FileMood

Download [GigaCourse.com] Udemy - Artificial Intelligence Reinforcement Learning in Python

GigaCourse com Udemy Artificial Intelligence Reinforcement Learning in Python

Name

[GigaCourse.com] Udemy - Artificial Intelligence Reinforcement Learning in Python

 DOWNLOAD Copy Link

Total Size

2.0 GB

Total Files

197

Last Seen

2024-11-15 23:37

Hash

ACD05B572F79A682C69B94DB38918B4E3E3110D7

/1. Welcome/

1. Introduction.mp4

35.9 MB

1. Introduction.srt

4.3 KB

2. Where to get the Code.mp4

4.7 MB

2. Where to get the Code.srt

5.5 KB

3. Strategy for Passing the Course.mp4

9.9 MB

3. Strategy for Passing the Course.srt

12.1 KB

4. Course Outline.mp4

32.5 MB

4. Course Outline.srt

7.0 KB

/10. Stock Trading Project with Reinforcement Learning/

1. Stock Trading Project Section Introduction.mp4

28.1 MB

1. Stock Trading Project Section Introduction.srt

7.0 KB

2. Data and Environment.mp4

54.5 MB

2. Data and Environment.srt

16.1 KB

3. How to Model Q for Q-Learning.mp4

47.1 MB

3. How to Model Q for Q-Learning.srt

12.3 KB

4. Design of the Program.mp4

24.4 MB

4. Design of the Program.srt

8.7 KB

5. Code pt 1.mp4

52.1 MB

5. Code pt 1.srt

9.9 KB

6. Code pt 2.mp4

68.5 MB

6. Code pt 2.srt

12.0 KB

7. Code pt 3.mp4

35.4 MB

7. Code pt 3.srt

5.5 KB

8. Code pt 4.mp4

51.5 MB

8. Code pt 4.srt

8.2 KB

9. Stock Trading Project Discussion.mp4

16.5 MB

9. Stock Trading Project Discussion.srt

4.5 KB

/11. Appendix FAQ/

1. What is the Appendix.mp4

5.7 MB

1. What is the Appendix.srt

3.8 KB

10. What order should I take your courses in (part 1).mp4

30.7 MB

10. What order should I take your courses in (part 1).srt

16.4 KB

11. What order should I take your courses in (part 2).mp4

39.4 MB

11. What order should I take your courses in (part 2).srt

23.6 KB

12. BONUS Where to get discount coupons and FREE deep learning material.mp4

39.7 MB

12. BONUS Where to get discount coupons and FREE deep learning material.srt

8.1 KB

2. Windows-Focused Environment Setup 2018.mp4

195.4 MB

2. Windows-Focused Environment Setup 2018.srt

20.6 KB

3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4

46.0 MB

3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt

18.8 KB

4. How to Code by Yourself (part 1).mp4

25.7 MB

4. How to Code by Yourself (part 1).srt

30.9 KB

5. How to Code by Yourself (part 2).mp4

15.5 MB

5. How to Code by Yourself (part 2).srt

18.9 KB

6. How to Succeed in this Course (Long Version).mp4

19.2 MB

6. How to Succeed in this Course (Long Version).srt

14.9 KB

7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4

40.8 MB

7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt

32.5 KB

8. Proof that using Jupyter Notebook is the same as not using it.mp4

82.1 MB

8. Proof that using Jupyter Notebook is the same as not using it.srt

14.5 KB

9. Python 2 vs Python 3.mp4

8.2 MB

9. Python 2 vs Python 3.srt

6.2 KB

/2. Return of the Multi-Armed Bandit/

1. Problem Setup and The Explore-Exploit Dilemma.mp4

6.8 MB

1. Problem Setup and The Explore-Exploit Dilemma.srt

8.0 KB

10. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.mp4

11.1 MB

10. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.srt

6.2 KB

11. Nonstationary Bandits.mp4

7.8 MB

