FileMood

Download [GigaCourse.Com] Udemy - Machine Learning & Deep Learning in Python & R

GigaCourse Com Udemy Machine Learning Deep Learning in Python

Name

[GigaCourse.Com] Udemy - Machine Learning & Deep Learning in Python & R

  DOWNLOAD Copy Link

Total Size

13.5 GB

Total Files

539

Last Seen

2025-02-20 00:37

Hash

3ADEC4CA542730DF24B2184E3C5DEAEE6E240A56

/0. Websites you may like/

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/1. Introduction/

1. Introduction.mp4

30.8 MB

1. Introduction.srt

4.8 KB

2. Course Resources.html

0.4 KB

/10. Linear Discriminant Analysis (LDA)/

1. Linear Discriminant Analysis.mp4

42.9 MB

1. Linear Discriminant Analysis.srt

12.6 KB

2. LDA in Python.mp4

12.0 MB

2. LDA in Python.srt

2.6 KB

3. Linear Discriminant Analysis in R.mp4

78.0 MB

3. Linear Discriminant Analysis in R.srt

10.7 KB

/11. K-Nearest Neighbors classifier/

1. Test-Train Split.mp4

41.2 MB

1. Test-Train Split.srt

11.2 KB

2. Test-Train Split in Python.mp4

34.7 MB

2. Test-Train Split in Python.srt

7.8 KB

3. Test-Train Split in R.mp4

77.8 MB

3. Test-Train Split in R.srt

10.5 KB

4. K-Nearest Neighbors classifier.mp4

79.1 MB

4. K-Nearest Neighbors classifier.srt

10.6 KB

5. K-Nearest Neighbors in Python Part 1.mp4

39.0 MB

5. K-Nearest Neighbors in Python Part 1.srt

6.0 KB

6. K-Nearest Neighbors in Python Part 2.mp4

44.4 MB

6. K-Nearest Neighbors in Python Part 2.srt

7.1 KB

7. K-Nearest Neighbors in R.mp4

68.0 MB

7. K-Nearest Neighbors in R.srt

9.6 KB

/12. Comparing results from 3 models/

1. Understanding the results of classification models.mp4

43.7 MB

1. Understanding the results of classification models.srt

8.0 KB

2. Summary of the three models.mp4

23.3 MB

2. Summary of the three models.srt

6.4 KB

/13. Simple Decision Trees/

1. Introduction to Decision trees.mp4

47.0 MB

1. Introduction to Decision trees.srt

4.9 KB

10. Test-Train split in Python.mp4

26.9 MB

10. Test-Train split in Python.srt

5.4 KB

11. Splitting Data into Test and Train Set in R.mp4

46.1 MB

11. Splitting Data into Test and Train Set in R.srt

7.5 KB

12. Creating Decision tree in Python.mp4

18.7 MB

12. Creating Decision tree in Python.srt

4.4 KB

13. Building a Regression Tree in R.mp4

108.3 MB

13. Building a Regression Tree in R.srt

19.3 KB

14. Evaluating model performance in Python.mp4

17.2 MB

14. Evaluating model performance in Python.srt

4.9 KB

15. Plotting decision tree in Python.mp4

22.5 MB

15. Plotting decision tree in Python.srt

5.6 KB

16. Pruning a tree.mp4

19.4 MB

16. Pruning a tree.srt

5.6 KB

17. Pruning a tree in Python.mp4

77.1 MB

17. Pruning a tree in Python.srt

11.3 KB

18. Pruning a Tree in R.mp4

86.1 MB

18. Pruning a Tree in R.srt

12.1 KB

2. Basics of Decision Trees.mp4

44.7 MB

2. Basics of Decision Trees.srt

13.5 KB

3. Understanding a Regression Tree.mp4

45.8 MB

3. Understanding a Regression Tree.srt

14.3 KB

4. The stopping criteria for controlling tree growth.mp4

14.6 MB

4. The stopping criteria for controlling tree growth.srt

4.4 KB

5. Importing the Data set into Python.mp4

16.6 MB

5. Importing the Data set into Python.srt

3.2 KB

6. Importing the Data set into R.mp4

45.8 MB

6. Importing the Data set into R.srt

9.0 KB

7. Missing value treatment in Python.mp4

13.6 MB

7. Missing value treatment in Python.srt

2.4 KB

8. Dummy Variable creation in Python.mp4

25.8 MB

8. Dummy Variable creation in Python.srt

