FileMood

Download [GigaCourse.Com] Udemy - Machine Learning, Data Science and Generative AI with Python

GigaCourse Com Udemy Machine Learning Data Science and Generative AI with Python

Name

[GigaCourse.Com] Udemy - Machine Learning, Data Science and Generative AI with Python

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

7.7 GB

Total Files

297

Last Seen

2025-04-04 00:57

Hash

F1A0D9CDA08170291CC4843982E25D7168522866

/0. Websites you may like/

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/01 - Getting Started/

001 Introduction.mp4

62.5 MB

001 Introduction_en.srt

6.2 KB

002 Udemy 101 Getting the Most From This Course.mp4

18.2 MB

002 Udemy 101 Getting the Most From This Course_en.srt

5.0 KB

003 Important note.html

0.6 KB

004 Installation Getting Started.html

1.2 KB

005 [Activity] WINDOWS Installing and Using Anaconda & Course Materials.mp4

106.9 MB

005 [Activity] WINDOWS Installing and Using Anaconda & Course Materials_en.srt

21.2 KB

006 [Activity] MAC Installing and Using Anaconda & Course Materials.mp4

100.9 MB

006 [Activity] MAC Installing and Using Anaconda & Course Materials_en.srt

17.3 KB

007 [Activity] LINUX Installing and Using Anaconda & Course Materials.mp4

89.7 MB

007 [Activity] LINUX Installing and Using Anaconda & Course Materials_en.srt

18.4 KB

008 Python Basics, Part 1 [Optional].mp4

28.2 MB

008 Python Basics, Part 1 [Optional]_en.srt

9.8 KB

009 [Activity] Python Basics, Part 2 [Optional].mp4

21.6 MB

009 [Activity] Python Basics, Part 2 [Optional]_en.srt

9.5 KB

010 [Activity] Python Basics, Part 3 [Optional].mp4

5.4 MB

010 [Activity] Python Basics, Part 3 [Optional]_en.srt

5.4 KB

011 [Activity] Python Basics, Part 4 [Optional].mp4

8.6 MB

011 [Activity] Python Basics, Part 4 [Optional]_en.srt

7.3 KB

012 Introducing the Pandas Library [Optional].mp4

46.3 MB

012 Introducing the Pandas Library [Optional]_en.srt

22.4 KB

/02 - Statistics and Probability Refresher, and Python Practice/

001 Types of Data (Numerical, Categorical, Ordinal).mp4

76.7 MB

001 Types of Data (Numerical, Categorical, Ordinal)_en.srt

14.8 KB

002 Mean, Median, Mode.mp4

16.7 MB

002 Mean, Median, Mode_en.srt

11.9 KB

003 [Activity] Using mean, median, and mode in Python.mp4

46.7 MB

003 [Activity] Using mean, median, and mode in Python_en.srt

19.8 KB

004 [Activity] Variation and Standard Deviation.mp4

108.4 MB

004 [Activity] Variation and Standard Deviation_en.srt

23.5 KB

005 Probability Density Function; Probability Mass Function.mp4

7.3 MB

005 Probability Density Function; Probability Mass Function_en.srt

7.3 KB

006 Common Data Distributions (Normal, Binomial, Poisson, etc).mp4

29.6 MB

006 Common Data Distributions (Normal, Binomial, Poisson, etc)_en.srt

14.8 KB

007 [Activity] Percentiles and Moments.mp4

44.6 MB

007 [Activity] Percentiles and Moments_en.srt

27.5 KB

008 [Activity] A Crash Course in matplotlib.mp4

82.5 MB

008 [Activity] A Crash Course in matplotlib_en.srt

26.7 KB

009 [Activity] Advanced Visualization with Seaborn.mp4

100.8 MB

009 [Activity] Advanced Visualization with Seaborn_en.srt

36.6 KB

010 [Activity] Covariance and Correlation.mp4

72.9 MB

010 [Activity] Covariance and Correlation_en.srt

24.3 KB

011 [Exercise] Conditional Probability.mp4

98.5 MB

011 [Exercise] Conditional Probability_en.srt

34.9 KB

012 Exercise Solution Conditional Probability of Purchase by Age.mp4

15.7 MB

012 Exercise Solution Conditional Probability of Purchase by Age_en.srt

4.9 KB

013 Bayes' Theorem.mp4

58.8 MB

013 Bayes' Theorem_en.srt

10.6 KB

/03 - Predictive Models/

001 [Activity] Linear Regression.mp4

97.5 MB

001 [Activity] Linear Regression_en.srt

24.3 KB

002 [Activity] Polynomial Regression.mp4

63.5 MB

002 [Activity] Polynomial Regression_en.srt

16.1 KB

003 [Activity] Multiple Regression, and Predicting Car Prices.mp4

98.7 MB

003 [Activity] Multiple Regression, and Predicting Car Prices_en.srt

35.0 KB

004 Multi-Level Models.mp4

28.5 MB

004 Multi-Level Models_en.srt

10.0 KB

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/04 - Machine Learning with Python/

