FileMood

Download [GigaCourse.Com] Udemy - Machine Learning in Python with 5 Machine Learning Projects

GigaCourse Com Udemy Machine Learning in Python with Machine Learning Projects

Name

[GigaCourse.Com] Udemy - Machine Learning in Python with 5 Machine Learning Projects

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

22.4 GB

Total Files

829

Last Seen

2025-05-12 00:05

Hash

98F5357292CB5751E089A270D7C1E4570D0CF166

/0. Websites you may like/

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/1. Python Fundamentals/

1. Why should you learn Python.mp4

68.9 MB

1. Why should you learn Python.srt

3.4 KB

10. Identity and Membership Operators.mp4

41.1 MB

10. Identity and Membership Operators.srt

2.9 KB

11. Quiz on Operators.html

0.1 KB

12. Quiz Solution.mp4

35.9 MB

12. Quiz Solution.srt

4.1 KB

13. String Formatting.mp4

53.8 MB

13. String Formatting.srt

4.9 KB

14. String Methods.mp4

45.4 MB

14. String Methods.srt

6.1 KB

15. User Input.mp4

43.0 MB

15. User Input.srt

2.9 KB

16. Quiz on Strings.html

0.1 KB

17. Quiz Solution.mp4

55.7 MB

17. Quiz Solution.srt

4.5 KB

18. If, elif, and else.mp4

69.1 MB

18. If, elif, and else.srt

3.8 KB

19. For and While.mp4

55.6 MB

19. For and While.srt

5.4 KB

2. Installing Python and Jupyter Notebook.mp4

35.1 MB

2. Installing Python and Jupyter Notebook.srt

2.5 KB

20. Break and Continue.mp4

42.7 MB

20. Break and Continue.srt

2.9 KB

21. Quiz on Loops and Conditionals.html

0.1 KB

22. Quiz Solution.mp4

51.4 MB

22. Quiz Solution.srt

4.4 KB

3. Naming Convention for Variables.mp4

107.2 MB

3. Naming Convention for Variables.srt

6.2 KB

4. Built in Data Types and Type Casting.mp4

125.7 MB

4. Built in Data Types and Type Casting.srt

6.7 KB

5. Scope of Variables.mp4

80.9 MB

5. Scope of Variables.srt

4.2 KB

6. Quiz on Variables and Data Types.html

0.1 KB

7. Quiz Solution.mp4

48.8 MB

7. Quiz Solution.srt

5.4 KB

8. Arithmetic and Assignment Operators.mp4

81.8 MB

8. Arithmetic and Assignment Operators.srt

8.2 KB

9. Comparison, Logical, and Bitwise Operators.mp4

65.4 MB

9. Comparison, Logical, and Bitwise Operators.srt

7.6 KB

/10. Logistic Regression/

1. Introduction to Logistic Regression.mp4

111.6 MB

1. Introduction to Logistic Regression.srt

7.0 KB

10. Industry Relevance of Logistic Regression.mp4

62.8 MB

10. Industry Relevance of Logistic Regression.srt

3.4 KB

11. Quiz on Modelling with Logistic Regression.html

0.1 KB

2. Implementing Logistic Regression using Sklearn.mp4

91.2 MB

2. Implementing Logistic Regression using Sklearn.srt

9.4 KB

3. Feature Selection using RFECV.mp4

44.2 MB

3. Feature Selection using RFECV.srt

3.1 KB

4. Hyperparameter tuning using Grid search.mp4

61.6 MB

4. Hyperparameter tuning using Grid search.srt

5.1 KB

5. Applying Cross Validation.mp4

59.5 MB

5. Applying Cross Validation.srt

3.9 KB

6. How to analyze performance of a classification model.mp4

153.3 MB

6. How to analyze performance of a classification model.srt

8.9 KB

7. Using accuracy score to analyze the performance of model.mp4

58.2 MB

7. Using accuracy score to analyze the performance of model.srt

4.8 KB

8. Using ROC-AUC score to analyze the performance of model.mp4

154.8 MB

8. Using ROC-AUC score to analyze the performance of model.srt

9.7 KB

9. Real time prediction using logistic regression.mp4

78.3 MB

9. Real time prediction using logistic regression.srt

7.2 KB

/11. Introduction to KNN, SVM, Naive Bayes/

1. Introduction to Support Vector machines.mp4

113.4 MB

1. Introduction to Support Vector machines.srt

5.9 KB

2. The kermel trick for support vector machine.mp4

73.8 MB

2. The kermel trick for support vector machine.srt

3.9 KB

3. Implementing support vector machine using sklearn.mp4

70.7 MB

3. Implementing support vector machine using sklearn.srt

7.6 KB

4. Introduction to K nearest neighbors.mp4

109.4 MB

4. Introduction to K nearest neighbors.srt

5.5 KB

5. Implementing KNN using Sklearn.mp4

34.8 MB

5. Implementing KNN using Sklearn.srt

2.1 KB

6. Introduction to Naive Bayes.mp4

183.2 MB

6. Introduction to Naive Bayes.srt

10.7 KB

7. Implementing Naive Bayes using sklearn.mp4

65.0 MB

7. Implementing Naive Bayes using sklearn.srt

3.5 KB

8. When should we apply SVM, KNN and Naive bayes.mp4

73.2 MB

8. When should we apply SVM, KNN and Naive bayes.srt

4.1 KB

9. Quiz on Other classification models.html

0.1 KB

/12. Tree Based Models/

1. Intuition for decision trees.mp4

86.0 MB

1. Intuition for decision trees.srt

4.7 KB

2. Attribute selection method- Gini Index and Entropy.mp4

229.3 MB

2. Attribute selection method- Gini Index and Entropy.srt

13.6 KB

3. Advantages and Issues with Decision trees.mp4

56.0 MB

3. Advantages and Issues with Decision trees.srt

3.0 KB

4. Implementing Decision tree using Sklearn.mp4

37.5 MB

4. Implementing Decision tree using Sklearn.srt

3.7 KB

5. Understanding the concept of Bagging.mp4

69.2 MB

5. Understanding the concept of Bagging.srt

3.7 KB

6. Introduction to Random forest.mp4

71.4 MB

6. Introduction to Random forest.srt

4.1 KB

7. Understanding the parameters of Random forest.mp4

56.3 MB

7. Understanding the parameters of Random forest.srt

4.4 KB

8. Implementing random forest using Sklearn.mp4

50.2 MB

8. Implementing random forest using Sklearn.srt

4.5 KB

9. Quiz on Tree based models.html

0.1 KB

/13. Boosting Models/

1. Understading the concept of boosting.mp4

59.9 MB

1. Understading the concept of boosting.srt

3.1 KB

2. Intuition for Adaboost and Gradient Boosting.mp4

160.7 MB

2. Intuition for Adaboost and Gradient Boosting.srt

8.9 KB

3. Implementing AdaBoost using sklearn.mp4

95.2 MB

3. Implementing AdaBoost using sklearn.srt

9.6 KB

4. Implementing Gradient Boosting using sklearn.mp4

70.2 MB

4. Implementing Gradient Boosting using sklearn.srt

4.9 KB

5. Getting High level intuition for XGBoost.mp4

43.1 MB

5. Getting High level intuition for XGBoost.srt

