FileMood

Download [GigaCourse.Com] Udemy - Neural Networks in Python Deep Learning for Beginners

GigaCourse Com Udemy Neural Networks in Python Deep Learning for Beginners

Name

[GigaCourse.Com] Udemy - Neural Networks in Python Deep Learning for Beginners

 DOWNLOAD Copy Link

Total Size

3.3 GB

Total Files

139

Last Seen

2024-11-15 00:06

Hash

80AA6AF974E64390EA56891569DC41B0A7F127DD

/0. Websites you may like/

[CourseClub.ME].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

/1. Introduction/

1. Welcome to the course.mp4

22.5 MB

1. Welcome to the course.srt

3.2 KB

2. Introduction to Neural Networks and Course flow.mp4

30.5 MB

2. Introduction to Neural Networks and Course flow.srt

4.7 KB

3. Course Resources.html

0.3 KB

4. This is a milestone!.mp4

21.7 MB

4. This is a milestone!.srt

3.9 KB

/10. Python - Building and training the Model/

1. Different ways to create ANN using Keras.mp4

11.3 MB

1. Different ways to create ANN using Keras.srt

1.9 KB

2. Building the Neural Network using Keras.mp4

83.0 MB

2. Building the Neural Network using Keras.srt

12.2 KB

3. Compiling and Training the Neural Network model.mp4

85.7 MB

3. Compiling and Training the Neural Network model.srt

9.8 KB

4. Evaluating performance and Predicting using Keras.mp4

73.3 MB

4. Evaluating performance and Predicting using Keras.srt

9.2 KB

/11. Python - Solving a Regression problem using ANN/

1. Building Neural Network for Regression Problem.mp4

163.4 MB

1. Building Neural Network for Regression Problem.srt

22.2 KB

/12. Complex ANN Architectures using Functional API/

1. Using Functional API for complex architectures.mp4

96.6 MB

1. Using Functional API for complex architectures.srt

11.8 KB

/13. Saving and Restoring Models/

1. Saving - Restoring Models and Using Callbacks.mp4

158.9 MB

1. Saving - Restoring Models and Using Callbacks.srt

19.2 KB

/14. Hyperparameter Tuning/

1. Hyperparameter Tuning.mp4

63.6 MB

1. Hyperparameter Tuning.srt

9.7 KB

/15. Add-on 1 Data Preprocessing/

1. Gathering Business Knowledge.mp4

23.4 MB

1. Gathering Business Knowledge.srt

4.0 KB

10. Missing Value Imputation.mp4

26.2 MB

10. Missing Value Imputation.srt

4.2 KB

11. Missing Value Imputation in Python.mp4

24.6 MB

11. Missing Value Imputation in Python.srt

4.2 KB

12. Seasonality in Data.mp4

17.9 MB

12. Seasonality in Data.srt

3.9 KB

13. Bi-variate analysis and Variable transformation.mp4

105.3 MB

13. Bi-variate analysis and Variable transformation.srt

18.7 KB

14. Variable transformation and deletion in Python.mp4

46.2 MB

14. Variable transformation and deletion in Python.srt

7.7 KB

15. Non-usable variables.mp4

21.2 MB

15. Non-usable variables.srt

5.5 KB

16. Dummy variable creation Handling qualitative data.mp4

38.6 MB

16. Dummy variable creation Handling qualitative data.srt

5.0 KB

17. Dummy variable creation in Python.mp4

27.8 MB

17. Dummy variable creation in Python.srt

5.6 KB

18. Correlation Analysis.mp4

75.1 MB

18. Correlation Analysis.srt

11.3 KB

19. Correlation Analysis in Python.mp4

58.0 MB

19. Correlation Analysis in Python.srt

6.7 KB

2. Data Exploration.mp4

21.5 MB

2. Data Exploration.srt

3.7 KB

3. The Dataset and the Data Dictionary.mp4

72.7 MB