001 Supervised vs. Unsupervised Learning, and TrainTest.mp4

59.4 MB

001 Supervised vs. Unsupervised Learning, and TrainTest_en.srt

19.9 KB

002 [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression.mp4

22.7 MB

002 [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression_en.srt

12.2 KB

003 Bayesian Methods Concepts.mp4

10.3 MB

003 Bayesian Methods Concepts_en.srt

8.3 KB

004 [Activity] Implementing a Spam Classifier with Naive Bayes.mp4

85.3 MB

004 [Activity] Implementing a Spam Classifier with Naive Bayes_en.srt

17.0 KB

005 K-Means Clustering.mp4

27.3 MB

005 K-Means Clustering_en.srt

16.0 KB

006 [Activity] Clustering people based on income and age.mp4

23.1 MB

006 [Activity] Clustering people based on income and age_en.srt

11.4 KB

007 Measuring Entropy.mp4

12.7 MB

007 Measuring Entropy_en.srt

6.6 KB

008 [Activity] WINDOWS Installing Graphviz.mp4

972.1 KB

008 [Activity] WINDOWS Installing Graphviz_en.srt

0.9 KB

009 [Activity] MAC Installing Graphviz.mp4

9.5 MB

009 [Activity] MAC Installing Graphviz_en.srt

1.9 KB

010 [Activity] LINUX Installing Graphviz.mp4

2.6 MB

010 [Activity] LINUX Installing Graphviz_en.srt

1.4 KB

011 Decision Trees Concepts.mp4

85.5 MB

011 Decision Trees Concepts_en.srt

19.1 KB

012 [Activity] Decision Trees Predicting Hiring Decisions.mp4

60.6 MB

012 [Activity] Decision Trees Predicting Hiring Decisions_en.srt

20.6 KB

013 Ensemble Learning.mp4

38.8 MB

013 Ensemble Learning_en.srt

13.0 KB

014 [Activity] XGBoost.mp4

83.1 MB

014 [Activity] XGBoost_en.srt

34.5 KB

015 Support Vector Machines (SVM) Overview.mp4

17.1 MB

015 Support Vector Machines (SVM) Overview_en.srt

9.7 KB

016 [Activity] Using SVM to cluster people using scikit-learn.mp4

40.4 MB

016 [Activity] Using SVM to cluster people using scikit-learn_en.srt

20.5 KB

/05 - Recommender Systems/

001 User-Based Collaborative Filtering.mp4

85.7 MB

001 User-Based Collaborative Filtering_en.srt

17.8 KB

002 Item-Based Collaborative Filtering.mp4

24.3 MB

002 Item-Based Collaborative Filtering_en.srt

18.2 KB

003 [Activity] Finding Movie Similarities using Cosine Similarity.mp4

86.7 MB

003 [Activity] Finding Movie Similarities using Cosine Similarity_en.srt

18.3 KB

004 [Activity] Improving the Results of Movie Similarities.mp4

58.8 MB

004 [Activity] Improving the Results of Movie Similarities_en.srt

16.6 KB

005 [Activity] Making Movie Recommendations with Item-Based Collaborative Filtering.mp4

130.1 MB

005 [Activity] Making Movie Recommendations with Item-Based Collaborative Filtering_en.srt