11. Nonstationary Bandits.srt

8.0 KB

12. Bandit Summary, Real Data, and Online Learning.mp4

35.6 MB

12. Bandit Summary, Real Data, and Online Learning.srt

9.3 KB

2. Applications of the Explore-Exploit Dilemma.mp4

53.7 MB

2. Applications of the Explore-Exploit Dilemma.srt

11.2 KB

3. Epsilon-Greedy.mp4

2.9 MB

3. Epsilon-Greedy.srt

3.3 KB

4. Updating a Sample Mean.mp4

2.3 MB

4. Updating a Sample Mean.srt

2.2 KB

5. Designing Your Bandit Program.mp4

25.7 MB

5. Designing Your Bandit Program.srt

5.7 KB

6. Comparing Different Epsilons.mp4

8.4 MB

6. Comparing Different Epsilons.srt

5.4 KB

7. Optimistic Initial Values.mp4

16.6 MB

7. Optimistic Initial Values.srt

3.1 KB

8. UCB1.mp4

8.6 MB

8. UCB1.srt

8.3 KB

9. Bayesian Thompson Sampling.mp4

54.4 MB

9. Bayesian Thompson Sampling.srt

12.1 KB

/3. High Level Overview of Reinforcement Learning/

1. What is Reinforcement Learning.mp4

57.3 MB

1. What is Reinforcement Learning.srt

11.2 KB

2. On Unusual or Unexpected Strategies of RL.mp4

38.9 MB

2. On Unusual or Unexpected Strategies of RL.srt

8.1 KB

3. Defining Some Terms.mp4

44.4 MB

3. Defining Some Terms.srt

9.4 KB

/4. Build an Intelligent Tic-Tac-Toe Agent/

1. Naive Solution to Tic-Tac-Toe.mp4

6.4 MB

1. Naive Solution to Tic-Tac-Toe.srt

7.4 KB

10. Tic Tac Toe Code Main Loop and Demo.mp4

9.9 MB

10. Tic Tac Toe Code Main Loop and Demo.srt

9.5 KB

11. Tic Tac Toe Summary.mp4

8.7 MB

11. Tic Tac Toe Summary.srt

10.5 KB

12. Tic Tac Toe Exercise.mp4

20.7 MB

12. Tic Tac Toe Exercise.srt

4.7 KB

2. Components of a Reinforcement Learning System.mp4

13.3 MB

2. Components of a Reinforcement Learning System.srt

15.2 KB

3. Notes on Assigning Rewards.mp4

4.4 MB

3. Notes on Assigning Rewards.srt

5.1 KB

4. The Value Function and Your First Reinforcement Learning Algorithm.mp4

108.8 MB

4. The Value Function and Your First Reinforcement Learning Algorithm.srt

23.3 KB

5. Tic Tac Toe Code Outline.mp4

5.3 MB

5. Tic Tac Toe Code Outline.srt

6.6 KB

6. Tic Tac Toe Code Representing States.mp4

4.6 MB

6. Tic Tac Toe Code Representing States.srt

5.0 KB

7. Tic Tac Toe Code Enumerating States Recursively.mp4

10.3 MB

7. Tic Tac Toe Code Enumerating States Recursively.srt

11.6 KB

8. Tic Tac Toe Code The Environment.mp4

10.5 MB

8. Tic Tac Toe Code The Environment.srt

12.3 KB

9. Tic Tac Toe Code The Agent.mp4

9.4 MB

9. Tic Tac Toe Code The Agent.srt

11.2 KB

/5. Markov Decision Proccesses/

1. Gridworld.mp4

3.5 MB

1. Gridworld.srt

4.1 KB

2. The Markov Property.mp4

7.5 MB

2. The Markov Property.srt

8.6 KB

3. Defining and Formalizing the MDP.mp4

7.0 MB

3. Defining and Formalizing the MDP.srt

8.1 KB

4. Future Rewards.mp4

5.4 MB

4. Future Rewards.srt

6.2 KB

5. Value Function Introduction.mp4

20.7 MB

5. Value Function Introduction.srt

16.0 KB

6. Value Functions.mp4

8.7 MB

6. Value Functions.srt

12.0 KB

7. Bellman Examples.mp4

91.3 MB

7. Bellman Examples.srt

28.3 KB

8. Optimal Policy and Optimal Value Function.mp4

3.4 MB

8. Optimal Policy and Optimal Value Function.srt

5.1 KB

9. MDP Summary.mp4

5.9 MB

9. MDP Summary.srt

2.0 KB

/6. Dynamic Programming/

1. Intro to Dynamic Programming and Iterative Policy Evaluation.mp4

5.1 MB