2.1 KB

6. Implementing XGBoost using sklearn.mp4

68.3 MB

6. Implementing XGBoost using sklearn.srt

4.8 KB

7. Introudction to Ensembling techniques.mp4

140.5 MB

7. Introudction to Ensembling techniques.srt

8.0 KB

8. Quiz on Boosting Models.html

0.1 KB

/14. Imbalanced Machine Learning/

1. Why Imbalanced Data needs extra attention.mp4

56.2 MB

1. Why Imbalanced Data needs extra attention.srt

3.3 KB

10. Implementing Synthetic Sampling using Imblearn.mp4

60.2 MB

10. Implementing Synthetic Sampling using Imblearn.srt

4.1 KB

11. Implementing Neighbors based Sampling using Imblearn.mp4

67.1 MB

11. Implementing Neighbors based Sampling using Imblearn.srt

4.7 KB

12. Combination of Oversampling and Under sampling.mp4

58.5 MB

12. Combination of Oversampling and Under sampling.srt

3.7 KB

13. Implementing Ensemble Models for Imbalanced Data.mp4

57.5 MB

13. Implementing Ensemble Models for Imbalanced Data.srt

3.8 KB

14. Introduction to XG Boost for Imbalanced Data.mp4

45.7 MB

14. Introduction to XG Boost for Imbalanced Data.srt

3.6 KB

15. Comparing the Results.mp4

43.5 MB

15. Comparing the Results.srt

2.2 KB

16. Quiz on Handling Imbalanced Datasets.html

0.1 KB

2. Using Resampling Techniques to Balance the Data.mp4

74.0 MB

2. Using Resampling Techniques to Balance the Data.srt

4.4 KB

3. Solving a Real World Problem.mp4

59.7 MB

3. Solving a Real World Problem.srt

4.3 KB

4. Preparing the Data for Predictive Modelling.mp4

60.7 MB

4. Preparing the Data for Predictive Modelling.srt

4.9 KB

5. Applying Logistic Regression using Sklearn.mp4

74.6 MB

5. Applying Logistic Regression using Sklearn.srt

5.2 KB

6. Applying Random Forest using Sklearn.mp4

44.7 MB

6. Applying Random Forest using Sklearn.srt

3.2 KB

7. Quiz on Introduction to Imbalanced Machine Learning.html

0.1 KB

8. Implementing Random Over Sampling using Imblearn.mp4

57.1 MB

8. Implementing Random Over Sampling using Imblearn.srt

4.3 KB

9. Implementing Random Under Sampling using Imblearn.mp4

60.3 MB

9. Implementing Random Under Sampling using Imblearn.srt

4.1 KB

/15. Introduction to Clustering Analysis/

1. Introduction to Clustering.mp4

60.6 MB

1. Introduction to Clustering.srt

3.2 KB

10. Clustering Multiple Dimensions.mp4

52.4 MB

10. Clustering Multiple Dimensions.srt

4.1 KB

11. Quiz on K Means Clustering.html

0.1 KB

12. Introduction to Hierarchal Clustering.mp4

92.8 MB

12. Introduction to Hierarchal Clustering.srt

4.9 KB

13. Introduction to Dendrograms.mp4

43.8 MB

13. Introduction to Dendrograms.srt

4.0 KB

14. Implementing Hierarchial Clustering.mp4

54.9 MB

14. Implementing Hierarchial Clustering.srt

3.7 KB

15. Introduction to DBSCAN Clustering.mp4

54.9 MB

15. Introduction to DBSCAN Clustering.srt

3.7 KB

16. Implementing DBSCAN Clustering.mp4

50.2 MB

16. Implementing DBSCAN Clustering.srt

3.7 KB

17. Quiz on Advanced Clustering Techniques.html

0.1 KB

2. Types of Clustering.mp4

68.4 MB

2. Types of Clustering.srt

4.0 KB

3. Applications of Clustering.mp4

58.7 MB

3. Applications of Clustering.srt

3.4 KB

4. Quiz on Introduction to Clustering.html

0.1 KB

5. Using the Elbow Method for Choosing the Best Value for K.mp4

70.3 MB

5. Using the Elbow Method for Choosing the Best Value for K.srt

3.7 KB

6. Introduction to K Means Clustering.mp4

51.7 MB

6. Introduction to K Means Clustering.srt

3.9 KB

7. Solving a Real World Problem.mp4

74.5 MB

7. Solving a Real World Problem.srt

5.1 KB

8. Implementing K Means on the Mall Dataset.mp4

75.0 MB

8. Implementing K Means on the Mall Dataset.srt

6.4 KB

9. Using Silhouette Score to analyze the clusters.mp4

101.0 MB

9. Using Silhouette Score to analyze the clusters.srt

7.1 KB

/16. Dimensionality Reduction/

1. Why High Dimensional Datasets are a Problem.mp4

83.1 MB

1. Why High Dimensional Datasets are a Problem.srt

4.4 KB

10. Quiz on Variance Filtering.html

0.1 KB

11. Introduction to Recursive Feature Selection.mp4

59.4 MB

11. Introduction to Recursive Feature Selection.srt

3.2 KB

12. Implementing Recursive Feature Selection.mp4

53.4 MB

12. Implementing Recursive Feature Selection.srt

4.3 KB

13. Introduction the Boruta Algorithm.mp4

55.0 MB

13. Introduction the Boruta Algorithm.srt

3.0 KB

14. Implementing the Boruta Algorithm.mp4

45.3 MB

14. Implementing the Boruta Algorithm.srt

4.6 KB

15. Quiz on Feature Selection.html

0.1 KB

16. Introduction to Principal Component Analysis.mp4

77.4 MB

16. Introduction to Principal Component Analysis.srt

4.2 KB

17. Implementing PCA.mp4

58.2 MB

17. Implementing PCA.srt

4.4 KB

18. Introduction to t-SNE.mp4

85.2 MB

18. Introduction to t-SNE.srt

4.6 KB

19. Implementing t-SNE.mp4

37.9 MB

19. Implementing t-SNE.srt

2.4 KB

2. Methods to solve the problem of High Dimensionality.mp4

59.9 MB

2. Methods to solve the problem of High Dimensionality.srt

3.4 KB

20. Introduction to Linear Discriminant Analysis.mp4

51.3 MB

20. Introduction to Linear Discriminant Analysis.srt

2.8 KB

21. Implementing LDA.mp4

38.5 MB

21. Implementing LDA.srt

2.8 KB

22. Difference between PCA, t-SNE, and LDA.mp4

67.9 MB

22. Difference between PCA, t-SNE, and LDA.srt

3.4 KB

23. Quiz on Machine Learning.html

0.1 KB

3. Solving a Real World Problem.mp4

103.6 MB

3. Solving a Real World Problem.srt

8.6 KB

4. Quiz on Introduction.html

0.1 KB

5. Introduction to Correlation using Heatmap.mp4

74.9 MB

5. Introduction to Correlation using Heatmap.srt

5.5 KB

6. Removing Highly Correlated Columns using Correlation.mp4

51.2 MB

6. Removing Highly Correlated Columns using Correlation.srt

4.1 KB

7. Quiz on Correlation Filtering.html

0.1 KB

8. Introduction to Variance Inflation Filtering.mp4

51.0 MB

8. Introduction to Variance Inflation Filtering.srt

2.4 KB

9. Implementing VIF using statsmodel.mp4

50.2 MB

9. Implementing VIF using statsmodel.srt

3.7 KB

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/17. Recommendation Engines/