4.6 KB

9. Dependent- Independent Data split in Python.mp4

17.7 MB

9. Dependent- Independent Data split in Python.srt

3.9 KB

/14. Simple Classification Tree/

1. Classification tree.mp4

29.6 MB

1. Classification tree.srt

8.3 KB

2. The Data set for Classification problem.mp4

19.5 MB

2. The Data set for Classification problem.srt

2.4 KB

3. Classification tree in Python Preprocessing.mp4

47.6 MB

3. Classification tree in Python Preprocessing.srt

9.4 KB

4. Classification tree in Python Training.mp4

86.7 MB

4. Classification tree in Python Training.srt

15.2 KB

5. Building a classification Tree in R.mp4

89.2 MB

5. Building a classification Tree in R.srt

12.2 KB

6. Advantages and Disadvantages of Decision Trees.mp4

7.2 MB

6. Advantages and Disadvantages of Decision Trees.srt

2.2 KB

/15. Ensemble technique 1 - Bagging/

1. Ensemble technique 1 - Bagging.mp4

29.5 MB

1. Ensemble technique 1 - Bagging.srt

7.8 KB

2. Ensemble technique 1 - Bagging in Python.mp4

81.1 MB

2. Ensemble technique 1 - Bagging in Python.srt

12.9 KB

3. Bagging in R.mp4

61.8 MB

3. Bagging in R.srt

8.4 KB

/16. Ensemble technique 2 - Random Forests/

1. Ensemble technique 2 - Random Forests.mp4

19.1 MB

1. Ensemble technique 2 - Random Forests.srt

5.2 KB

2. Ensemble technique 2 - Random Forests in Python.mp4

49.0 MB

2. Ensemble technique 2 - Random Forests in Python.srt

7.1 KB

3. Using Grid Search in Python.mp4

84.6 MB

3. Using Grid Search in Python.srt

14.4 KB

4. Random Forest in R.mp4

32.2 MB

4. Random Forest in R.srt

5.7 KB

/17. Ensemble technique 3 - Boosting/

1. Boosting.mp4

32.1 MB

1. Boosting.srt

9.8 KB

2. Ensemble technique 3a - Boosting in Python.mp4

41.8 MB

2. Ensemble technique 3a - Boosting in Python.srt

5.7 KB

3. Gradient Boosting in R.mp4

72.4 MB

3. Gradient Boosting in R.srt

9.8 KB

4. Ensemble technique 3b - AdaBoost in Python.mp4

32.0 MB

4. Ensemble technique 3b - AdaBoost in Python.srt

4.7 KB

5. AdaBoosting in R.mp4

93.0 MB

5. AdaBoosting in R.srt

12.5 KB

6. Ensemble technique 3c - XGBoost in Python.mp4

78.6 MB

6. Ensemble technique 3c - XGBoost in Python.srt

11.9 KB

7. XGBoosting in R.mp4

169.1 MB

7. XGBoosting in R.srt

21.6 KB

/18. Support Vector Machines/

1. Introduction to SVM's.mp4

22.7 MB

1. Introduction to SVM's.srt

3.3 KB

2. The Concept of a Hyperplane.mp4

30.8 MB

2. The Concept of a Hyperplane.srt

6.4 KB

3. Maximum Margin Classifier.mp4

23.6 MB

3. Maximum Margin Classifier.srt

4.5 KB

4. Limitations of Maximum Margin Classifier.mp4

11.1 MB

4. Limitations of Maximum Margin Classifier.srt

3.2 KB

/19. Support Vector Classifier/

1. Support Vector classifiers.mp4

58.9 MB

1. Support Vector classifiers.srt

12.8 KB

2. Limitations of Support Vector Classifiers.mp4

11.3 MB

2. Limitations of Support Vector Classifiers.srt

1.9 KB

/2. Setting up Python and Jupyter Notebook/

1. Installing Python and Anaconda.mp4

17.1 MB

1. Installing Python and Anaconda.srt

2.7 KB

10. Working with Seaborn Library of Python.mp4

42.3 MB

10. Working with Seaborn Library of Python.srt

9.3 KB

2. This is a milestone!.mp4

21.7 MB

2. This is a milestone!.srt

4.0 KB

3. Opening Jupyter Notebook.mp4

68.4 MB

3. Opening Jupyter Notebook.srt

10.3 KB

4. Introduction to Jupyter.mp4

42.9 MB

4. Introduction to Jupyter.srt

15.9 KB

5. Arithmetic operators in Python Python Basics.mp4

13.4 MB

5. Arithmetic operators in Python Python Basics.srt

4.7 KB