20.7 KB

006 [Exercise] Improve the recommender's results.mp4

29.4 MB

006 [Exercise] Improve the recommender's results_en.srt

12.4 KB

/06 - More Data Mining and Machine Learning Techniques/

001 K-Nearest-Neighbors Concepts.mp4

14.7 MB

001 K-Nearest-Neighbors Concepts_en.srt

8.1 KB

002 [Activity] Using KNN to predict a rating for a movie.mp4

89.7 MB

002 [Activity] Using KNN to predict a rating for a movie_en.srt

24.7 KB

003 Dimensionality Reduction; Principal Component Analysis (PCA).mp4

40.0 MB

003 Dimensionality Reduction; Principal Component Analysis (PCA)_en.srt

12.0 KB

004 [Activity] PCA Example with the Iris data set.mp4

69.0 MB

004 [Activity] PCA Example with the Iris data set_en.srt

18.4 KB

005 Data Warehousing Overview ETL and ELT.mp4

61.6 MB

005 Data Warehousing Overview ETL and ELT_en.srt

18.5 KB

006 Cat-and-Mouse-Example.url

0.1 KB

006 Pac-Man-Example.url

0.1 KB

006 Python-Markov-Decision-Process-Toolbox.url

0.1 KB

006 Reinforcement Learning.mp4

131.3 MB

006 Reinforcement Learning_en.srt

25.9 KB

007 [Activity] Reinforcement Learning & Q-Learning with Gym.mp4

65.8 MB

007 [Activity] Reinforcement Learning & Q-Learning with Gym_en.srt

27.2 KB

008 Understanding a Confusion Matrix.mp4

7.7 MB

008 Understanding a Confusion Matrix_en.srt

11.9 KB

009 Measuring Classifiers (Precision, Recall, F1, ROC, AUC).mp4

12.2 MB

009 Measuring Classifiers (Precision, Recall, F1, ROC, AUC)_en.srt

13.0 KB

external-links.txt

0.3 KB

/07 - Dealing with Real-World Data/

001 BiasVariance Tradeoff.mp4

24.8 MB

001 BiasVariance Tradeoff_en.srt

13.1 KB

002 [Activity] K-Fold Cross-Validation to avoid overfitting.mp4

59.7 MB

002 [Activity] K-Fold Cross-Validation to avoid overfitting_en.srt

21.1 KB

003 Data Cleaning and Normalization.mp4

76.6 MB

003 Data Cleaning and Normalization_en.srt

16.6 KB

004 [Activity] Cleaning web log data.mp4

32.5 MB

004 [Activity] Cleaning web log data_en.srt

22.3 KB

005 Normalizing numerical data.mp4

10.8 MB

005 Normalizing numerical data_en.srt

7.3 KB

006 [Activity] Detecting outliers.mp4

28.5 MB

006 [Activity] Detecting outliers_en.srt

13.6 KB

007 Feature Engineering and the Curse of Dimensionality.mp4

15.3 MB

007 Feature Engineering and the Curse of Dimensionality_en.srt

14.3 KB

008 Imputation Techniques for Missing Data.mp4

19.1 MB

008 Imputation Techniques for Missing Data_en.srt

17.7 KB

009 Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.mp4

18.3 MB

009 Handling Unbalanced Data Oversampling, Undersampling, and SMOTE_en.srt

12.1 KB

010 Binning, Transforming, Encoding, Scaling, and Shuffling.mp4

44.8 MB

010 Binning, Transforming, Encoding, Scaling, and Shuffling_en.srt

17.3 KB

/08 - Apache Spark Machine Learning on Big Data/

001 Warning about Java 21+ and Spark 3!.html

0.4 KB

002 Spark installation notes for MacOS and Linux users.html

3.2 KB

003 [Activity] Installing Spark.mp4

148.2 MB

003 [Activity] Installing Spark_en.srt

21.8 KB

004 Spark Introduction.mp4

26.2 MB

004 Spark Introduction_en.srt

19.6 KB

005 Spark and the Resilient Distributed Dataset (RDD).mp4

23.4 MB

005 Spark and the Resilient Distributed Dataset (RDD)_en.srt

24.8 KB

006 Introducing MLLib.mp4

15.4 MB

006 Introducing MLLib_en.srt

10.7 KB

007 Introduction to Decision Trees in Spark.mp4

140.5 MB

007 Introduction to Decision Trees in Spark_en.srt

33.9 KB

008 [Activity] K-Means Clustering in Spark.mp4

121.8 MB

008 [Activity] K-Means Clustering in Spark_en.srt

21.6 KB

009 TF IDF.mp4

68.9 MB

009 TF IDF_en.srt

13.7 KB

010 [Activity] Searching Wikipedia with Spark.mp4

88.1 MB

010 [Activity] Searching Wikipedia with Spark_en.srt

16.0 KB

011 [Activity] Using the Spark DataFrame API for MLLib.mp4

68.3 MB

011 [Activity] Using the Spark DataFrame API for MLLib_en.srt

15.5 KB

/09 - Experimental Design ML in the Real World/

001 Deploying Models to Real-Time Systems.mp4

18.1 MB

001 Deploying Models to Real-Time Systems_en.srt

19.2 KB

002 AB Testing Concepts.mp4

33.6 MB

002 AB Testing Concepts_en.srt

19.1 KB

003 T-Tests and P-Values.mp4

14.8 MB

003 T-Tests and P-Values_en.srt

12.6 KB

004 [Activity] Hands-on With T-Tests.mp4

50.1 MB

004 [Activity] Hands-on With T-Tests_en.srt

12.6 KB

005 Determining How Long to Run an Experiment.mp4

10.2 MB

005 Determining How Long to Run an Experiment_en.srt

7.9 KB

006 AB Test Gotchas.mp4

96.2 MB

006 AB Test Gotchas_en.srt

21.5 KB

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/10 - Deep Learning and Neural Networks/