1. Introduction to Recommender systems.mp4

42.5 MB

1. Introduction to Recommender systems.srt

2.2 KB

10. Quiz on Content Based Filtering.html

0.1 KB

11. Quiz Solution.mp4

50.9 MB

11. Quiz Solution.srt

4.5 KB

12. Introduction to Collaborative Filtering.mp4

84.8 MB

12. Introduction to Collaborative Filtering.srt

4.9 KB

13. Preprocessing the Data for Collaborative Filtering.mp4

75.9 MB

13. Preprocessing the Data for Collaborative Filtering.srt

5.8 KB

14. Implementation of User Based Collaborative Filtering.mp4

65.2 MB

14. Implementation of User Based Collaborative Filtering.srt

4.7 KB

15. Interpreting the Results obtained from User Based Filtering.mp4

66.7 MB

15. Interpreting the Results obtained from User Based Filtering.srt

5.7 KB

16. Implementation of Item Based Collaborative Filtering.mp4

66.6 MB

16. Implementation of Item Based Collaborative Filtering.srt

4.5 KB

17. Quiz on Collaborative Based Filtering.html

0.1 KB

18. Quiz Solution.mp4

58.3 MB

18. Quiz Solution.srt

4.7 KB

19. Introduction to SVD.mp4

117.5 MB

19. Introduction to SVD.srt

6.1 KB

2. What are it's Use Cases.mp4

47.2 MB

2. What are it's Use Cases.srt

2.5 KB

20. Implementing SVD using Surprise.mp4

42.6 MB

20. Implementing SVD using Surprise.srt

3.9 KB

21. Interpreting Results Obtained from SVD.mp4

48.2 MB

21. Interpreting Results Obtained from SVD.srt

5.5 KB

22. Comparing Content, and Collaborative Based Filtering.mp4

65.0 MB

22. Comparing Content, and Collaborative Based Filtering.srt

3.8 KB

23. Quiz on Singular Value Decomposition.html

0.1 KB

24. Quiz Solution.mp4

50.3 MB

24. Quiz Solution.srt

3.7 KB

25. Case Study for Netflix.mp4

59.1 MB

25. Case Study for Netflix.srt

3.0 KB

26. Case Study for Youtube.mp4

61.0 MB

26. Case Study for Youtube.srt

3.1 KB

3. Types of Recommender Systems.mp4

59.3 MB

3. Types of Recommender Systems.srt

3.5 KB

4. Evaluating Recommender Systems.mp4

55.7 MB

4. Evaluating Recommender Systems.srt

3.1 KB

5. Introduction to Content Based Filtering.mp4

61.9 MB

5. Introduction to Content Based Filtering.srt

3.7 KB

6. Preprocessing the Data for Content Based Filtering.mp4

80.4 MB

6. Preprocessing the Data for Content Based Filtering.srt

6.8 KB

7. Filtering Movies Based on Genres.mp4

61.6 MB

7. Filtering Movies Based on Genres.srt

6.0 KB

8. Introduction to Transactional Encoder.mp4

66.5 MB

8. Introduction to Transactional Encoder.srt

3.3 KB

9. Recommending Similar Movies to Watch.mp4

59.0 MB

9. Recommending Similar Movies to Watch.srt

4.1 KB

/18. Time Series Forecasting/

1. What is a Time Series Data.mp4

36.6 MB

1. What is a Time Series Data.srt

2.0 KB

10. Time Series Decomposition.mp4

94.3 MB

10. Time Series Decomposition.srt

7.8 KB

11. Splitting Time Series Data.mp4

66.6 MB

11. Splitting Time Series Data.srt

4.2 KB

12. Quiz on Time Series Analysis.html

0.1 KB

13. Basic Forecasting Techniques.mp4

58.2 MB

13. Basic Forecasting Techniques.srt

4.7 KB

14. Metrics for Time series Forecasting.mp4

82.5 MB

14. Metrics for Time series Forecasting.srt

4.9 KB

15. Simple Moving Averages.mp4

52.5 MB

15. Simple Moving Averages.srt

3.8 KB

16. Simple Exponential Smoothing.mp4

69.9 MB

16. Simple Exponential Smoothing.srt

4.1 KB

17. Holt and Holt Winter Exponential Smoothing.mp4

76.7 MB

17. Holt and Holt Winter Exponential Smoothing.srt

6.3 KB

18. Quiz on Smoothing Techniques.html

0.1 KB

19. Introduction to Auto Regressive Models.mp4

36.4 MB

19. Introduction to Auto Regressive Models.srt

2.0 KB

2. Types of Forecasting.mp4

47.5 MB

2. Types of Forecasting.srt

2.7 KB

20. Checking for Stationarity Part 1.mp4

68.2 MB

20. Checking for Stationarity Part 1.srt

3.4 KB

21. Checking for Stationarity using Statistical Methods Part 2.mp4

79.1 MB

21. Checking for Stationarity using Statistical Methods Part 2.srt

4.4 KB

22. Checking for Stationary Implementation.mp4

40.0 MB

22. Checking for Stationary Implementation.srt

3.2 KB

23. Converting Non-Stationary Series into Stationary.mp4

50.4 MB

23. Converting Non-Stationary Series into Stationary.srt

3.7 KB

24. Converting Non-Stationary Series into Stationary Implementation.mp4

50.5 MB

24. Converting Non-Stationary Series into Stationary Implementation.srt

4.0 KB

25. Auto Correlation and Partial Correlation.mp4

80.6 MB

25. Auto Correlation and Partial Correlation.srt

4.2 KB

26. Auto Correlation and Partial Correlation Implementation.mp4

40.3 MB

26. Auto Correlation and Partial Correlation Implementation.srt

3.7 KB

27. The Simple Auto Regressive Model.mp4

66.5 MB

27. The Simple Auto Regressive Model.srt

3.3 KB

28. The Simple Auto Regressive Model Implementation.mp4

68.1 MB

28. The Simple Auto Regressive Model Implementation.srt

6.7 KB

29. Moving Average Model.mp4

37.0 MB

29. Moving Average Model.srt

