/0. Websites you may like/
|
[CourseClub.Me].url
|
0.1 KB
|
[GigaCourse.Com].url
|
0.0 KB
|
/01 - Getting Started/
|
001 Introduction.mp4
|
62.5 MB
|
001 Introduction_en.srt
|
6.2 KB
|
002 Udemy 101 Getting the Most From This Course.mp4
|
18.2 MB
|
002 Udemy 101 Getting the Most From This Course_en.srt
|
5.0 KB
|
003 Important note.html
|
0.6 KB
|
004 Installation Getting Started.html
|
1.2 KB
|
005 [Activity] WINDOWS Installing and Using Anaconda & Course Materials.mp4
|
106.9 MB
|
005 [Activity] WINDOWS Installing and Using Anaconda & Course Materials_en.srt
|
21.2 KB
|
006 [Activity] MAC Installing and Using Anaconda & Course Materials.mp4
|
100.9 MB
|
006 [Activity] MAC Installing and Using Anaconda & Course Materials_en.srt
|
17.3 KB
|
007 [Activity] LINUX Installing and Using Anaconda & Course Materials.mp4
|
89.7 MB
|
007 [Activity] LINUX Installing and Using Anaconda & Course Materials_en.srt
|
18.4 KB
|
008 Python Basics, Part 1 [Optional].mp4
|
28.2 MB
|
008 Python Basics, Part 1 [Optional]_en.srt
|
9.8 KB
|
009 [Activity] Python Basics, Part 2 [Optional].mp4
|
21.6 MB
|
009 [Activity] Python Basics, Part 2 [Optional]_en.srt
|
9.5 KB
|
010 [Activity] Python Basics, Part 3 [Optional].mp4
|
5.4 MB
|
010 [Activity] Python Basics, Part 3 [Optional]_en.srt
|
5.4 KB
|
011 [Activity] Python Basics, Part 4 [Optional].mp4
|
8.6 MB
|
011 [Activity] Python Basics, Part 4 [Optional]_en.srt
|
7.3 KB
|
012 Introducing the Pandas Library [Optional].mp4
|
46.3 MB
|
012 Introducing the Pandas Library [Optional]_en.srt
|
22.4 KB
|
/02 - Statistics and Probability Refresher, and Python Practice/
|
001 Types of Data (Numerical, Categorical, Ordinal).mp4
|
76.7 MB
|
001 Types of Data (Numerical, Categorical, Ordinal)_en.srt
|
14.8 KB
|
002 Mean, Median, Mode.mp4
|
16.7 MB
|
002 Mean, Median, Mode_en.srt
|
11.9 KB
|
003 [Activity] Using mean, median, and mode in Python.mp4
|
46.7 MB
|
003 [Activity] Using mean, median, and mode in Python_en.srt
|
19.8 KB
|
004 [Activity] Variation and Standard Deviation.mp4
|
108.4 MB
|
004 [Activity] Variation and Standard Deviation_en.srt
|
23.5 KB
|
005 Probability Density Function; Probability Mass Function.mp4
|
7.3 MB
|
005 Probability Density Function; Probability Mass Function_en.srt
|
7.3 KB
|
006 Common Data Distributions (Normal, Binomial, Poisson, etc).mp4
|
29.6 MB
|
006 Common Data Distributions (Normal, Binomial, Poisson, etc)_en.srt
|
14.8 KB
|
007 [Activity] Percentiles and Moments.mp4
|
44.6 MB
|
007 [Activity] Percentiles and Moments_en.srt
|
27.5 KB
|
008 [Activity] A Crash Course in matplotlib.mp4
|
82.5 MB
|
008 [Activity] A Crash Course in matplotlib_en.srt
|
26.7 KB
|
009 [Activity] Advanced Visualization with Seaborn.mp4
|
100.8 MB
|
009 [Activity] Advanced Visualization with Seaborn_en.srt
|
36.6 KB
|
010 [Activity] Covariance and Correlation.mp4
|
72.9 MB
|
010 [Activity] Covariance and Correlation_en.srt
|
24.3 KB
|
011 [Exercise] Conditional Probability.mp4
|
98.5 MB
|
011 [Exercise] Conditional Probability_en.srt
|
34.9 KB
|
012 Exercise Solution Conditional Probability of Purchase by Age.mp4
|
15.7 MB
|
012 Exercise Solution Conditional Probability of Purchase by Age_en.srt
|