6. Strings in Python Python Basics.mp4

67.6 MB

6. Strings in Python Python Basics.srt

19.0 KB

7. Lists, Tuples and Directories Python Basics.mp4

63.2 MB

7. Lists, Tuples and Directories Python Basics.srt

22.7 KB

8. Working with Numpy Library of Python.mp4

46.0 MB

8. Working with Numpy Library of Python.srt

13.1 KB

9. Working with Pandas Library of Python.mp4

49.2 MB

9. Working with Pandas Library of Python.srt

10.6 KB

/20. Support Vector Machines/

1. Kernel Based Support Vector Machines.mp4

42.1 MB

1. Kernel Based Support Vector Machines.srt

8.7 KB

/21. Creating Support Vector Machine Model in Python/

1. Regression and Classification Models.mp4

4.2 MB

1. Regression and Classification Models.srt

0.8 KB

10. Radial Kernel with Hyperparameter Tuning.mp4

39.0 MB

10. Radial Kernel with Hyperparameter Tuning.srt

7.4 KB

2. Importing and preprocessing data in Python.mp4

27.7 MB

2. Importing and preprocessing data in Python.srt

4.6 KB

3. Standardizing the data.mp4

40.3 MB

3. Standardizing the data.srt

6.8 KB

4. SVM based Regression Model in Python.mp4

70.9 MB

4. SVM based Regression Model in Python.srt

10.9 KB

5. Classification model - Preprocessing.mp4

47.6 MB

5. Classification model - Preprocessing.srt

9.4 KB

6. Classification model - Standardizing the data.mp4

10.2 MB

6. Classification model - Standardizing the data.srt

2.0 KB

7. SVM Based classification model.mp4

67.2 MB

7. SVM Based classification model.srt

13.0 KB

8. Hyper Parameter Tuning.mp4

60.5 MB

8. Hyper Parameter Tuning.srt

11.2 KB

9. Polynomial Kernel with Hyperparameter Tuning.mp4

24.0 MB

9. Polynomial Kernel with Hyperparameter Tuning.srt

4.5 KB

/22. Creating Support Vector Machine Model in R/

1. Importing and preprocessing data in R.mp4

26.2 MB

1. Importing and preprocessing data in R.srt

2.9 KB

2. More about test-train split.html

0.6 KB

3. Classification SVM model using Linear Kernel.mp4

145.9 MB

3. Classification SVM model using Linear Kernel.srt

18.8 KB

4. Hyperparameter Tuning for Linear Kernel.mp4

63.4 MB

4. Hyperparameter Tuning for Linear Kernel.srt

7.3 KB

5. Polynomial Kernel with Hyperparameter Tuning.mp4

87.2 MB

5. Polynomial Kernel with Hyperparameter Tuning.srt

12.1 KB

6. Radial Kernel with Hyperparameter Tuning.mp4

59.4 MB

6. Radial Kernel with Hyperparameter Tuning.srt

7.5 KB

7. SVM based Regression Model in R.mp4

111.3 MB

7. SVM based Regression Model in R.srt

12.8 KB

/23. Introduction - Deep Learning/

1. Introduction to Neural Networks and Course flow.mp4

30.5 MB

1. Introduction to Neural Networks and Course flow.srt

5.1 KB

2. Perceptron.mp4

46.9 MB

2. Perceptron.srt

11.0 KB

3. Activation Functions.mp4

36.3 MB

3. Activation Functions.srt

8.7 KB

4. Python - Creating Perceptron model.mp4

90.8 MB

4. Python - Creating Perceptron model.srt

16.6 KB

/24. Neural Networks - Stacking cells to create network/

1. Basic Terminologies.mp4

42.4 MB

1. Basic Terminologies.srt

11.6 KB

2. Gradient Descent.mp4

63.3 MB

2. Gradient Descent.srt

13.6 KB

3. Back Propagation.mp4

128.1 MB

3. Back Propagation.srt

26.5 KB

4. Some Important Concepts.mp4

65.2 MB

4. Some Important Concepts.srt

14.6 KB

5. Hyperparameter.mp4

47.6 MB

5. Hyperparameter.srt

9.9 KB

/25. ANN in Python/

1. Keras and Tensorflow.mp4

15.6 MB

1. Keras and Tensorflow.srt

4.0 KB

10. Using Functional API for complex architectures.mp4

96.6 MB

10. Using Functional API for complex architectures.srt