2.0 KB

3. Regression Vs Time Series.mp4

87.0 MB

3. Regression Vs Time Series.srt

4.6 KB

30. Moving Average Model Implementation.mp4

24.4 MB

30. Moving Average Model Implementation.srt

1.9 KB

31. Quiz on AR Models.html

0.1 KB

32. Understanding ARMA Model.mp4

59.5 MB

32. Understanding ARMA Model.srt

3.0 KB

33. Implementing ARMA Model.mp4

50.6 MB

33. Implementing ARMA Model.srt

3.2 KB

34. Understanding ARIMA Model.mp4

58.6 MB

34. Understanding ARIMA Model.srt

3.1 KB

35. Implementing ARIMA Model.mp4

34.8 MB

35. Implementing ARIMA Model.srt

2.3 KB

36. Understanding SARIMA Model.mp4

73.3 MB

36. Understanding SARIMA Model.srt

3.9 KB

37. Implementing SARIMA Model.mp4

40.0 MB

37. Implementing SARIMA Model.srt

2.7 KB

38. Quiz on Advanced AR Models.html

0.1 KB

39. Understanding ARIMAX Model.mp4

69.7 MB

39. Understanding ARIMAX Model.srt

3.6 KB

4. Applications of Time Series.mp4

49.6 MB

4. Applications of Time Series.srt

2.6 KB

40. Implementing ARIMAX Model.mp4

46.9 MB

40. Implementing ARIMAX Model.srt

3.4 KB

41. Understanding SARIMAX Model.mp4

46.0 MB

41. Understanding SARIMAX Model.srt

2.3 KB

42. Implementing SARIMAX Model.mp4

62.9 MB

42. Implementing SARIMAX Model.srt

3.6 KB

43. Quiz on ARIMAX and SARIMAX Models.html

0.1 KB

44. How to Choose the Right Model.mp4

36.9 MB

44. How to Choose the Right Model.srt

1.8 KB

45. Choosing the Right for Model Smaller Datasets.mp4

54.8 MB

45. Choosing the Right for Model Smaller Datasets.srt

3.0 KB

46. Choosing the Right Model for Larger Datasets.mp4

38.1 MB

46. Choosing the Right Model for Larger Datasets.srt

1.9 KB

47. Best Practices while Choosing a Time series Model..mp4

45.1 MB

47. Best Practices while Choosing a Time series Model..srt

2.5 KB

48. Quiz on Choosing the Right Model.html

0.1 KB

49. Why do we Evaluate Performance.mp4

33.3 MB

49. Why do we Evaluate Performance.srt

1.8 KB

5. Components of Time Series.mp4

54.5 MB

5. Components of Time Series.srt

3.0 KB

50. Mean Forecast Error.mp4

55.5 MB

50. Mean Forecast Error.srt

3.8 KB

51. Mean Absolute Error.mp4

37.3 MB

51. Mean Absolute Error.srt

2.5 KB

52. Mean Absolute Percentage Error.mp4

31.2 MB

52. Mean Absolute Percentage Error.srt

2.0 KB

53. Root Mean Squared Error.mp4

30.8 MB

53. Root Mean Squared Error.srt

2.0 KB

54. Quiz on Why do we Evaluate Performance.html

0.1 KB

6. Quiz on Introduction to Time Series.html

0.1 KB

7. Getting Time Series data.mp4

74.5 MB

7. Getting Time Series data.srt

6.6 KB

8. Handling Missing Values.mp4

122.1 MB

8. Handling Missing Values.srt

9.6 KB

9. Handling Outlier Values.mp4

67.6 MB

9. Handling Outlier Values.srt

4.6 KB

/19. Employee Promotion Prediction/

1. Setting up the Environment.mp4

43.7 MB

1. Setting up the Environment.srt

3.7 KB

10. Feature Engineering.mp4

52.9 MB

10. Feature Engineering.srt

3.4 KB

11. Categorical Encoding.mp4

39.3 MB

11. Categorical Encoding.srt

3.4 KB

12. Data Processing.mp4

70.9 MB

12. Data Processing.srt

5.1 KB

13. Feature Scaling.mp4

44.3 MB

13. Feature Scaling.srt

2.5 KB

14. Predictive Modelling.mp4

46.8 MB

14. Predictive Modelling.srt

3.1 KB

15. Performance Analysis.mp4

80.9 MB

15. Performance Analysis.srt

5.2 KB

16. Improvements Possible.mp4

43.9 MB

16. Improvements Possible.srt

2.5 KB

17. Major Takeaways from the Project.mp4

30.4 MB

17. Major Takeaways from the Project.srt

1.6 KB

18. Quiz on Employee Promotion Prediction.html

0.1 KB

2. Understanding the Dataset.mp4

100.5 MB

2. Understanding the Dataset.srt

6.5 KB

3. Understanding the Problem Statement.mp4

62.7 MB

3. Understanding the Problem Statement.srt

3.5 KB

4. Performing Descriptive Statistics.mp4

64.7 MB

4. Performing Descriptive Statistics.srt

4.5 KB

5. Missing Values Treatment.mp4

40.5 MB

5. Missing Values Treatment.srt

2.7 KB

6. Outlier Values Treatment.mp4

44.6 MB

6. Outlier Values Treatment.srt

4.0 KB

7. Univariate Analysis.mp4

55.7 MB

7. Univariate Analysis.srt

5.0 KB

8. Bivariate Analysis.mp4

39.0 MB

8. Bivariate Analysis.srt

3.3 KB

9. Multivariate Analysis.mp4

41.9 MB

9. Multivariate Analysis.srt

2.7 KB

/2. Python for Data Analysis/

1. Differences between Lists and Tuples.mp4

51.0 MB

1. Differences between Lists and Tuples.srt

3.5 KB

10. Quiz on Sets and Dictionaries.html

0.1 KB

11. Quiz Solution.mp4

40.1 MB

11. Quiz Solution.srt

5.3 KB

12. Introduction to Stacks and Queues.mp4

51.1 MB

12. Introduction to Stacks and Queues.srt

2.3 KB

13. Implementing Stacks and Queues using Lists.mp4

38.3 MB

13. Implementing Stacks and Queues using Lists.srt

2.8 KB

14. Implementing Stacks and Queues using Deque.mp4

43.6 MB

14. Implementing Stacks and Queues using Deque.srt

2.7 KB

15. Quiz on Stacks and Queues.html

0.1 KB

16. Quiz Solution.mp4

