 KB

7. Missing category imputation.vtt

4.4 KB

8. Random sample imputation.mp4

107.6 MB

8. Random sample imputation.srt

18.1 KB

8. Random sample imputation.vtt

16.0 KB

9. Adding a missing indicator.mp4

32.6 MB

9. Adding a missing indicator.srt

6.7 KB

9. Adding a missing indicator.vtt

6.0 KB

/5. Multivariate Missing Data Imputation/

1. Multivariate Imputation - COMING IN 2020.html

0.1 KB

/6. Categorical Variable Encoding/

1. Categorical encoding Introduction.mp4

35.7 MB

1. Categorical encoding Introduction.srt

8.1 KB

1. Categorical encoding Introduction.vtt

7.3 KB

10. Target guided ordinal encoding.mp4

13.5 MB

10. Target guided ordinal encoding.srt

3.5 KB

10. Target guided ordinal encoding.vtt

3.1 KB

11. Target guided ordinal encoding Demo.mp4

72.1 MB

11. Target guided ordinal encoding Demo.srt

9.6 KB

11. Target guided ordinal encoding Demo.vtt

8.6 KB

12. Mean encoding.mp4

13.5 MB

12. Mean encoding.srt

3.0 KB

12. Mean encoding.vtt

2.7 KB

13. Mean encoding Demo.mp4

44.1 MB

13. Mean encoding Demo.srt

6.5 KB

13. Mean encoding Demo.vtt

5.8 KB

14. Probability ratio encoding.mp4

47.9 MB

14. Probability ratio encoding.srt

7.3 KB

14. Probability ratio encoding.vtt

6.5 KB

15. Weight of evidence (WoE).mp4

21.6 MB

15. Weight of evidence (WoE).srt

5.2 KB

15. Weight of evidence (WoE).vtt

4.6 KB

16. Weight of Evidence Demo.mp4

47.3 MB

16. Weight of Evidence Demo.srt

8.2 KB

16. Weight of Evidence Demo.vtt

7.3 KB

17. Comparison of categorical variable encoding.mp4

82.3 MB

17. Comparison of categorical variable encoding.srt

12.7 KB

17. Comparison of categorical variable encoding.vtt

11.2 KB

18. Rare label encoding.mp4

24.4 MB

18. Rare label encoding.srt

5.3 KB

18. Rare label encoding.vtt

4.7 KB

19. Rare label encoding Demo.mp4

72.8 MB

19. Rare label encoding Demo.srt

12.3 KB

19. Rare label encoding Demo.vtt

10.9 KB

2. One hot encoding.mp4

33.3 MB

2. One hot encoding.srt

7.1 KB

2. One hot encoding.vtt

6.3 KB

20. Binary encoding and feature hashing.mp4

32.4 MB

20. Binary encoding and feature hashing.srt

7.7 KB

20. Binary encoding and feature hashing.vtt

6.8 KB

21. Bonus Additional reading resources.html

2.5 KB

3. One-hot-encoding Demo.mp4

95.8 MB

3. One-hot-encoding Demo.srt

18.0 KB

3. One-hot-encoding Demo.vtt

15.8 KB

4. One hot encoding of top categories.mp4

19.0 MB

4. One hot encoding of top categories.srt

3.4 KB

4. One hot encoding of top categories.vtt

3.0 KB

5. One hot encoding of top categories Demo.mp4

60.0 MB

5. One hot encoding of top categories Demo.srt

9.9 KB

5. One hot encoding of top categories Demo.vtt

8.8 KB

6. Ordinal encoding Label encoding.mp4

9.9 MB

6. Ordinal encoding Label encoding.srt

2.1 KB

6. Ordinal encoding Label encoding.vtt

1.9 KB

7. Ordinal encoding Demo.mp4

60.3 MB

7. Ordinal encoding Demo.srt

9.6 KB

7. Ordinal encoding Demo.vtt

8.5 KB

8. Count or frequency encoding.mp4

16.5 MB

8. Count or frequency encoding.srt

3.8 KB

8. Count or frequency encoding.vtt

3.4 KB

9. Count encoding Demo.mp4

34.1 MB

9. Count encoding Demo.srt

5.0 KB

9. Count encoding Demo.vtt

4.5 KB

/7. Variable Transformation/

1. Variable Transformation Introduction.mp4

19.6 MB

1. Variable Transformation Introduction.srt

5.6 KB

1. Variable Transformation Introduction.vtt

5.0 KB

2. Variable Transformation with Numpy and SciPy.mp4

51.8 MB

2. Variable Transformation with Numpy and SciPy.srt