4.9 KB
|
013 Bayes' Theorem.mp4
|
58.8 MB
|
013 Bayes' Theorem_en.srt
|
10.6 KB
|
/03 - Predictive Models/
|
001 [Activity] Linear Regression.mp4
|
97.5 MB
|
001 [Activity] Linear Regression_en.srt
|
24.3 KB
|
002 [Activity] Polynomial Regression.mp4
|
63.5 MB
|
002 [Activity] Polynomial Regression_en.srt
|
16.1 KB
|
003 [Activity] Multiple Regression, and Predicting Car Prices.mp4
|
98.7 MB
|
003 [Activity] Multiple Regression, and Predicting Car Prices_en.srt
|
35.0 KB
|
004 Multi-Level Models.mp4
|
28.5 MB
|
004 Multi-Level Models_en.srt
|
10.0 KB
|
[CourseClub.Me].url
|
0.1 KB
|
[GigaCourse.Com].url
|
0.0 KB
|
/04 - Machine Learning with Python/
|
001 Supervised vs. Unsupervised Learning, and TrainTest.mp4
|
59.4 MB
|
001 Supervised vs. Unsupervised Learning, and TrainTest_en.srt
|
19.9 KB
|
002 [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression.mp4
|
22.7 MB
|
002 [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression_en.srt
|
12.2 KB
|
003 Bayesian Methods Concepts.mp4
|
10.3 MB
|
003 Bayesian Methods Concepts_en.srt
|
8.3 KB
|
004 [Activity] Implementing a Spam Classifier with Naive Bayes.mp4
|
85.3 MB
|
004 [Activity] Implementing a Spam Classifier with Naive Bayes_en.srt
|
17.0 KB
|
005 K-Means Clustering.mp4
|
27.3 MB
|
005 K-Means Clustering_en.srt
|
16.0 KB
|
006 [Activity] Clustering people based on income and age.mp4
|
23.1 MB
|
006 [Activity] Clustering people based on income and age_en.srt
|
11.4 KB
|
007 Measuring Entropy.mp4
|
12.7 MB
|
007 Measuring Entropy_en.srt
|
6.6 KB
|
008 [Activity] WINDOWS Installing Graphviz.mp4
|
972.1 KB
|
008 [Activity] WINDOWS Installing Graphviz_en.srt
|
0.9 KB
|
009 [Activity] MAC Installing Graphviz.mp4
|
9.5 MB
|
009 [Activity] MAC Installing Graphviz_en.srt
|
1.9 KB
|
010 [Activity] LINUX Installing Graphviz.mp4
|
2.6 MB
|
010 [Activity] LINUX Installing Graphviz_en.srt
|
1.4 KB
|
011 Decision Trees Concepts.mp4
|
85.5 MB
|
011 Decision Trees Concepts_en.srt
|
19.1 KB
|
012 [Activity] Decision Trees Predicting Hiring Decisions.mp4
|
60.6 MB
|
012 [Activity] Decision Trees Predicting Hiring Decisions_en.srt
|
20.6 KB
|
013 Ensemble Learning.mp4
|
38.8 MB
|
013 Ensemble Learning_en.srt
|
13.0 KB
|
014 [Activity] XGBoost.mp4
|
83.1 MB
|
014 [Activity] XGBoost_en.srt
|
34.5 KB
|
015 Support Vector Machines (SVM) Overview.mp4
|
17.1 MB
|
015 Support Vector Machines (SVM) Overview_en.srt
|
9.7 KB
|
016 [Activity] Using SVM to cluster people using scikit-learn.mp4
|
40.4 MB
|
016 [Activity] Using SVM to cluster people using scikit-learn_en.srt
|
20.5 KB
|
/05 - Recommender Systems/
|
001 User-Based Collaborative Filtering.mp4
|
85.7 MB
|
001 User-Based Collaborative Filtering_en.srt
|
17.8 KB
|
002 Item-Based Collaborative Filtering.mp4
|
24.3 MB
|
002 Item-Based Collaborative Filtering_en.srt
|
18.2 KB
|
003 [Activity] Finding Movie Similarities using Cosine Similarity.mp4
|
86.7 MB
|
003 [Activity] Finding Movie Similarities using Cosine Similarity_en.srt
|
18.3 KB
|
004 [Activity] Improving the Results of Movie Similarities.mp4
|
58.8 MB
|
004 [Activity] Improving the Results of Movie Similarities_en.srt
|
16.6 KB
|
005 [Activity] Making Movie Recommendations with Item-Based Collaborative Filtering.mp4