41.4 MB

16. Quiz Solution.srt

3.9 KB

17. Time Complexity.mp4

126.0 MB

17. Time Complexity.srt

6.4 KB

18. Linear Search.mp4

100.2 MB

18. Linear Search.srt

4.7 KB

19. Binary Search.mp4

114.9 MB

19. Binary Search.srt

5.7 KB

2. Operations on Lists.mp4

46.6 MB

2. Operations on Lists.srt

4.4 KB

20. Bubble Sort.mp4

79.2 MB

20. Bubble Sort.srt

4.0 KB

21. Insertion and Selection Sort.mp4

125.8 MB

21. Insertion and Selection Sort.srt

7.4 KB

22. Merge Sort.mp4

121.0 MB

22. Merge Sort.srt

6.4 KB

23. Quiz on Searching, Sorting, and Time Complexity.html

0.1 KB

24. Quiz Solution.mp4

76.8 MB

24. Quiz Solution.srt

7.7 KB

3. Operations on Tuples.mp4

28.8 MB

3. Operations on Tuples.srt

2.3 KB

4. Quiz on Lists and Tuples.html

0.1 KB

5. Quiz Solution.mp4

38.9 MB

5. Quiz Solution.srt

3.7 KB

6. Introduction to Dictionaries.mp4

70.1 MB

6. Introduction to Dictionaries.srt

4.7 KB

7. Nested Dictionaries.mp4

63.5 MB

7. Nested Dictionaries.srt

4.2 KB

8. Introduction to Sets.mp4

79.2 MB

8. Introduction to Sets.srt

4.6 KB

9. Set Operations.mp4

61.4 MB

9. Set Operations.srt

4.8 KB

/20. Predicting Health Expense of Customers/

1. Setting up the Environment.mp4

52.6 MB

1. Setting up the Environment.srt

3.7 KB

10. Applying Gradient Boosting Model.mp4

73.8 MB

10. Applying Gradient Boosting Model.srt

4.8 KB

11. Creating Ensembles of Models.mp4

59.8 MB

11. Creating Ensembles of Models.srt

4.6 KB

12. Comparing Performance of these Models.mp4

38.3 MB

12. Comparing Performance of these Models.srt

3.0 KB

13. More things to Try.mp4

51.1 MB

13. More things to Try.srt

2.8 KB

14. Major Takeaways from the Project.mp4

60.4 MB

14. Major Takeaways from the Project.srt

3.3 KB

15. Quiz on Predicting Health Expense of Customers.html

0.1 KB

2. Understanding the Dataset.mp4

109.1 MB

2. Understanding the Dataset.srt

6.8 KB

3. Understanding the Problem Statement.mp4

64.8 MB

3. Understanding the Problem Statement.srt

3.5 KB

4. Performing Univariate Analysis.mp4

94.1 MB

4. Performing Univariate Analysis.srt

6.8 KB

5. Performing Bivariate Analysis.mp4

74.9 MB

5. Performing Bivariate Analysis.srt

5.6 KB

6. Performing Multivariate Analysis.mp4

90.1 MB

6. Performing Multivariate Analysis.srt

7.1 KB

7. Preparing the data for Modelling.mp4

95.3 MB

7. Preparing the data for Modelling.srt

7.2 KB

8. Applying Linear Regression Model.mp4

134.3 MB

8. Applying Linear Regression Model.srt

8.3 KB

9. Applying Random Forest Model.mp4

57.0 MB

9. Applying Random Forest Model.srt

4.6 KB

/21. Determining Whether a Person should be Granted Loan/

1. Understanding the Problem Statement.mp4

47.7 MB

1. Understanding the Problem Statement.srt

3.5 KB

10. Applying Logistic Regression.mp4

54.9 MB

10. Applying Logistic Regression.srt

3.4 KB

11. Applying Gradient Boosting.mp4

40.5 MB

11. Applying Gradient Boosting.srt

3.0 KB

12. Summary.mp4

46.3 MB

12. Summary.srt

2.5 KB

13. Quiz on Determining Whether a Person should be Granted Loan.html

0.1 KB

2. Setting up the Environment.mp4

71.9 MB

2. Setting up the Environment.srt

4.9 KB

3. Understanding the Dataset.mp4

43.1 MB

3. Understanding the Dataset.srt

2.3 KB

4. Performing Descriptive Statistics.mp4

79.0 MB

4. Performing Descriptive Statistics.srt

6.2 KB

5. Data Cleaning.mp4

70.2 MB

5. Data Cleaning.srt

5.0 KB

6. Univariate Data Visualizations.mp4

68.3 MB

6. Univariate Data Visualizations.srt

4.4 KB

7. Bivariate Data Analysis.mp4

73.6 MB

7. Bivariate Data Analysis.srt

4.9 KB

8. Preparing the Data for Modelling.mp4

44.9 MB

8. Preparing the Data for Modelling.srt

3.1 KB

9. Applying Resampling.mp4

59.7 MB

9. Applying Resampling.srt

3.6 KB

/22. Optimizing Agricultural Production/

1. Setting up the Environment.mp4

48.7 MB

1. Setting up the Environment.srt

3.2 KB

10. Summarizing the Key-Points.mp4

42.4 MB

10. Summarizing the Key-Points.srt

2.3 KB

11. Quiz on Optimizing Agricultural Production.html

0.1 KB

2. Understanding the Dataset.mp4

57.9 MB

2. Understanding the Dataset.srt

3.3 KB

3. Understanding the Problem Statement.mp4

37.1 MB

3. Understanding the Problem Statement.srt

1.9 KB

4. Performing Descriptive Statistics.mp4

77.1 MB

4. Performing Descriptive Statistics.srt

6.4 KB

5. Analyzing Agricultural Conditions.mp4

41.1 MB

5. Analyzing Agricultural Conditions.srt

3.0 KB

6. Clustering Similar Crops.mp4

66.7 MB

6. Clustering Similar Crops.srt

4.2 KB

7. Visualizing the Hidden Patterns.mp4

29.1 MB

7. Visualizing the Hidden Patterns.srt

2.6 KB

8. Predictive Modelling.mp4

42.3 MB

8. Predictive Modelling.srt

3.3 KB

9. Real Time Predictions.mp4

29.0 MB

9. Real Time Predictions.srt

2.2 KB

/3. Python Functions Deep Dive/

1. Introduction to Functions.mp4

42.2 MB

1. Introduction to Functions.srt

2.6 KB