13.7 KB

11. Saving - Restoring Models and Using Callbacks.mp4

158.9 MB

11. Saving - Restoring Models and Using Callbacks.srt

22.1 KB

12. Hyperparameter Tuning.mp4

63.6 MB

12. Hyperparameter Tuning.srt

10.4 KB

2. Installing Tensorflow and Keras.mp4

21.0 MB

2. Installing Tensorflow and Keras.srt

4.4 KB

3. Dataset for classification.mp4

58.9 MB

3. Dataset for classification.srt

8.4 KB

4. Normalization and Test-Train split.mp4

46.3 MB

4. Normalization and Test-Train split.srt

6.5 KB

5. Different ways to create ANN using Keras.mp4

11.3 MB

5. Different ways to create ANN using Keras.srt

2.1 KB

6. Building the Neural Network using Keras.mp4

83.0 MB

6. Building the Neural Network using Keras.srt

13.6 KB

7. Compiling and Training the Neural Network model.mp4

85.6 MB

7. Compiling and Training the Neural Network model.srt

10.6 KB

8. Evaluating performance and Predicting using Keras.mp4

73.3 MB

8. Evaluating performance and Predicting using Keras.srt

10.4 KB

9. Building Neural Network for Regression Problem.mp4

163.5 MB

9. Building Neural Network for Regression Problem.srt

25.3 KB

/26. ANN in R/

1. Installing Keras and Tensorflow.mp4

23.9 MB

1. Installing Keras and Tensorflow.srt

3.2 KB

2. Data Normalization and Test-Train Split.mp4

117.2 MB

2. Data Normalization and Test-Train Split.srt

13.7 KB

3. Building,Compiling and Training.mp4

137.1 MB

3. Building,Compiling and Training.srt

17.3 KB

4. Evaluating and Predicting.mp4

104.1 MB

4. Evaluating and Predicting.srt

10.8 KB

5. ANN with NeuralNets Package.mp4

88.5 MB

5. ANN with NeuralNets Package.srt

9.0 KB

6. Building Regression Model with Functional API.mp4

137.5 MB

6. Building Regression Model with Functional API.srt

14.5 KB

7. Complex Architectures using Functional API.mp4

83.4 MB

7. Complex Architectures using Functional API.srt

9.4 KB

8. Saving - Restoring Models and Using Callbacks.mp4

226.5 MB

8. Saving - Restoring Models and Using Callbacks.srt

22.8 KB

/27. CNN - Basics/

1. CNN Introduction.mp4

59.5 MB

1. CNN Introduction.srt

8.5 KB

2. Stride.mp4

17.4 MB

2. Stride.srt

3.2 KB

3. Padding.mp4

33.2 MB

3. Padding.srt

5.2 KB

4. Filters and Feature maps.mp4

55.3 MB

4. Filters and Feature maps.srt

8.1 KB

5. Channels.mp4

71.1 MB

5. Channels.srt

6.6 KB

6. PoolingLayer.mp4

49.1 MB

6. PoolingLayer.srt

6.3 KB

/28. Creating CNN model in Python/

1. CNN model in Python - Preprocessing.mp4

42.6 MB

1. CNN model in Python - Preprocessing.srt

6.0 KB

2. CNN model in Python - structure and Compile.mp4

45.4 MB

2. CNN model in Python - structure and Compile.srt

7.7 KB

3. CNN model in Python - Training and results.mp4

57.8 MB

3. CNN model in Python - Training and results.srt

6.7 KB

4. Comparison - Pooling vs Without Pooling in Python.mp4

60.8 MB

4. Comparison - Pooling vs Without Pooling in Python.srt

5.9 KB

/29. Creating CNN model in R/

1. CNN on MNIST Fashion Dataset - Model Architecture.mp4

7.7 MB

1. CNN on MNIST Fashion Dataset - Model Architecture.srt

2.5 KB

2. Data Preprocessing.mp4

70.3 MB

2. Data Preprocessing.srt

7.9 KB

3. Creating Model Architecture.mp4

75.1 MB

3. Creating Model Architecture.srt

6.7 KB

4. Compiling and training.mp4

33.8 MB

4. Compiling and training.srt

3.3 KB

5. Model Performance.mp4

71.4 MB

5. Model Performance.srt

7.0 KB

6. Comparison - Pooling vs Without Pooling in R.mp4

46.8 MB

