FileMood

Download [FTUForum.com] [UDEMY] Beginner to Advanced Guide on Machine Learning with R Tool [FTU]

FTUForum com UDEMY Beginner to Advanced Guide on Machine Learning with Tool FTU

Name

[FTUForum.com] [UDEMY] Beginner to Advanced Guide on Machine Learning with R Tool [FTU]

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

355.0 MB

Total Files

99

Hash

08FA1CC0FCE7C5B246C1A62023A81991E9D164E5

/0. Websites you may like/

1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url

0.3 KB

2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url

0.3 KB

3. (NulledPremium.com) Download Cracked Website Themes, Plugins, Scripts And Stock Images.url

0.2 KB

4. (FTUApps.com) Download Cracked Developers Applications For Free.url

0.2 KB

5. (Discuss.FTUForum.com) FTU Discussion Forum.url

0.3 KB

How you can help Team-FTU.txt

0.2 KB

/1. Module-1 Introduction to Course/

1. 1.1 Introduction to the Course.mp4

18.5 MB

1. 1.1 Introduction to the Course.vtt

2.6 KB

2. 1.2 Pre-Requisite.mp4

3.7 MB

2. 1.2 Pre-Requisite.vtt

0.8 KB

3. 1.3 What you will Learn.mp4

3.9 MB

3. 1.3 What you will Learn.vtt

1.9 KB

4. 1.4 Techniques of Machine Learning.mp4

6.4 MB

4. 1.4 Techniques of Machine Learning.vtt

4.3 KB

/2. Module-2 Introduction to validation and its Methods/

1. 2.1 Introduction to Cross Validation.mp4

3.6 MB

1. 2.1 Introduction to Cross Validation.vtt

2.4 KB

2. 2.2 Cross Validation Method.mp4

5.6 MB

2. 2.2 Cross Validation Method.vtt

3.7 KB

3.1 Programs.zip.zip

11.2 KB

3. 2.3 Caret package.mp4

16.5 MB

3. 2.3 Caret package.vtt

8.4 KB

/3. Module-3 Classification/

1. 3.1 Introduction to Classification.mp4

3.4 MB

1. 3.1 Introduction to Classification.vtt

1.9 KB

2. 3.2 KNN- K Nearest Neighbors.mp4

6.4 MB

2. 3.2 KNN- K Nearest Neighbors.vtt

3.7 KB

3.1 Programs.zip.zip

11.2 KB

3. 3.3 Implementation of KNN Algorithm.mp4

15.4 MB

3. 3.3 Implementation of KNN Algorithm.vtt

6.7 KB

4. 3.4 Naive-Bayes Classifier.mp4

5.3 MB

4. 3.4 Naive-Bayes Classifier.vtt

3.1 KB

5.1 Programs.zip.zip

11.2 KB

5. 3.5 Implementation of Naive-Bayes Classifier.mp4

35.7 MB

5. 3.5 Implementation of Naive-Bayes Classifier.vtt

15.2 KB

6. 3.6 Linear Discriminant Analysis.mp4

2.5 MB

6. 3.6 Linear Discriminant Analysis.vtt

1.3 KB

7.1 Programs.zip.zip

11.2 KB

7. 3.7 Implementation of Linear Discriminant Analysis.mp4

6.7 MB

7. 3.7 Implementation of Linear Discriminant Analysis.vtt

3.0 KB

/4. Module-4 Black Box Method-Neural network and SVM/

1. 4.1 Introduction to Artificial Neural Network.mp4

3.3 MB

1. 4.1 Introduction to Artificial Neural Network.vtt

1.7 KB

2. 4.2 Conceptualizing of Neural Network.mp4

5.6 MB

2. 4.2 Conceptualizing of Neural Network.vtt

2.5 KB

3.1 Programs.zip.zip

11.2 KB

3. 4.3 Implement Neural Network in R.mp4

12.9 MB

3. 4.3 Implement Neural Network in R.vtt

5.1 KB

4. 4.4 Back Propagation.mp4

2.8 MB

4. 4.4 Back Propagation.vtt

1.7 KB

5.1 Programs.zip.zip

11.2 KB

5. 4.5 Implementation of Back Propagation Network.mp4

4.5 MB

5. 4.5 Implementation of Back Propagation Network.vtt

1.6 KB

6. 4.6 Introduction to Support Vector Machine.mp4

5.2 MB

6. 4.6 Introduction to Support Vector Machine.vtt

2.9 KB

7.1 Programs.zip.zip

11.2 KB

7. 4.7 Implementation of SVM in R.mp4

9.3 MB

7. 4.7 Implementation of SVM in R.vtt

3.9 KB

/5. Module-5 Tree Based Models/

1. 5.1 Decision Tree.mp4

5.1 MB

1. 5.1 Decision Tree.vtt

2.7 KB

2.1 Programs.zip.zip

11.2 KB

2. 5.2 Implementation of Decision Tree.mp4

9.1 MB

2. 5.2 Implementation of Decision Tree.vtt

3.8 KB

3.1 Programs.zip.zip

11.2 KB

3. 5.3 Bagging.mp4

8.1 MB

3. 5.3 Bagging.vtt

3.7 KB

4.1 Programs.zip.zip

11.2 KB

4. 5.4 Boosting.mp4

11.3 MB

4. 5.4 Boosting.vtt

6.1 KB

5. 5.5 Introduction to Random Forest.mp4

4.3 MB

5. 5.5 Introduction to Random Forest.vtt

2.4 KB

6.1 Programs.zip.zip

11.2 KB

6. 5.6 Implementation of Random Forest.mp4

7.8 MB

6. 5.6 Implementation of Random Forest.vtt

3.4 KB

/6. Module-6 Clustering/

1. 6.1 Introduction to Clustering.mp4

3.0 MB

1. 6.1 Introduction to Clustering.vtt

1.8 KB

2. 6.2 K-Means Clustering.mp4

11.8 MB

2. 6.2 K-Means Clustering.vtt

7.8 KB

3.1 Programs.zip.zip

11.2 KB

3. 6.3 Implementation of K-Means Clustering.mp4

8.5 MB

3. 6.3 Implementation of K-Means Clustering.vtt

3.4 KB

4.1 Programs.zip.zip

11.2 KB

4. 6.4 Hierarchical Clustering.mp4

7.5 MB

4. 6.4 Hierarchical Clustering.vtt

3.5 KB

/7. Module-7 Regression/

1. 7.1 Predicting with Linear Regression.mp4

4.8 MB

1. 7.1 Predicting with Linear Regression.vtt

2.6 KB

2.1 Programs.zip.zip

11.2 KB

2. 7.2 Implementation of Linear Regression.mp4

12.9 MB

2. 7.2 Implementation of Linear Regression.vtt

6.0 KB

3.1 Programs.zip.zip

11.2 KB

3. 7.3 Multiple Covariates Regression.mp4

10.8 MB

3. 7.3 Multiple Covariates Regression.vtt

5.3 KB

4. 7.4 Logistic Regression.mp4

4.9 MB

4. 7.4 Logistic Regression.vtt

2.7 KB

5.1 Programs.zip.zip

11.2 KB

5. 7.5 Implementation of Logistic Regression.mp4

6.9 MB

5. 7.5 Implementation of Logistic Regression.vtt

3.2 KB

6. 7.6 Forecasting.mp4

20.8 MB

6. 7.6 Forecasting.vtt

3.0 KB

7.1 Programs.zip.zip

11.2 KB

7. 7.7 Implementation of Forecasting.mp4

40.0 MB

7. 7.7 Implementation of Forecasting.vtt

2.7 KB

 

Total files 99


Copyright © 2025 FileMood.com