10. List, set, and Dictionary Comprehensions.mp4

57.2 MB

10. List, set, and Dictionary Comprehensions.srt

4.2 KB

11. Quiz on Anonymous Functions.html

0.1 KB

12. Quiz Solution.mp4

42.2 MB

12. Quiz Solution.srt

4.1 KB

13. Introduction to Aggregate Functions.mp4

32.1 MB

13. Introduction to Aggregate Functions.srt

2.6 KB

14. Introduction to Analytical Functions.mp4

36.4 MB

14. Introduction to Analytical Functions.srt

3.9 KB

15. Quiz on In Built Functions.html

0.1 KB

16. Quiz Solution.mp4

40.0 MB

16. Quiz Solution.srt

3.4 KB

17. Solving the Factorial Problem using Recursion.mp4

58.1 MB

17. Solving the Factorial Problem using Recursion.srt

3.2 KB

18. Solving the Fibonacci Problem using Recursion.mp4

65.7 MB

18. Solving the Fibonacci Problem using Recursion.srt

3.2 KB

19. Quiz on Recursions.html

0.1 KB

2. Default Parameters in Functions.mp4

56.6 MB

2. Default Parameters in Functions.srt

4.6 KB

20. Quiz Solution.mp4

39.9 MB

20. Quiz Solution.srt

4.1 KB

21. Introduction to Classes and Objects.mp4

41.5 MB

21. Introduction to Classes and Objects.srt

3.8 KB

22. Inheritance.mp4

34.1 MB

22. Inheritance.srt

2.7 KB

23. Encapsulation.mp4

65.2 MB

23. Encapsulation.srt

4.0 KB

24. Polymorphism.mp4

48.5 MB

24. Polymorphism.srt

2.7 KB

25. Quiz on Classes and Objects.html

0.1 KB

26. Quiz Solution.mp4

42.4 MB

26. Quiz Solution.srt

3.6 KB

3. Positional Arguments.mp4

33.7 MB

3. Positional Arguments.srt

2.3 KB

4. Keyword Arguments.mp4

38.0 MB

4. Keyword Arguments.srt

2.9 KB

5. Python Modules.mp4

44.8 MB

5. Python Modules.srt

3.0 KB

6. Quiz on Introduction to Functions.html

0.1 KB

7. Quiz Solution.mp4

50.0 MB

7. Quiz Solution.srt

5.0 KB

8. Lambda Functions.mp4

55.7 MB

8. Lambda Functions.srt

2.9 KB

9. Filter, Map, and Zip Functions.mp4

83.7 MB

9. Filter, Map, and Zip Functions.srt

6.9 KB

/4. Python for Data Science/

1. Introduction to datetime.mp4

39.3 MB

1. Introduction to datetime.srt

1.9 KB

10. Sets for Regular Expressions.mp4

58.9 MB

10. Sets for Regular Expressions.srt

3.9 KB

11. Quiz on Regular Expressions.html

0.1 KB

12. Quiz Solution.mp4

34.4 MB

12. Quiz Solution.srt

3.4 KB

13. Array Creation using Numpy.mp4

53.4 MB

13. Array Creation using Numpy.srt

3.3 KB

14. Mathematical Operations using Numpy.mp4

38.2 MB

14. Mathematical Operations using Numpy.srt

2.6 KB

15. Built-in Functions in Numpy.mp4

41.9 MB

15. Built-in Functions in Numpy.srt

2.8 KB

16. Quiz on Introduction to Numpy.html

0.1 KB

17. Quiz Solution.mp4

60.4 MB

17. Quiz Solution.srt

4.5 KB

18. Reading Datasets using Pandas.mp4

68.9 MB

18. Reading Datasets using Pandas.srt

3.8 KB

19. Plotting Data in Pandas.mp4

37.5 MB

19. Plotting Data in Pandas.srt

2.4 KB

2. The date and time class.mp4

35.2 MB

2. The date and time class.srt

3.0 KB

20. Indexing, Selecting, and Filtering Data using Pandas.mp4

72.3 MB

20. Indexing, Selecting, and Filtering Data using Pandas.srt

4.6 KB

21. Merging and Concatenating DataFrames.mp4

80.3 MB

21. Merging and Concatenating DataFrames.srt

5.1 KB

22. Lambda, Map, and Apply Functions.mp4

39.0 MB

22. Lambda, Map, and Apply Functions.srt

2.3 KB

23. Quiz on Introduction to Pandas.html

0.1 KB

24. Quiz Solution.mp4

57.4 MB

24. Quiz Solution.srt

4.6 KB

3. The datetime class.mp4

23.7 MB

3. The datetime class.srt

1.5 KB

4. The timedelta class.mp4

20.3 MB

4. The timedelta class.srt

1.2 KB

5. Quiz on Dates and Times.html

0.1 KB

6. Quiz Solution.mp4

46.2 MB

6. Quiz Solution.srt

3.9 KB

7. Meta Characters for Regular Expressions.mp4

77.6 MB

7. Meta Characters for Regular Expressions.srt

5.2 KB

8. Built-in Functions for Regular Expressions.mp4

39.4 MB

8. Built-in Functions for Regular Expressions.srt

2.6 KB

9. Special Characters for Regular Expressions.mp4

42.9 MB

9. Special Characters for Regular Expressions.srt

2.8 KB

/5. Data Cleaning/

1. Causes and Impact of Missing Values.mp4

67.5 MB

1. Causes and Impact of Missing Values.srt

3.7 KB

10. Finding out Outliers from the Data.mp4

66.3 MB

10. Finding out Outliers from the Data.srt

8.2 KB

11. Using Winsorization to deal with Outliers.mp4

53.0 MB

11. Using Winsorization to deal with Outliers.srt

2.9 KB

12. Deleting and Capping the Outliers.mp4

63.7 MB

12. Deleting and Capping the Outliers.srt

3.5 KB

13. Dealing with Outliers in a real-world scenario.mp4

53.4 MB

13. Dealing with Outliers in a real-world scenario.srt

3.9 KB

14. Quiz on Outliers Treatment.html

0.1 KB

15. Quiz Solution.mp4

58.8 MB

15. Quiz Solution.srt

4.5 KB

16. Introduction to reindex, set_index, reset_index, and sort_index Functions.mp4

46.9 MB

16. Introduction to reindex, set_index, reset_index, and sort_index Functions.srt

4.7 KB

17. Introduction to Replace and Droplevel Function.mp4

34.6 MB