|
130.1 MB
|
005 [Activity] Making Movie Recommendations with Item-Based Collaborative Filtering_en.srt
|
20.7 KB
|
006 [Exercise] Improve the recommender's results.mp4
|
29.4 MB
|
006 [Exercise] Improve the recommender's results_en.srt
|
12.4 KB
|
/06 - More Data Mining and Machine Learning Techniques/
|
001 K-Nearest-Neighbors Concepts.mp4
|
14.7 MB
|
001 K-Nearest-Neighbors Concepts_en.srt
|
8.1 KB
|
002 [Activity] Using KNN to predict a rating for a movie.mp4
|
89.7 MB
|
002 [Activity] Using KNN to predict a rating for a movie_en.srt
|
24.7 KB
|
003 Dimensionality Reduction; Principal Component Analysis (PCA).mp4
|
40.0 MB
|
003 Dimensionality Reduction; Principal Component Analysis (PCA)_en.srt
|
12.0 KB
|
004 [Activity] PCA Example with the Iris data set.mp4
|
69.0 MB
|
004 [Activity] PCA Example with the Iris data set_en.srt
|
18.4 KB
|
005 Data Warehousing Overview ETL and ELT.mp4
|
61.6 MB
|
005 Data Warehousing Overview ETL and ELT_en.srt
|
18.5 KB
|
006 Cat-and-Mouse-Example.url
|
0.1 KB
|
006 Pac-Man-Example.url
|
0.1 KB
|
006 Python-Markov-Decision-Process-Toolbox.url
|
0.1 KB
|
006 Reinforcement Learning.mp4
|
131.3 MB
|
006 Reinforcement Learning_en.srt
|
25.9 KB
|
007 [Activity] Reinforcement Learning & Q-Learning with Gym.mp4
|
65.8 MB
|
007 [Activity] Reinforcement Learning & Q-Learning with Gym_en.srt
|
27.2 KB
|
008 Understanding a Confusion Matrix.mp4
|
7.7 MB
|
008 Understanding a Confusion Matrix_en.srt
|
11.9 KB
|
009 Measuring Classifiers (Precision, Recall, F1, ROC, AUC).mp4
|
12.2 MB
|
009 Measuring Classifiers (Precision, Recall, F1, ROC, AUC)_en.srt
|
13.0 KB
|
external-links.txt
|
0.3 KB
|
/07 - Dealing with Real-World Data/
|
001 BiasVariance Tradeoff.mp4
|
24.8 MB
|
001 BiasVariance Tradeoff_en.srt
|
13.1 KB
|
002 [Activity] K-Fold Cross-Validation to avoid overfitting.mp4
|
59.7 MB
|
002 [Activity] K-Fold Cross-Validation to avoid overfitting_en.srt
|
21.1 KB
|
003 Data Cleaning and Normalization.mp4
|
76.6 MB
|
003 Data Cleaning and Normalization_en.srt
|
16.6 KB
|
004 [Activity] Cleaning web log data.mp4
|
32.5 MB
|
004 [Activity] Cleaning web log data_en.srt
|
22.3 KB
|
005 Normalizing numerical data.mp4
|
10.8 MB
|
005 Normalizing numerical data_en.srt
|
7.3 KB
|
006 [Activity] Detecting outliers.mp4
|
28.5 MB
|
006 [Activity] Detecting outliers_en.srt
|
13.6 KB
|
007 Feature Engineering and the Curse of Dimensionality.mp4
|
15.3 MB
|
007 Feature Engineering and the Curse of Dimensionality_en.srt
|
14.3 KB
|
008 Imputation Techniques for Missing Data.mp4
|
19.1 MB
|
008 Imputation Techniques for Missing Data_en.srt
|
17.7 KB
|
009 Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.mp4
|
18.3 MB
|
009 Handling Unbalanced Data Oversampling, Undersampling, and SMOTE_en.srt
|
12.1 KB
|
010 Binning, Transforming, Encoding, Scaling, and Shuffling.mp4
|
44.8 MB
|
010 Binning, Transforming, Encoding, Scaling, and Shuffling_en.srt
|
17.3 KB
|
/08 - Apache Spark Machine Learning on Big Data/
|
001 Warning about Java 21+ and Spark 3!.html
|
0.4 KB
|
002 Spark installation notes for MacOS and Linux users.html
|
3.2 KB
|
003 [Activity] Installing Spark.mp4
|
148.2 MB