001 Deep Learning Pre-Requisites.mp4

73.8 MB

001 Deep Learning Pre-Requisites_en.srt

26.7 KB

002 The History of Artificial Neural Networks.mp4

72.2 MB

002 The History of Artificial Neural Networks_en.srt

24.7 KB

003 [Activity] Deep Learning in the Tensorflow Playground.mp4

58.4 MB

003 [Activity] Deep Learning in the Tensorflow Playground_en.srt

24.5 KB

004 Deep Learning Details.mp4

32.4 MB

004 Deep Learning Details_en.srt

21.4 KB

005 Introducing Tensorflow.mp4

48.9 MB

005 Introducing Tensorflow_en.srt

27.2 KB

006 [Activity] Using Tensorflow, Part 1.mp4

112.9 MB

006 [Activity] Using Tensorflow, Part 1_en.srt

28.3 KB

007 [Activity] Using Tensorflow, Part 2.mp4

99.7 MB

007 [Activity] Using Tensorflow, Part 2_en.srt

25.5 KB

008 [Activity] Introducing Keras.mp4

75.5 MB

008 [Activity] Introducing Keras_en.srt

29.3 KB

009 [Activity] Using Keras to Predict Political Affiliations.mp4

93.2 MB

009 [Activity] Using Keras to Predict Political Affiliations_en.srt

26.0 KB

010 Convolutional Neural Networks (CNN's).mp4

61.6 MB

010 Convolutional Neural Networks (CNN's)_en.srt

25.4 KB

011 [Activity] Using CNN's for handwriting recognition.mp4

55.4 MB

011 [Activity] Using CNN's for handwriting recognition_en.srt

17.2 KB

012 Recurrent Neural Networks (RNN's).mp4

34.4 MB

012 Recurrent Neural Networks (RNN's)_en.srt

23.5 KB

013 [Activity] Using a RNN for sentiment analysis.mp4

77.1 MB

013 [Activity] Using a RNN for sentiment analysis_en.srt

21.2 KB

014 [Activity] Transfer Learning.mp4

116.4 MB

014 [Activity] Transfer Learning_en.srt

25.9 KB

015 Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.mp4

8.9 MB

015 Tuning Neural Networks Learning Rate and Batch Size Hyperparameters_en.srt

10.6 KB

016 Deep Learning Regularization with Dropout and Early Stopping.mp4

20.8 MB

016 Deep Learning Regularization with Dropout and Early Stopping_en.srt

14.2 KB

017 The Ethics of Deep Learning.mp4

126.4 MB

017 The Ethics of Deep Learning_en.srt

25.5 KB

/11 - Generative Models/

001 Variational Auto-Encoders (VAE's) - how they work.mp4

45.0 MB

001 Variational Auto-Encoders (VAE's) - how they work_en.srt

22.2 KB

002 Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST.mp4

156.1 MB

002 Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST_en.srt

56.0 KB

002 VariationalAutoEncoders.ipynb

1.4 MB

003 Generative Adversarial Networks (GAN's) - How they work.mp4

16.0 MB

003 Generative Adversarial Networks (GAN's) - How they work_en.srt

16.3 KB

004 Generative Adversarial Networks (GAN's) - Playing with some demos.mp4

90.3 MB

004 Generative Adversarial Networks (GAN's) - Playing with some demos_en.srt

22.2 KB

005 GAN-on-Fashion-MNIST.ipynb

3.9 MB

005 Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST.mp4

132.2 MB

005 Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST_en.srt

33.4 KB

006 Learning More about Deep Learning.mp4

21.2 MB

006 Learning More about Deep Learning_en.srt

3.9 KB

/12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/

001 The Transformer Architecture (encoders, decoders, and self-attention.).mp4

46.3 MB

001 The Transformer Architecture (encoders, decoders, and self-attention.)_en.srt

22.8 KB

002 Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth.mp4

43.5 MB

002 Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth_en.srt

22.2 KB

003 Applications of Transformers (GPT).mp4

21.2 MB

003 Applications of Transformers (GPT)_en.srt

10.3 KB

004 How GPT Works, Part 1 The GPT Transformer Architecture.mp4

31.7 MB

004 How GPT Works, Part 1 The GPT Transformer Architecture_en.srt

16.4 KB

005 How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding.mp4

29.9 MB

005 How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding_en.srt

11.0 KB