8.7 KB

2. Variable Transformation with Numpy and SciPy.vtt

7.7 KB

3. variable Transformation with Scikit-learn.mp4

49.4 MB

3. variable Transformation with Scikit-learn.srt

7.8 KB

3. variable Transformation with Scikit-learn.vtt

7.0 KB

4. Variable transformation with Feature-engine.mp4

24.8 MB

4. Variable transformation with Feature-engine.srt

4.1 KB

4. Variable transformation with Feature-engine.vtt

3.7 KB

/8. Discretisation/

1. Discretisation Introduction.mp4

16.2 MB

1. Discretisation Introduction.srt

3.5 KB

1. Discretisation Introduction.vtt

3.1 KB

10. Discretisation with classification trees.mp4

27.9 MB

10. Discretisation with classification trees.srt

5.6 KB

10. Discretisation with classification trees.vtt

5.0 KB

11. Discretisation with decision trees using Scikit-learn.mp4

84.1 MB

11. Discretisation with decision trees using Scikit-learn.srt

13.4 KB

11. Discretisation with decision trees using Scikit-learn.vtt

11.9 KB

12. Discretisation with decision trees using Feature-engine.mp4

29.8 MB

12. Discretisation with decision trees using Feature-engine.srt

4.0 KB

12. Discretisation with decision trees using Feature-engine.vtt

3.6 KB

13. Domain knowledge discretisation.mp4

26.9 MB

13. Domain knowledge discretisation.srt

4.2 KB

13. Domain knowledge discretisation.vtt

3.7 KB

14. Bonus Additional reading resources.html

1.4 KB

14.1 15.5_Bonus_Additional_reading_resources.zip.zip

1.1 KB

2. Equal-width discretisation.mp4

22.6 MB

2. Equal-width discretisation.srt

4.5 KB

2. Equal-width discretisation.vtt

4.0 KB

3. Equal-width discretisation Demo.mp4

82.9 MB

3. Equal-width discretisation Demo.srt

12.8 KB

3. Equal-width discretisation Demo.vtt

11.3 KB

4. Equal-frequency discretisation.mp4

23.6 MB

4. Equal-frequency discretisation.srt

4.8 KB

4. Equal-frequency discretisation.vtt

4.3 KB

5. Equal-frequency discretisation Demo.mp4

49.6 MB

5. Equal-frequency discretisation Demo.srt

7.9 KB

5. Equal-frequency discretisation Demo.vtt

7.0 KB

6. K-means discretisation.mp4

19.8 MB

6. K-means discretisation.srt

4.8 KB

6. K-means discretisation.vtt

4.3 KB

7. K-means discretisation Demo.mp4

19.7 MB

7. K-means discretisation Demo.srt

3.3 KB

7. K-means discretisation Demo.vtt

2.9 KB

8. Discretisation plus categorical encoding.mp4

14.0 MB

8. Discretisation plus categorical encoding.srt

2.8 KB

8. Discretisation plus categorical encoding.vtt

2.5 KB

9. Discretisation plus encoding Demo.mp4

38.0 MB

9. Discretisation plus encoding Demo.srt

6.7 KB

9. Discretisation plus encoding Demo.vtt

5.9 KB

/9. Outlier Handling/

1. Outlier Engineering Intro.mp4

44.0 MB

1. Outlier Engineering Intro.srt

7.9 KB

1. Outlier Engineering Intro.vtt

7.0 KB

2. Outlier trimming.mp4

53.6 MB

2. Outlier trimming.srt

8.5 KB

2. Outlier trimming.vtt

7.6 KB

3. Outlier capping with IQR.mp4

45.7 MB

3. Outlier capping with IQR.srt

6.9 KB

3. Outlier capping with IQR.vtt

6.2 KB

4. Outlier capping with mean and std.mp4

36.3 MB

4. Outlier capping with mean and std.srt

4.9 KB

4. Outlier capping with mean and std.vtt

4.4 KB

5. Outlier capping with quantiles.mp4

25.6 MB

5. Outlier capping with quantiles.srt

3.6 KB

5. Outlier capping with quantiles.vtt

3.3 KB

6. Arbitrary capping.mp4

20.6 MB

6. Arbitrary capping.srt

3.9 KB

6. Arbitrary capping.vtt

3.5 KB

7. Additional reading resources.html

0.4 KB

 

Total files 338


Copyright © 2025 FileMood.com