17. Introduction to Replace and Droplevel Function.srt

2.6 KB

18. Introduction to Split and Strip Function.mp4

39.7 MB

18. Introduction to Split and Strip Function.srt

4.0 KB

19. Introduction to Stack, and Unstack Functions.mp4

26.6 MB

19. Introduction to Stack, and Unstack Functions.srt

2.1 KB

2. Types of Missing Values.mp4

64.8 MB

2. Types of Missing Values.srt

3.4 KB

20. Introduction to Melt, Explode, and Squeeze Functions.mp4

43.4 MB

20. Introduction to Melt, Explode, and Squeeze Functions.srt

4.1 KB

21. Data Cleaning on Big Mart Dataset.mp4

40.2 MB

21. Data Cleaning on Big Mart Dataset.srt

4.1 KB

22. Data Cleaning on Movie Dataset.mp4

39.1 MB

22. Data Cleaning on Movie Dataset.srt

3.2 KB

23. Data Cleaning on Melbourne Housing Dataset.mp4

44.2 MB

23. Data Cleaning on Melbourne Housing Dataset.srt

4.0 KB

24. Data Cleaning on Naukri Dataset.mp4

111.4 MB

24. Data Cleaning on Naukri Dataset.srt

13.2 KB

3. When should we delete the Missing values.mp4

83.5 MB

3. When should we delete the Missing values.srt

4.3 KB

4. Imputing the Missing Values using the Business Logic.mp4

77.5 MB

4. Imputing the Missing Values using the Business Logic.srt

3.9 KB

5. Imputing Missing Values using MeanMedianMode.mp4

58.7 MB

5. Imputing Missing Values using MeanMedianMode.srt

3.0 KB

6. Imputing Missing Values in a real-time scenario.mp4

86.6 MB

6. Imputing Missing Values in a real-time scenario.srt

6.9 KB

7. Quiz on Missing Values Imputation.html

0.1 KB

8. Quiz Solution.mp4

51.5 MB

8. Quiz Solution.srt

4.9 KB

9. How Outliers can be harmful for Machine Learning Models.mp4

72.4 MB

9. How Outliers can be harmful for Machine Learning Models.srt

4.0 KB

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/6. Data Visualizations/

1. Univariate Analysis.mp4

59.8 MB

1. Univariate Analysis.srt

4.9 KB

10. Statistical Charts.mp4

40.2 MB

10. Statistical Charts.srt

5.0 KB

11. Polar Charts.mp4

30.7 MB

11. Polar Charts.srt

2.7 KB

12. Subplots.mp4

36.5 MB

12. Subplots.srt

2.9 KB

13. 3D Charts.mp4

25.8 MB

13. 3D Charts.srt

2.0 KB

14. Waffle Charts.mp4

30.8 MB

14. Waffle Charts.srt

2.0 KB

15. Maps.mp4

32.2 MB

15. Maps.srt

2.6 KB

16. Quiz on Advanced Visualizations.html

0.1 KB

17. Quiz Solution.mp4

51.2 MB

17. Quiz Solution.srt

4.3 KB

18. Animation with Bubbleplot.mp4

50.1 MB

18. Animation with Bubbleplot.srt

2.9 KB

19. Animation with Facets.mp4

28.0 MB

19. Animation with Facets.srt

1.8 KB

2. Bivariate Analysis.mp4

47.2 MB

2. Bivariate Analysis.srt

3.7 KB

20. Animation with Scatter Maps.mp4

23.8 MB

20. Animation with Scatter Maps.srt

1.6 KB

21. Animation with Choropleth Maps.mp4

32.1 MB

21. Animation with Choropleth Maps.srt

2.0 KB

22. Quiz on Animated Visualizations.html

0.1 KB

23. Quiz Solution.mp4

36.3 MB

23. Quiz Solution.srt

3.4 KB

24. Introduction to Ipywidgets.mp4

40.4 MB

24. Introduction to Ipywidgets.srt

3.6 KB

25. Interactive Univariate Analysis.mp4

31.3 MB

25. Interactive Univariate Analysis.srt

2.7 KB

26. Interactive Bivariate Analysis.mp4

35.5 MB

26. Interactive Bivariate Analysis.srt

3.6 KB

27. Interactive Multivariate Analysis.mp4

30.6 MB

27. Interactive Multivariate Analysis.srt

2.2 KB

28. Quiz on Interactive Visualizations.html

0.1 KB

29. Quiz Solution.mp4

56.4 MB

29. Quiz Solution.srt

4.5 KB

3. Multivariate Analysis.mp4

74.3 MB

3. Multivariate Analysis.srt

5.6 KB

30. Sunburst Charts.mp4

34.8 MB

30. Sunburst Charts.srt

2.6 KB

31. Parallel Co-ordinate Charts.mp4

24.1 MB

31. Parallel Co-ordinate Charts.srt

1.7 KB

32. Funnel Charts.mp4

41.0 MB

32. Funnel Charts.srt

3.2 KB

33. Gantt Charts.mp4

26.3 MB

33. Gantt Charts.srt

2.5 KB

34. Ternary Charts.mp4

21.4 MB

34. Ternary Charts.srt

1.8 KB

35. Tree Maps.mp4

22.5 MB

35. Tree Maps.srt

1.8 KB

36. Network Charts.mp4

41.7 MB

36. Network Charts.srt

2.7 KB

37. Quiz on Miscellaneous Charts.html

0.1 KB

38. Quiz Solution.mp4

40.4 MB

38. Quiz Solution.srt

4.2 KB

4. Quiz on Basics of Visualization.html

0.1 KB

5. Quiz Solution.mp4

49.4 MB

5. Quiz Solution.srt

4.1 KB

6. Scatter Plots.mp4

47.4 MB

6. Scatter Plots.srt

4.4 KB

7. Charts with Colorscale.mp4

33.4 MB

7. Charts with Colorscale.srt

2.5 KB

8. Bar, Line, and Area Charts.mp4

50.9 MB

8. Bar, Line, and Area Charts.srt

5.0 KB

9. Facet Grids.mp4

39.8 MB

9. Facet Grids.srt

2.7 KB

/7. Feature Engineering/

1. Introduction to Feature Engineering.mp4

63.0 MB

1. Introduction to Feature Engineering.srt

3.6 KB

10. Finding the Words, Characters, and Punctuation Count.mp4

38.1 MB

10. Finding the Words, Characters, and Punctuation Count.srt

4.2 KB

11. Counting Nouns and Verbs in the Text.mp4

32.9 MB

11. Counting Nouns and Verbs in the Text.srt

2.7 KB

12. Counting Adjectives, Adverb, and Pronouns.mp4