|
003 [Activity] Installing Spark_en.srt
|
21.8 KB
|
004 Spark Introduction.mp4
|
26.2 MB
|
004 Spark Introduction_en.srt
|
19.6 KB
|
005 Spark and the Resilient Distributed Dataset (RDD).mp4
|
23.4 MB
|
005 Spark and the Resilient Distributed Dataset (RDD)_en.srt
|
24.8 KB
|
006 Introducing MLLib.mp4
|
15.4 MB
|
006 Introducing MLLib_en.srt
|
10.7 KB
|
007 Introduction to Decision Trees in Spark.mp4
|
140.5 MB
|
007 Introduction to Decision Trees in Spark_en.srt
|
33.9 KB
|
008 [Activity] K-Means Clustering in Spark.mp4
|
121.8 MB
|
008 [Activity] K-Means Clustering in Spark_en.srt
|
21.6 KB
|
009 TF IDF.mp4
|
68.9 MB
|
009 TF IDF_en.srt
|
13.7 KB
|
010 [Activity] Searching Wikipedia with Spark.mp4
|
88.1 MB
|
010 [Activity] Searching Wikipedia with Spark_en.srt
|
16.0 KB
|
011 [Activity] Using the Spark DataFrame API for MLLib.mp4
|
68.3 MB
|
011 [Activity] Using the Spark DataFrame API for MLLib_en.srt
|
15.5 KB
|
/09 - Experimental Design ML in the Real World/
|
001 Deploying Models to Real-Time Systems.mp4
|
18.1 MB
|
001 Deploying Models to Real-Time Systems_en.srt
|
19.2 KB
|
002 AB Testing Concepts.mp4
|
33.6 MB
|
002 AB Testing Concepts_en.srt
|
19.1 KB
|
003 T-Tests and P-Values.mp4
|
14.8 MB
|
003 T-Tests and P-Values_en.srt
|
12.6 KB
|
004 [Activity] Hands-on With T-Tests.mp4
|
50.1 MB
|
004 [Activity] Hands-on With T-Tests_en.srt
|
12.6 KB
|
005 Determining How Long to Run an Experiment.mp4
|
10.2 MB
|
005 Determining How Long to Run an Experiment_en.srt
|
7.9 KB
|
006 AB Test Gotchas.mp4
|
96.2 MB
|
006 AB Test Gotchas_en.srt
|
21.5 KB
|
[CourseClub.Me].url
|
0.1 KB
|
[GigaCourse.Com].url
|
0.0 KB
|
/10 - Deep Learning and Neural Networks/
|
001 Deep Learning Pre-Requisites.mp4
|
73.8 MB
|
001 Deep Learning Pre-Requisites_en.srt
|
26.7 KB
|
002 The History of Artificial Neural Networks.mp4
|
72.2 MB
|
002 The History of Artificial Neural Networks_en.srt
|
24.7 KB
|
003 [Activity] Deep Learning in the Tensorflow Playground.mp4
|
58.4 MB
|
003 [Activity] Deep Learning in the Tensorflow Playground_en.srt
|
24.5 KB
|
004 Deep Learning Details.mp4
|
32.4 MB
|
004 Deep Learning Details_en.srt
|
21.4 KB
|
005 Introducing Tensorflow.mp4
|
48.9 MB
|
005 Introducing Tensorflow_en.srt
|
27.2 KB
|
006 [Activity] Using Tensorflow, Part 1.mp4
|
112.9 MB
|
006 [Activity] Using Tensorflow, Part 1_en.srt
|
28.3 KB
|
007 [Activity] Using Tensorflow, Part 2.mp4
|
99.7 MB
|
007 [Activity] Using Tensorflow, Part 2_en.srt
|
25.5 KB
|
008 [Activity] Introducing Keras.mp4
|
75.5 MB
|
008 [Activity] Introducing Keras_en.srt
|
29.3 KB
|
009 [Activity] Using Keras to Predict Political Affiliations.mp4
|
93.2 MB
|
009 [Activity] Using Keras to Predict Political Affiliations_en.srt
|
26.0 KB
|
010 Convolutional Neural Networks (CNN's).mp4
|
61.6 MB
|
010 Convolutional Neural Networks (CNN's)_en.srt
|
25.4 KB
|
011 [Activity] Using CNN's for handwriting recognition.mp4
|
55.4 MB
|
011 [Activity] Using CNN's for handwriting recognition_en.srt
|
17.2 KB
|
012 Recurrent Neural Networks (RNN's).mp4
|
34.4 MB
|
012 Recurrent Neural Networks (RNN's)_en.srt
|
23.5 KB
|
013 [Activity] Using a RNN for sentiment analysis.mp4
|
77.1 MB
|