6. Comparison - Pooling vs Without Pooling in R.srt

4.4 KB

/3. Setting up R Studio and R crash course/

1. Installing R and R studio.mp4

37.4 MB

1. Installing R and R studio.srt

7.5 KB

2. Basics of R and R studio.mp4

40.7 MB

2. Basics of R and R studio.srt

14.7 KB

3. Packages in R.mp4

87.0 MB

3. Packages in R.srt

14.9 KB

4. Inputting data part 1 Inbuilt datasets of R.mp4

42.7 MB

4. Inputting data part 1 Inbuilt datasets of R.srt

5.7 KB

5. Inputting data part 2 Manual data entry.mp4

26.8 MB

5. Inputting data part 2 Manual data entry.srt

3.8 KB

6. Inputting data part 3 Importing from CSV or Text files.mp4

63.0 MB

6. Inputting data part 3 Importing from CSV or Text files.srt

8.6 KB

7. Creating Barplots in R.mp4

101.4 MB

7. Creating Barplots in R.srt

18.8 KB

8. Creating Histograms in R.mp4

44.1 MB

8. Creating Histograms in R.srt

7.8 KB

/30. Project Creating CNN model from scratch in Python/

1. Project - Introduction.mp4

51.8 MB

1. Project - Introduction.srt

7.9 KB

2. Data for the project.html

0.2 KB

3. Project - Data Preprocessing in Python.mp4

75.3 MB

3. Project - Data Preprocessing in Python.srt

9.7 KB

4. Project - Training CNN model in Python.mp4

69.2 MB

4. Project - Training CNN model in Python.srt

9.6 KB

5. Project in Python - model results.mp4

22.0 MB

5. Project in Python - model results.srt

3.0 KB

/31. Project Creating CNN model from scratch/

1. Project in R - Data Preprocessing.mp4

92.0 MB

1. Project in R - Data Preprocessing.srt

12.8 KB

2. CNN Project in R - Structure and Compile.mp4

48.3 MB

2. CNN Project in R - Structure and Compile.srt

6.0 KB

3. Project in R - Training.mp4

25.8 MB

3. Project in R - Training.srt

3.3 KB

4. Project in R - Model Performance.mp4

24.3 MB

4. Project in R - Model Performance.srt

2.6 KB

5. Project in R - Data Augmentation.mp4

59.1 MB

5. Project in R - Data Augmentation.srt

8.4 KB

6. Project in R - Validation Performance.mp4

24.8 MB

6. Project in R - Validation Performance.srt

2.7 KB

/32. Project Data Augmentation for avoiding overfitting/

1. Project - Data Augmentation Preprocessing.mp4

43.4 MB

1. Project - Data Augmentation Preprocessing.srt

7.7 KB

2. Project - Data Augmentation Training and Results.mp4

55.6 MB

2. Project - Data Augmentation Training and Results.srt

7.2 KB

/33. Transfer Learning Basics/

1. ILSVRC.mp4

21.9 MB

1. ILSVRC.srt

4.8 KB

2. LeNET.mp4

7.3 MB

2. LeNET.srt

2.0 KB

3. VGG16NET.mp4

10.9 MB

3. VGG16NET.srt

2.1 KB

4. GoogLeNet.mp4

22.4 MB

4. GoogLeNet.srt

3.4 KB

5. Transfer Learning.mp4

31.4 MB

5. Transfer Learning.srt

5.8 KB

6. Project - Transfer Learning - VGG16.mp4

135.4 MB

6. Project - Transfer Learning - VGG16.srt

21.9 KB

/34. Transfer Learning in R/

1. Project - Transfer Learning - VGG16 (Implementation).mp4

106.5 MB

1. Project - Transfer Learning - VGG16 (Implementation).srt

15.2 KB

2. Project - Transfer Learning - VGG16 (Performance).mp4

67.2 MB

2. Project - Transfer Learning - VGG16 (Performance).srt

9.4 KB

/35. Time Series Analysis and Forecasting/

1. Introduction.mp4

19.6 MB

1. Introduction.srt

3.0 KB

2. Time Series Forecasting - Use cases.mp4

27.2 MB

2. Time Series Forecasting - Use cases.srt

2.7 KB

3. Forecasting model creation - Steps.mp4

10.6 MB

3. Forecasting model creation - Steps.srt

3.1 KB

4. Forecasting model creation - Steps 1 (Goal).mp4

36.2 MB

4. Forecasting model creation - Steps 1 (Goal).srt

6.8 KB

5. Time Series - Basic Notations.mp4