24.9 MB

12. Counting Adjectives, Adverb, and Pronouns.srt

2.1 KB

13. Introduction to Assign and Update Functions.mp4

37.9 MB

13. Introduction to Assign and Update Functions.srt

3.3 KB

14. Introduction to at_time and between_time Functions.mp4

31.7 MB

14. Introduction to at_time and between_time Functions.srt

3.0 KB

15. Introduction to nlargest and nsmallest Functions.mp4

37.0 MB

15. Introduction to nlargest and nsmallest Functions.srt

3.6 KB

16. Introduction to Expanding Function.mp4

29.8 MB

16. Introduction to Expanding Function.srt

2.4 KB

17. Introduction to Cumulative Functions.mp4

32.6 MB

17. Introduction to Cumulative Functions.srt

3.2 KB

18. Quiz on Feature Engineering Functions.html

0.1 KB

19. Quiz Solution.mp4

53.7 MB

19. Quiz Solution.srt

4.0 KB

2. Removing Unnecessary Columns.mp4

59.6 MB

2. Removing Unnecessary Columns.srt

4.4 KB

20. Feature Engineering on Employee Data.mp4

59.9 MB

20. Feature Engineering on Employee Data.srt

6.2 KB

21. Feature Engineering on FIFA Data.mp4

46.9 MB

21. Feature Engineering on FIFA Data.srt

4.5 KB

22. Feature Engineering on Hotel Reviews.mp4

36.8 MB

22. Feature Engineering on Hotel Reviews.srt

3.3 KB

23. Feature Engineering on Marketing Data.mp4

61.4 MB

23. Feature Engineering on Marketing Data.srt

6.5 KB

24. Feature Engineering on Titanic Data.mp4

52.0 MB

24. Feature Engineering on Titanic Data.srt

5.4 KB

25. Quiz on Feature Engineering on Real World Datasets.html

0.1 KB

26. Quiz Solution.mp4

68.0 MB

26. Quiz Solution.srt

4.6 KB

3. Decomposing Time and Date Features.mp4

40.2 MB

3. Decomposing Time and Date Features.srt

2.4 KB

4. Decomposing Categorical Features.mp4

40.1 MB

4. Decomposing Categorical Features.srt

2.8 KB

5. Binning Numerical Features.mp4

62.2 MB

5. Binning Numerical Features.srt

4.6 KB

6. Aggregating Features.mp4

59.6 MB

6. Aggregating Features.srt

4.0 KB

7. Introduction to Feature Engineering on Text Data.mp4

35.5 MB

7. Introduction to Feature Engineering on Text Data.srt

1.8 KB

8. Reading and Summarizing the Text.mp4

32.0 MB

8. Reading and Summarizing the Text.srt

3.2 KB

9. Finding the Length, Polarity and Subjectivity.mp4

76.6 MB

9. Finding the Length, Polarity and Subjectivity.srt

5.9 KB

/8. Data Processing/

1. Types of Encoding Techniques.mp4

63.9 MB

1. Types of Encoding Techniques.srt

4.2 KB

10. Log transformation.mp4

29.4 MB

10. Log transformation.srt

2.6 KB

11. BoxCox transformation.mp4

34.1 MB

11. BoxCox transformation.srt

2.5 KB

12. Quiz on Data Transformation.html

0.1 KB

13. Train, Test and Validation Split.mp4

46.4 MB

13. Train, Test and Validation Split.srt

3.7 KB

14. Standardization and Normalization.mp4

41.6 MB

14. Standardization and Normalization.srt

2.5 KB

15. Quiz on Data Splitting and Feature Scaling.html

0.1 KB

2. Label Encoding.mp4

35.2 MB

2. Label Encoding.srt

3.0 KB

3. Feature Mapping for Ordinal Variables.mp4

30.4 MB

3. Feature Mapping for Ordinal Variables.srt

2.3 KB

4. OneHot Encoding.mp4

36.3 MB

4. OneHot Encoding.srt

3.0 KB

5. Binary and BaseN Encoding.mp4

34.8 MB

5. Binary and BaseN Encoding.srt

3.5 KB

6. Mean and Frequency Encoding.mp4

23.9 MB

6. Mean and Frequency Encoding.srt

2.2 KB

7. Quiz on Dealing with Categorical data.html

0.1 KB

8. Introduction to Skewness and Normal Distribution.mp4

39.4 MB

8. Introduction to Skewness and Normal Distribution.srt

2.9 KB

9. Square and Cube Root Transformation.mp4

41.3 MB

9. Square and Cube Root Transformation.srt

3.3 KB

/9. Linear Regression/

1. Introduction to Linear Regression.mp4

85.2 MB

1. Introduction to Linear Regression.srt

4.8 KB

10. Industry relevance of linear regression.mp4

52.3 MB

10. Industry relevance of linear regression.srt

2.8 KB

11. Quiz on Modelling with Linear Regression.html

0.1 KB

2. Implementing Linear Regression using Sklearn.mp4

77.0 MB

2. Implementing Linear Regression using Sklearn.srt

10.9 KB

3. Feature Selection using RFECV.mp4

90.1 MB

3. Feature Selection using RFECV.srt

6.4 KB

4. Data Transformation with Linear Regression.mp4

60.3 MB

4. Data Transformation with Linear Regression.srt

7.0 KB

5. Applying Cross Validation.mp4

110.8 MB

5. Applying Cross Validation.srt

5.4 KB

6. Analyzing the performance of Regression models.mp4

114.3 MB

6. Analyzing the performance of Regression models.srt

5.1 KB

7. R2 score and adjuted R2 score intuition.mp4

112.2 MB

7. R2 score and adjuted R2 score intuition.srt

6.0 KB

8. MAE, RMSE, R2 and Adjusted R2 in code.mp4

51.4 MB

8. MAE, RMSE, R2 and Adjusted R2 in code.srt

5.6 KB

9. Applying real time prediction on our model.mp4

112.8 MB

9. Applying real time prediction on our model.srt

9.9 KB

/

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

 

Total files 829


Copyright © 2025 FileMood.com