006 Fine Tuning Transfer Learning with Transformers.mp4

12.1 MB

006 Fine Tuning Transfer Learning with Transformers_en.srt

5.6 KB

007 Transformers-MLCourse.ipynb

7.0 MB

007 [Activity] Tokenization with Google CoLab and HuggingFace.mp4

82.8 MB

007 [Activity] Tokenization with Google CoLab and HuggingFace_en.srt

19.1 KB

008 [Activity] Positional Encoding.mp4

16.7 MB

008 [Activity] Positional Encoding_en.srt

4.4 KB

009 [Activity] Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT.mp4

41.7 MB

009 [Activity] Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT_en.srt

13.1 KB

010 [Activity] Using small and large GPT models within Google CoLab and HuggingFace.mp4

72.7 MB

010 [Activity] Using small and large GPT models within Google CoLab and HuggingFace_en.srt

11.0 KB

011 [Activity] Fine Tuning GPT with the IMDb dataset.mp4

89.3 MB

011 [Activity] Fine Tuning GPT with the IMDb dataset_en.srt

13.7 KB

012 From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients.mp4

53.6 MB

012 From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients_en.srt

16.3 KB

013 From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation.mp4

39.6 MB

013 From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation_en.srt

13.2 KB

/13 - The OpenAI API (Developing with GPT and ChatGPT)/

001 Chat-Completions.py

1.2 KB

001 [Activity] The OpenAI Chat Completions API.mp4

73.9 MB

001 [Activity] The OpenAI Chat Completions API_en.srt

25.5 KB

002 Functions.py

3.5 KB

002 [Activity] Using Tools and Functions in the OpenAI Chat Completion API.mp4

64.2 MB

002 [Activity] Using Tools and Functions in the OpenAI Chat Completion API_en.srt

19.5 KB

003 Image.py

0.7 KB

003 [Activity] The Images (DALL-E) API in OpenAI.mp4

31.0 MB

003 [Activity] The Images (DALL-E) API in OpenAI_en.srt

9.0 KB

004 Embedding.py

1.0 KB

004 [Activity] The Embeddings API in OpenAI Finding similarities between words.mp4

34.5 MB

004 [Activity] The Embeddings API in OpenAI Finding similarities between words_en.srt

13.6 KB

005 The Legacy Fine-Tuning API for GPT Models in OpenAI.mp4

30.9 MB

005 The Legacy Fine-Tuning API for GPT Models in OpenAI_en.srt

11.7 KB

006 [Demo] Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek.mp4

179.0 MB

006 [Demo] Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek_en.srt

36.1 KB

006 extract-script.py

1.9 KB

007 MakingData.ipynb

13.9 KB

007 The New OpenAI Fine-Tuning API; Fine-Tuning GPT-3.5 to simulate Commander Data!.mp4

334.5 MB

007 The New OpenAI Fine-Tuning API; Fine-Tuning GPT-3.5 to simulate Commander Data!_en.srt

47.0 KB

008 Moderation.py

0.2 KB

008 [Activity] The OpenAI Moderation API.mp4

18.0 MB

009 Audio.py

0.4 KB

009 [Activity] The OpenAI Audio API (speech to text).mp4

30.1 MB

009 [Activity] The OpenAI Audio API (speech to text)_en.srt

8.4 KB

/14 - Retrieval Augmented Generation (RAG)/

001 Retrieval Augmented Generation (RAG) How it works, with some examples.mp4

97.4 MB

001 Retrieval Augmented Generation (RAG) How it works, with some examples_en.srt

38.1 KB

002 Data-RAG.ipynb

102.8 KB

002 Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek.mp4

193.4 MB

002 Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek_en.srt

41.7 KB

/15 - Final Project/

001 Your final project assignment Mammogram Classification.mp4

54.1 MB

001 Your final project assignment Mammogram Classification_en.srt

14.7 KB

002 Final project review.mp4

67.6 MB

002 Final project review_en.srt

22.8 KB

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/16 - You made it!/

001 More to Explore.mp4

35.6 MB

001 More to Explore_en.srt

7.0 KB

002 Don't Forget to Leave a Rating!.html

0.6 KB

003 Bonus Lecture.html

9.5 KB

/

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

 

Total files 297


Copyright © 2025 FileMood.com