65.5 MB

5. Time Series - Basic Notations.srt

10.1 KB

/36. Time Series - Preprocessing in Python/

1. Data Loading in Python.mp4

114.1 MB

1. Data Loading in Python.srt

19.0 KB

10. Exponential Smoothing.mp4

8.8 MB

10. Exponential Smoothing.srt

2.2 KB

2. Time Series - Visualization Basics.mp4

66.8 MB

2. Time Series - Visualization Basics.srt

10.8 KB

3. Time Series - Visualization in Python.mp4

173.2 MB

3. Time Series - Visualization in Python.srt

31.1 KB

4. Time Series - Feature Engineering Basics.mp4

62.4 MB

4. Time Series - Feature Engineering Basics.srt

12.5 KB

5. Time Series - Feature Engineering in Python.mp4

118.2 MB

5. Time Series - Feature Engineering in Python.srt

20.7 KB

6. Time Series - Upsampling and Downsampling.mp4

17.8 MB

6. Time Series - Upsampling and Downsampling.srt

4.6 KB

7. Time Series - Upsampling and Downsampling in Python.mp4

105.6 MB

7. Time Series - Upsampling and Downsampling in Python.srt

18.7 KB

8. Time Series - Power Transformation.mp4

15.6 MB

8. Time Series - Power Transformation.srt

2.8 KB

9. Moving Average.mp4

40.6 MB

9. Moving Average.srt

8.3 KB

/37. Time Series - Important Concepts/

1. White Noise.mp4

11.9 MB

1. White Noise.srt

2.7 KB

2. Random Walk.mp4

22.2 MB

2. Random Walk.srt

4.9 KB

3. Decomposing Time Series in Python.mp4

62.7 MB

3. Decomposing Time Series in Python.srt

10.9 KB

4. Differencing.mp4

33.9 MB

4. Differencing.srt

7.0 KB

5. Differencing in Python.mp4

118.5 MB

5. Differencing in Python.srt

16.6 KB

/38. Time Series - Implementation in Python/

1. Test Train Split in Python.mp4

60.2 MB

1. Test Train Split in Python.srt

12.6 KB

2. Naive (Persistence) model in Python.mp4

45.5 MB

2. Naive (Persistence) model in Python.srt

8.5 KB

3. Auto Regression Model - Basics.mp4

17.7 MB

3. Auto Regression Model - Basics.srt

3.8 KB

4. Auto Regression Model creation in Python.mp4

56.1 MB

4. Auto Regression Model creation in Python.srt

10.7 KB

5. Auto Regression with Walk Forward validation in Python.mp4

52.0 MB

5. Auto Regression with Walk Forward validation in Python.srt

9.2 KB

6. Moving Average model -Basics.mp4

25.3 MB

6. Moving Average model -Basics.srt

5.3 KB

7. Moving Average model in Python.mp4

59.4 MB

7. Moving Average model in Python.srt

10.0 KB

/39. Time Series - ARIMA model/

1. ACF and PACF.mp4

43.2 MB

1. ACF and PACF.srt

9.1 KB

2. ARIMA model - Basics.mp4

22.4 MB

2. ARIMA model - Basics.srt

5.4 KB

3. ARIMA model in Python.mp4

78.0 MB

3. ARIMA model in Python.srt

15.0 KB

4. ARIMA model with Walk Forward Validation in Python.mp4

33.7 MB

4. ARIMA model with Walk Forward Validation in Python.srt

6.5 KB

/4. Basics of Statistics/

1. Types of Data.mp4

22.8 MB

1. Types of Data.srt

5.3 KB

2. Types of Statistics.mp4

11.5 MB

2. Types of Statistics.srt

3.4 KB

3. Describing data Graphically.mp4

68.6 MB

3. Describing data Graphically.srt

13.5 KB

4. Measures of Centers.mp4

40.4 MB

4. Measures of Centers.srt

8.3 KB

5. Measures of Dispersion.mp4

24.0 MB

5. Measures of Dispersion.srt

5.4 KB

/40. Time Series - SARIMA model/

1. SARIMA model.mp4

40.9 MB

1. SARIMA model.srt

8.4 KB

2. SARIMA model in Python.mp4

69.4 MB

2. SARIMA model in Python.srt

12.4 KB

3. Stationary time Series.mp4

5.9 MB

3. Stationary time Series.srt

1.8 KB

4. The final milestone!.mp4

12.4 MB

4. The final milestone!.srt

1.8 KB

/41. Congratulations & About your certificate/

