FileMood

Download [FTUForum.com] [UDEMY] Machine Learning and AI Support Vector Machines in Python [FTU]

FTUForum com UDEMY Machine Learning and AI Support Vector Machines in Python FTU

Name

[FTUForum.com] [UDEMY] Machine Learning and AI Support Vector Machines in Python [FTU]

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

3.3 GB

Total Files

150

Last Seen

2025-07-17 23:39

Hash

1DCA37E8DB24F33437B3E2E63A250099AC69B11C

/1. Welcome/

1. Introduction.mp4

16.9 MB

1. Introduction.vtt

2.8 KB

2. Course Objectives.mp4

39.1 MB

2. Course Objectives.vtt

5.9 KB

3. Course Outline.mp4

32.8 MB

3. Course Outline.vtt

6.8 KB

4. Where to get the code and data.mp4

40.9 MB

4. Where to get the code and data.vtt

7.1 KB

/2. Beginner_s Corner/

1. Beginner_s Corner Section Introduction.mp4

35.7 MB

1. Beginner_s Corner Section Introduction.vtt

6.4 KB

2. Image Classification with SVMs.mp4

38.3 MB

2. Image Classification with SVMs.vtt

6.5 KB

3. Spam Detection with SVMs.mp4

106.4 MB

3. Spam Detection with SVMs.vtt

12.7 KB

4. Medical Diagnosis with SVMs.mp4

50.2 MB

4. Medical Diagnosis with SVMs.vtt

6.2 KB

5. Regression with SVMs.mp4

53.4 MB

5. Regression with SVMs.vtt

5.8 KB

6. Cross-Validation.mp4

57.3 MB

6. Cross-Validation.vtt

8.5 KB

7. How do you get the data How do you process the data.mp4

30.2 MB

7. How do you get the data How do you process the data.vtt

6.8 KB

/3. Review of Linear Classifiers/

1. Basic Geometry.mp4

48.9 MB

1. Basic Geometry.vtt

11.7 KB

2. Normal Vectors.mp4

15.5 MB

2. Normal Vectors.vtt

3.7 KB

3. Logistic Regression Review.mp4

41.8 MB

3. Logistic Regression Review.vtt

10.9 KB

4. Loss Function and Regularization.mp4

16.9 MB

4. Loss Function and Regularization.vtt

4.4 KB

5. Prediction Confidence.mp4

32.1 MB

5. Prediction Confidence.vtt

8.1 KB

6. Nonlinear Problems.mp4

49.3 MB

6. Nonlinear Problems.vtt

10.7 KB

7. Linear Classifiers Section Conclusion.mp4

20.2 MB

7. Linear Classifiers Section Conclusion.vtt

4.8 KB

/4. Linear SVM/

10. Linear SVM Section Summary.mp4

19.9 MB

10. Linear SVM Section Summary.vtt

5.0 KB

1. Linear SVM Section Introduction and Outline.mp4

18.5 MB

1. Linear SVM Section Introduction and Outline.vtt

3.8 KB

2. Linear SVM Problem Setup and Definitions.mp4

23.9 MB

2. Linear SVM Problem Setup and Definitions.vtt

5.2 KB

3. Margins.mp4

43.5 MB

3. Margins.vtt

8.8 KB

4. Linear SVM Objective.mp4

51.6 MB

4. Linear SVM Objective.vtt

11.9 KB

5. Linear and Quadratic Programming.mp4

67.3 MB

5. Linear and Quadratic Programming.vtt

13.5 KB

6. Slack Variables.mp4

40.6 MB

6. Slack Variables.vtt

8.1 KB

7. Hinge Loss (and its Relationship to Logistic Regression).mp4

31.1 MB

7. Hinge Loss (and its Relationship to Logistic Regression).vtt

6.8 KB

8. Linear SVM with Gradient Descent.mp4

16.4 MB

8. Linear SVM with Gradient Descent.vtt

3.2 KB

9. Linear SVM with Gradient Descent (Code).mp4

54.5 MB

9. Linear SVM with Gradient Descent (Code).vtt

5.4 KB

/5. Duality/

1. Duality Section Introduction.mp4

15.4 MB

1. Duality Section Introduction.vtt

4.3 KB

2. Duality and Lagrangians (part 1).mp4

61.5 MB

2. Duality and Lagrangians (part 1).vtt

14.0 KB

3. Lagrangian Duality (part 2).mp4

30.6 MB

3. Lagrangian Duality (part 2).vtt

6.9 KB

4. Relationship to Linear Programming.mp4

21.1 MB

4. Relationship to Linear Programming.vtt

4.7 KB

5. Predictions and Support Vectors.mp4

40.8 MB

5. Predictions and Support Vectors.vtt

9.8 KB

6. Why Transform Primal to Dual.mp4

17.7 MB

6. Why Transform Primal to Dual.vtt

3.8 KB

7. Duality Section Conclusion.mp4

13.9 MB

7. Duality Section Conclusion.vtt

3.1 KB

/6. Kernel Methods/

1. Kernel Methods Section Introduction.mp4

20.1 MB

1. Kernel Methods Section Introduction.vtt

4.0 KB

2. The Kernel Trick.mp4

39.1 MB

2. The Kernel Trick.vtt

8.2 KB

3. Polynomial Kernel.mp4

26.6 MB

3. Polynomial Kernel.vtt

6.1 KB

4. Gaussian Kernel.mp4