013 [Activity] Using a RNN for sentiment analysis_en.srt
|
21.2 KB
|
014 [Activity] Transfer Learning.mp4
|
116.4 MB
|
014 [Activity] Transfer Learning_en.srt
|
25.9 KB
|
015 Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.mp4
|
8.9 MB
|
015 Tuning Neural Networks Learning Rate and Batch Size Hyperparameters_en.srt
|
10.6 KB
|
016 Deep Learning Regularization with Dropout and Early Stopping.mp4
|
20.8 MB
|
016 Deep Learning Regularization with Dropout and Early Stopping_en.srt
|
14.2 KB
|
017 The Ethics of Deep Learning.mp4
|
126.4 MB
|
017 The Ethics of Deep Learning_en.srt
|
25.5 KB
|
/11 - Generative Models/
|
001 Variational Auto-Encoders (VAE's) - how they work.mp4
|
45.0 MB
|
001 Variational Auto-Encoders (VAE's) - how they work_en.srt
|
22.2 KB
|
002 Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST.mp4
|
156.1 MB
|
002 Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST_en.srt
|
56.0 KB
|
002 VariationalAutoEncoders.ipynb
|
1.4 MB
|
003 Generative Adversarial Networks (GAN's) - How they work.mp4
|
16.0 MB
|
003 Generative Adversarial Networks (GAN's) - How they work_en.srt
|
16.3 KB
|
004 Generative Adversarial Networks (GAN's) - Playing with some demos.mp4
|
90.3 MB
|
004 Generative Adversarial Networks (GAN's) - Playing with some demos_en.srt
|
22.2 KB
|
005 GAN-on-Fashion-MNIST.ipynb
|
3.9 MB
|
005 Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST.mp4
|
132.2 MB
|
005 Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST_en.srt
|
33.4 KB
|
006 Learning More about Deep Learning.mp4
|
21.2 MB
|
006 Learning More about Deep Learning_en.srt
|
3.9 KB
|
/12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/
|
001 The Transformer Architecture (encoders, decoders, and self-attention.).mp4
|
46.3 MB
|
001 The Transformer Architecture (encoders, decoders, and self-attention.)_en.srt
|
22.8 KB
|
002 Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth.mp4
|
43.5 MB
|
002 Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth_en.srt
|
22.2 KB
|
003 Applications of Transformers (GPT).mp4
|
21.2 MB
|
003 Applications of Transformers (GPT)_en.srt
|
10.3 KB
|
004 How GPT Works, Part 1 The GPT Transformer Architecture.mp4
|
31.7 MB
|
004 How GPT Works, Part 1 The GPT Transformer Architecture_en.srt
|
16.4 KB
|
005 How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding.mp4
|
29.9 MB
|
005 How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding_en.srt
|
11.0 KB
|
006 Fine Tuning Transfer Learning with Transformers.mp4
|
12.1 MB
|
006 Fine Tuning Transfer Learning with Transformers_en.srt
|
5.6 KB
|
007 Transformers-MLCourse.ipynb
|
7.0 MB
|
007 [Activity] Tokenization with Google CoLab and HuggingFace.mp4
|
82.8 MB
|
007 [Activity] Tokenization with Google CoLab and HuggingFace_en.srt
|
19.1 KB
|
008 [Activity] Positional Encoding.mp4
|
16.7 MB
|
008 [Activity] Positional Encoding_en.srt
|
4.4 KB
|
009 [Activity] Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT.mp4
|
41.7 MB
|
009 [Activity] Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT_en.srt
|
13.1 KB
|
010 [Activity] Using small and large GPT models within Google CoLab and HuggingFace.mp4
|
72.7 MB
|
010 [Activity] Using small and large GPT models within Google CoLab and HuggingFace_en.srt