1. Bonus Lecture.html

2.4 KB

/5. Introduction to Machine Learning/

1. Introduction to Machine Learning.mp4

114.5 MB

1. Introduction to Machine Learning.srt

19.8 KB

2. Building a Machine Learning Model.mp4

41.4 MB

2. Building a Machine Learning Model.srt

10.5 KB

/6. Data Preprocessing/

1. Gathering Business Knowledge.mp4

15.2 MB

1. Gathering Business Knowledge.srt

3.9 KB

10. Outlier Treatment in Python.mp4

73.7 MB

10. Outlier Treatment in Python.srt

14.8 KB

11. Outlier Treatment in R.mp4

32.2 MB

11. Outlier Treatment in R.srt

5.0 KB

12. Missing Value Imputation.mp4

24.3 MB

12. Missing Value Imputation.srt

4.3 KB

13. Missing Value Imputation in Python.mp4

24.6 MB

13. Missing Value Imputation in Python.srt

4.8 KB

14. Missing Value imputation in R.mp4

27.3 MB

14. Missing Value imputation in R.srt

4.2 KB

15. Seasonality in Data.mp4

17.9 MB

15. Seasonality in Data.srt

4.2 KB

16. Bi-variate analysis and Variable transformation.mp4

105.3 MB

16. Bi-variate analysis and Variable transformation.srt

20.7 KB

17. Variable transformation and deletion in Python.mp4

46.3 MB

17. Variable transformation and deletion in Python.srt

9.5 KB

18. Variable transformation in R.mp4

58.1 MB

18. Variable transformation in R.srt

10.4 KB

19. Non-usable variables.mp4

21.2 MB

19. Non-usable variables.srt

6.4 KB

2. Data Exploration.mp4

21.1 MB

2. Data Exploration.srt

3.9 KB

20. Dummy variable creation Handling qualitative data.mp4

38.6 MB

20. Dummy variable creation Handling qualitative data.srt

5.7 KB

21. Dummy variable creation in Python.mp4

27.8 MB

21. Dummy variable creation in Python.srt

6.6 KB

22. Dummy variable creation in R.mp4

46.1 MB

22. Dummy variable creation in R.srt

6.5 KB

23. Correlation Analysis.mp4

75.1 MB

23. Correlation Analysis.srt

12.1 KB

24. Correlation Analysis in Python.mp4

58.0 MB

24. Correlation Analysis in Python.srt

7.4 KB

25. Correlation Matrix in R.mp4

87.2 MB

25. Correlation Matrix in R.srt

10.2 KB

26. Quiz.html

0.2 KB

3. The Dataset and the Data Dictionary.mp4

72.6 MB

3. The Dataset and the Data Dictionary.srt

8.7 KB

4. Importing Data in Python.mp4

29.2 MB

4. Importing Data in Python.srt

6.8 KB

5. Importing the dataset into R.mp4

13.7 MB

5. Importing the dataset into R.srt

2.9 KB

6. Univariate analysis and EDD.mp4

25.4 MB

6. Univariate analysis and EDD.srt

3.8 KB

7. EDD in Python.mp4

64.8 MB

7. EDD in Python.srt

12.1 KB

8. EDD in R.mp4

101.7 MB

8. EDD in R.srt

14.1 KB

9. Outlier Treatment.mp4

28.6 MB

9. Outlier Treatment.srt

5.0 KB

/7. Linear Regression/

1. The Problem Statement.mp4

9.8 MB

1. The Problem Statement.srt

1.9 KB

10. Multiple Linear Regression in Python.mp4

73.1 MB

10. Multiple Linear Regression in Python.srt

14.8 KB

11. Multiple Linear Regression in R.mp4

65.4 MB

11. Multiple Linear Regression in R.srt

9.8 KB

12. Test-train split.mp4

43.9 MB

12. Test-train split.srt

12.9 KB

13. Bias Variance trade-off.mp4

26.3 MB

13. Bias Variance trade-off.srt

8.4 KB

14. Test train split in Python.mp4

47.1 MB

14. Test train split in Python.srt

9.0 KB

15. Test-Train Split in R.mp4

79.3 MB

15. Test-Train Split in R.srt

9.8 KB

16. Regression models other than OLS.mp4

17.4 MB

16. Regression models other than OLS.srt

5.4 KB

17. Subset selection techniques.mp4

82.9 MB

17. Subset selection techniques.srt

15.6 KB

18. Subset selection in R.mp4

66.6 MB

18. Subset selection in R.srt