28.3 MB

4. Gaussian Kernel.vtt

5.4 KB

5. Using the Gaussian Kernel.mp4

37.8 MB

5. Using the Gaussian Kernel.vtt

7.8 KB

6. Why does the Gaussian Kernel correspond to infinite-dimensional features.mp4

20.8 MB

6. Why does the Gaussian Kernel correspond to infinite-dimensional features.vtt

4.5 KB

7. Other Kernels.mp4

34.0 MB

7. Other Kernels.vtt

7.4 KB

8. Mercer_s Condition.mp4

28.9 MB

8. Mercer_s Condition.vtt

6.7 KB

9. Kernel Methods Section Summary.mp4

11.7 MB

9. Kernel Methods Section Summary.vtt

2.9 KB

/7. Implementations and Extensions/

1. Dual with Slack Variables.mp4

40.8 MB

1. Dual with Slack Variables.vtt

11.5 KB

2. Simple Approaches to Implementation.mp4

25.8 MB

2. Simple Approaches to Implementation.vtt

7.1 KB

3. SVM with Projected Gradient Descent Code.mp4

87.7 MB

3. SVM with Projected Gradient Descent Code.vtt

8.0 KB

4. Kernel SVM Gradient Descent with Primal (Theory).mp4

22.4 MB

4. Kernel SVM Gradient Descent with Primal (Theory).vtt

5.0 KB

5. Kernel SVM Gradient Descent with Primal (Code).mp4

61.6 MB

5. Kernel SVM Gradient Descent with Primal (Code).vtt

4.2 KB

6. SMO (Sequential Minimal Optimization).mp4

43.4 MB

6. SMO (Sequential Minimal Optimization).vtt

10.8 KB

7. Support Vector Regression.mp4

28.6 MB

7. Support Vector Regression.vtt

6.0 KB

8. Multiclass Classification.mp4

20.0 MB

8. Multiclass Classification.vtt

5.0 KB

/8. Neural Networks (Beginner_s Corner 2)/

1. Neural Networks Section Introduction.mp4

16.4 MB

1. Neural Networks Section Introduction.vtt

3.1 KB

2. RBF Networks.mp4

83.4 MB

2. RBF Networks.vtt

17.4 KB

3. RBF Approximations.mp4

46.6 MB

3. RBF Approximations.vtt

9.6 KB

4. What Happened to Infinite Dimensionality.mp4

13.2 MB

4. What Happened to Infinite Dimensionality.vtt

3.0 KB

5. Build Your Own RBF Network.mp4

41.0 MB

5. Build Your Own RBF Network.vtt

4.1 KB

6. Relationship to Deep Learning Neural Networks.mp4

35.4 MB

6. Relationship to Deep Learning Neural Networks.vtt

8.0 KB

7. Neural Network-SVM Mashup.mp4

75.8 MB

7. Neural Network-SVM Mashup.vtt

7.4 KB

8. Neural Networks Section Conclusion.mp4

12.4 MB

8. Neural Networks Section Conclusion.vtt

2.9 KB

/9. Appendix/

10. What order should I take your courses in (part 1).mp4

92.7 MB

10. What order should I take your courses in (part 1).vtt

14.5 KB

11. What order should I take your courses in (part 2).mp4

129.0 MB

11. What order should I take your courses in (part 2).vtt

20.7 KB

12. [Bonus] Where to get discount coupons and FREE deep learning material.mp4

23.6 MB

12. [Bonus] Where to get discount coupons and FREE deep learning material.vtt

3.0 KB

1. What is the Appendix.mp4

26.7 MB

1. What is the Appendix.vtt

3.4 KB

2. Windows-Focused Environment Setup 2018.mp4

203.8 MB

2. Windows-Focused Environment Setup 2018.vtt

17.8 KB

3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4

175.1 MB

3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt

12.9 KB

4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4

123.4 MB

4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt

28.3 KB

5. How to Succeed in this Course (Long Version).mp4

41.2 MB

5. How to Succeed in this Course (Long Version).vtt

13.1 KB

6. How to Code by Yourself (part 1).mp4

86.6 MB

6. How to Code by Yourself (part 1).vtt

19.8 KB

7. How to Code by Yourself (part 2).mp4

59.4 MB

7. How to Code by Yourself (part 2).vtt

11.7 KB

8. Proof that using Jupyter Notebook is the same as not using it.mp4

82.1 MB

8. Proof that using Jupyter Notebook is the same as not using it.vtt

12.6 KB

9. Python 2 vs Python 3.mp4

31.7 MB

9. Python 2 vs Python 3.vtt

5.5 KB

/

Discuss.FTUForum.com.html

32.7 KB

FreeCoursesOnline.Me.html

110.9 KB

FTUForum.com.html

102.9 KB

How you can help Team-FTU.txt

0.2 KB

[TGx]Downloaded from torrentgalaxy.org.txt

0.5 KB

Torrent Downloaded From GloDls.to.txt

0.1 KB

 

Total files 150


Copyright © 2025 FileMood.com