|
11.0 KB
|
011 [Activity] Fine Tuning GPT with the IMDb dataset.mp4
|
89.3 MB
|
011 [Activity] Fine Tuning GPT with the IMDb dataset_en.srt
|
13.7 KB
|
012 From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients.mp4
|
53.6 MB
|
012 From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients_en.srt
|
16.3 KB
|
013 From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation.mp4
|
39.6 MB
|
013 From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation_en.srt
|
13.2 KB
|
/13 - The OpenAI API (Developing with GPT and ChatGPT)/
|
001 Chat-Completions.py
|
1.2 KB
|
001 [Activity] The OpenAI Chat Completions API.mp4
|
73.9 MB
|
001 [Activity] The OpenAI Chat Completions API_en.srt
|
25.5 KB
|
002 Functions.py
|
3.5 KB
|
002 [Activity] Using Tools and Functions in the OpenAI Chat Completion API.mp4
|
64.2 MB
|
002 [Activity] Using Tools and Functions in the OpenAI Chat Completion API_en.srt
|
19.5 KB
|
003 Image.py
|
0.7 KB
|
003 [Activity] The Images (DALL-E) API in OpenAI.mp4
|
31.0 MB
|
003 [Activity] The Images (DALL-E) API in OpenAI_en.srt
|
9.0 KB
|
004 Embedding.py
|
1.0 KB
|
004 [Activity] The Embeddings API in OpenAI Finding similarities between words.mp4
|
34.5 MB
|
004 [Activity] The Embeddings API in OpenAI Finding similarities between words_en.srt
|
13.6 KB
|
005 The Legacy Fine-Tuning API for GPT Models in OpenAI.mp4
|
30.9 MB
|
005 The Legacy Fine-Tuning API for GPT Models in OpenAI_en.srt
|
11.7 KB
|
006 [Demo] Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek.mp4
|
179.0 MB
|
006 [Demo] Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek_en.srt
|
36.1 KB
|
006 extract-script.py
|
1.9 KB
|
007 MakingData.ipynb
|
13.9 KB
|
007 The New OpenAI Fine-Tuning API; Fine-Tuning GPT-3.5 to simulate Commander Data!.mp4
|
334.5 MB
|
007 The New OpenAI Fine-Tuning API; Fine-Tuning GPT-3.5 to simulate Commander Data!_en.srt
|
47.0 KB
|
008 Moderation.py
|
0.2 KB
|
008 [Activity] The OpenAI Moderation API.mp4
|
18.0 MB
|
009 Audio.py
|
0.4 KB
|
009 [Activity] The OpenAI Audio API (speech to text).mp4
|
30.1 MB
|
009 [Activity] The OpenAI Audio API (speech to text)_en.srt
|
8.4 KB
|
/14 - Retrieval Augmented Generation (RAG)/
|
001 Retrieval Augmented Generation (RAG) How it works, with some examples.mp4
|
97.4 MB
|
001 Retrieval Augmented Generation (RAG) How it works, with some examples_en.srt
|
38.1 KB
|
002 Data-RAG.ipynb
|
102.8 KB
|
002 Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek.mp4
|
193.4 MB
|
002 Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek_en.srt
|
41.7 KB
|
/15 - Final Project/
|
001 Your final project assignment Mammogram Classification.mp4
|
54.1 MB
|
001 Your final project assignment Mammogram Classification_en.srt
|
14.7 KB
|
002 Final project review.mp4
|
67.6 MB
|
002 Final project review_en.srt
|
22.8 KB
|
[CourseClub.Me].url
|
0.1 KB
|
[GigaCourse.Com].url
|
0.0 KB
|
/16 - You made it!/
|
001 More to Explore.mp4
|
35.6 MB
|
001 More to Explore_en.srt
|
7.0 KB
|
002 Don't Forget to Leave a Rating!.html
|
0.6 KB
|
003 Bonus Lecture.html
|
9.5 KB
|
/
|
[CourseClub.Me].url
|
0.1 KB
|
[GigaCourse.Com].url
|
0.0 KB
|
Total files 297
|