8.6 KB

19. Shrinkage methods Ridge and Lasso.mp4

35.0 MB

19. Shrinkage methods Ridge and Lasso.srt

9.6 KB

2. Basic Equations and Ordinary Least Squares (OLS) method.mp4

45.5 MB

2. Basic Equations and Ordinary Least Squares (OLS) method.srt

13.0 KB

20. Ridge regression and Lasso in Python.mp4

135.1 MB

20. Ridge regression and Lasso in Python.srt

22.0 KB

21. Ridge regression and Lasso in R.mp4

108.5 MB

21. Ridge regression and Lasso in R.srt

13.3 KB

22. Heteroscedasticity.mp4

15.2 MB

22. Heteroscedasticity.srt

3.2 KB

3. Assessing accuracy of predicted coefficients.mp4

96.6 MB

3. Assessing accuracy of predicted coefficients.srt

20.4 KB

4. Assessing Model Accuracy RSE and R squared.mp4

45.7 MB

4. Assessing Model Accuracy RSE and R squared.srt

10.0 KB

5. Simple Linear Regression in Python.mp4

66.5 MB

5. Simple Linear Regression in Python.srt

13.7 KB

6. Simple Linear Regression in R.mp4

42.8 MB

6. Simple Linear Regression in R.srt

9.8 KB

7. Multiple Linear Regression.mp4

36.0 MB

7. Multiple Linear Regression.srt

7.6 KB

8. The F - statistic.mp4

58.7 MB

8. The F - statistic.srt

11.7 KB

9. Interpreting results of Categorical variables.mp4

23.6 MB

9. Interpreting results of Categorical variables.srt

7.1 KB

/8. Introduction to the classification Models/

1. Three classification models and Data set.mp4

54.8 MB

1. Three classification models and Data set.srt

7.1 KB

1.1 Classification preprocessed data Python.csv

42.0 KB

1.2 Classification preprocessed data R.csv

42.0 KB

2. Importing the data into Python.mp4

7.2 MB

2. Importing the data into Python.srt

1.7 KB

2.1 Classification preprocessed data Python.csv

42.0 KB

3. Importing the data into R.mp4

9.2 MB

3. Importing the data into R.srt

1.5 KB

3.1 Classification preprocessed data R.csv

42.0 KB

4. The problem statements.mp4

17.9 MB

4. The problem statements.srt

1.9 KB

5. Why can't we use Linear Regression.mp4

17.8 MB

5. Why can't we use Linear Regression.srt

5.8 KB

/9. Logistic Regression/

1. Logistic Regression.mp4

34.5 MB

1. Logistic Regression.srt

9.1 KB

10. Evaluating performance of model.mp4

36.9 MB

10. Evaluating performance of model.srt

9.9 KB

11. Evaluating model performance in Python.mp4

9.4 MB

11. Evaluating model performance in Python.srt

2.7 KB

12. Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4

58.4 MB

12. Predicting probabilities, assigning classes and making Confusion Matrix in R.srt

7.8 KB

2. Training a Simple Logistic Model in Python.mp4

50.2 MB

2. Training a Simple Logistic Model in Python.srt

11.0 KB

3. Training a Simple Logistic model in R.mp4

26.8 MB

3. Training a Simple Logistic model in R.srt

4.4 KB

4. Result of Simple Logistic Regression.mp4

28.2 MB

4. Result of Simple Logistic Regression.srt

6.2 KB

5. Logistic with multiple predictors.mp4

9.0 MB

5. Logistic with multiple predictors.srt

3.2 KB

6. Training multiple predictor Logistic model in Python.mp4

27.5 MB

6. Training multiple predictor Logistic model in Python.srt

6.4 KB

7. Training multiple predictor Logistic model in R.mp4

16.5 MB

7. Training multiple predictor Logistic model in R.srt

2.1 KB

8. Confusion Matrix.mp4

22.1 MB

8. Confusion Matrix.srt

5.3 KB

9. Creating Confusion Matrix in Python.mp4

53.7 MB

9. Creating Confusion Matrix in Python.srt

11.4 KB

/

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

 

Total files 539


Copyright © 2025 FileMood.com