1. Intro to Dynamic Programming and Iterative Policy Evaluation.srt

5.5 KB

10. Value Iteration in Code.mp4

5.1 MB

10. Value Iteration in Code.srt

3.4 KB

11. Dynamic Programming Summary.mp4

8.7 MB

11. Dynamic Programming Summary.srt

9.6 KB

2. Gridworld in Code.mp4

12.0 MB

2. Gridworld in Code.srt

11.2 KB

3. Designing Your RL Program.mp4

23.4 MB

3. Designing Your RL Program.srt

6.8 KB

4. Iterative Policy Evaluation in Code.mp4

12.6 MB

4. Iterative Policy Evaluation in Code.srt

10.5 KB

5. Policy Improvement.mp4

4.8 MB

5. Policy Improvement.srt

5.3 KB

6. Policy Iteration.mp4

3.3 MB

6. Policy Iteration.srt

3.5 KB

7. Policy Iteration in Code.mp4

8.0 MB

7. Policy Iteration in Code.srt

6.2 KB

8. Policy Iteration in Windy Gridworld.mp4

9.5 MB

8. Policy Iteration in Windy Gridworld.srt

8.4 KB

9. Value Iteration.mp4

6.5 MB

9. Value Iteration.srt

7.1 KB

/7. Monte Carlo/

1. Monte Carlo Intro.mp4

5.2 MB

1. Monte Carlo Intro.srt

6.1 KB

2. Monte Carlo Policy Evaluation.mp4

9.2 MB

2. Monte Carlo Policy Evaluation.srt

11.1 KB

3. Monte Carlo Policy Evaluation in Code.mp4

8.3 MB

3. Monte Carlo Policy Evaluation in Code.srt

6.3 KB

4. Policy Evaluation in Windy Gridworld.mp4

8.2 MB

4. Policy Evaluation in Windy Gridworld.srt

5.4 KB

5. Monte Carlo Control.mp4

9.7 MB

5. Monte Carlo Control.srt

10.5 KB

6. Monte Carlo Control in Code.mp4

10.7 MB

6. Monte Carlo Control in Code.srt

6.0 KB

7. Monte Carlo Control without Exploring Starts.mp4

4.8 MB

7. Monte Carlo Control without Exploring Starts.srt

5.7 KB

8. Monte Carlo Control without Exploring Starts in Code.mp4

8.4 MB

8. Monte Carlo Control without Exploring Starts in Code.srt

3.7 KB

9. Monte Carlo Summary.mp4

6.0 MB

9. Monte Carlo Summary.srt

7.3 KB

/8. Temporal Difference Learning/

1. Temporal Difference Intro.mp4

2.9 MB

1. Temporal Difference Intro.srt

3.4 KB

2. TD(0) Prediction.mp4

6.1 MB

2. TD(0) Prediction.srt

6.5 KB

3. TD(0) Prediction in Code.mp4

5.6 MB

3. TD(0) Prediction in Code.srt

4.1 KB

4. SARSA.mp4

8.6 MB

4. SARSA.srt

9.9 KB

5. SARSA in Code.mp4

9.2 MB

5. SARSA in Code.srt

5.7 KB

6. Q Learning.mp4

5.1 MB

6. Q Learning.srt

6.0 KB

7. Q Learning in Code.mp4

5.7 MB

7. Q Learning in Code.srt

3.5 KB

8. TD Summary.mp4

4.1 MB

8. TD Summary.srt

4.8 KB

/9. Approximation Methods/

1. Approximation Intro.mp4

6.8 MB

1. Approximation Intro.srt

8.2 KB

2. Linear Models for Reinforcement Learning.mp4

6.8 MB

2. Linear Models for Reinforcement Learning.srt

7.6 KB

3. Features.mp4

6.6 MB

3. Features.srt

7.1 KB

4. Monte Carlo Prediction with Approximation.mp4

3.0 MB

4. Monte Carlo Prediction with Approximation.srt

2.4 KB

5. Monte Carlo Prediction with Approximation in Code.mp4

6.9 MB

5. Monte Carlo Prediction with Approximation in Code.srt

4.1 KB

6. TD(0) Semi-Gradient Prediction.mp4

8.8 MB

6. TD(0) Semi-Gradient Prediction.srt

6.5 KB

7. Semi-Gradient SARSA.mp4

4.9 MB

7. Semi-Gradient SARSA.srt

5.6 KB

8. Semi-Gradient SARSA in Code.mp4

11.1 MB

8. Semi-Gradient SARSA in Code.srt

5.5 KB

9. Course Summary and Next Steps.mp4

13.9 MB

9. Course Summary and Next Steps.srt

16.3 KB

/

[GigaCourse.com].url

0.0 KB

 

Total files 197


Copyright © 2024 FileMood.com