3. The Dataset and the Data Dictionary.srt

8.0 KB

4. Add-on Resources.html

0.1 KB

4.1 Files_linear_py.zip

9.3 MB

5. Importing Data in Python.mp4

29.2 MB

5. Importing Data in Python.srt

5.7 KB

6. Univariate analysis and EDD.mp4

25.4 MB

6. Univariate analysis and EDD.srt

3.5 KB

7. EDD in Python.mp4

64.8 MB

7. EDD in Python.srt

10.6 KB

8. Outlier Treatment.mp4

25.7 MB

8. Outlier Treatment.srt

4.6 KB

9. Outlier Treatment in Python.mp4

73.6 MB

9. Outlier Treatment in Python.srt

13.3 KB

/16. Add-on 2 Classic ML models - Linear Regression/

1. The Problem Statement.mp4

9.8 MB

1. The Problem Statement.srt

1.7 KB

10. Test-train split.mp4

43.9 MB

10. Test-train split.srt

10.3 KB

11. Bias Variance trade-off.mp4

26.3 MB

11. Bias Variance trade-off.srt

6.5 KB

12. Test train split in Python.mp4

47.0 MB

12. Test train split in Python.srt

8.2 KB

2. Basic Equations and Ordinary Least Squares (OLS) method.mp4

45.5 MB

2. Basic Equations and Ordinary Least Squares (OLS) method.srt

10.1 KB

3. Assessing accuracy of predicted coefficients.mp4

96.6 MB

3. Assessing accuracy of predicted coefficients.srt

16.2 KB

4. Assessing Model Accuracy RSE and R squared.mp4

45.7 MB

4. Assessing Model Accuracy RSE and R squared.srt

8.2 KB

5. Simple Linear Regression in Python.mp4

66.5 MB

5. Simple Linear Regression in Python.srt

11.6 KB

6. Multiple Linear Regression.mp4

36.0 MB

6. Multiple Linear Regression.srt

5.9 KB

7. The F - statistic.mp4

58.7 MB

7. The F - statistic.srt

9.2 KB

8. Interpreting results of Categorical variables.mp4

23.6 MB

8. Interpreting results of Categorical variables.srt

5.4 KB

9. Multiple Linear Regression in Python.mp4

73.1 MB

9. Multiple Linear Regression in Python.srt

12.6 KB

/17. Practice Assignment/

1. Neural Networks Classification Assignment.html

0.2 KB

/18. Bonus Section/

1. The final milestone!.mp4

12.4 MB

1. The final milestone!.srt

1.8 KB

2. Congratulations & About your certificate.html

1.6 KB

/2. Setting up Python and Jupyter Notebook/

1. Installing Python and Anaconda.mp4

17.1 MB

1. Installing Python and Anaconda.srt

2.6 KB

2. Opening Jupyter Notebook.mp4

68.3 MB

2. Opening Jupyter Notebook.srt

9.4 KB

3. Introduction to Jupyter.mp4

42.9 MB

3. Introduction to Jupyter.srt

12.6 KB

4. Arithmetic operators in Python Python Basics.mp4

13.4 MB

4. Arithmetic operators in Python Python Basics.srt

4.1 KB

5. Strings in Python Python Basics.mp4

67.6 MB

5. Strings in Python Python Basics.srt

16.8 KB

6. Lists, Tuples and Directories Python Basics.mp4

63.3 MB

6. Lists, Tuples and Directories Python Basics.srt

17.4 KB

7. Working with Numpy Library of Python.mp4

46.0 MB

7. Working with Numpy Library of Python.srt

10.7 KB

8. Working with Pandas Library of Python.mp4

49.2 MB

8. Working with Pandas Library of Python.srt

8.3 KB

9. Working with Seaborn Library of Python.mp4

42.3 MB

9. Working with Seaborn Library of Python.srt

7.7 KB

/3. Single Cells - Perceptron and Sigmoid Neuron/

1. Perceptron.mp4

46.9 MB

1. Perceptron.srt

9.9 KB

2. Activation Functions.mp4

36.3 MB

2. Activation Functions.srt

8.0 KB

3. Python - Creating Perceptron model.mp4

90.8 MB

3. Python - Creating Perceptron model.srt

14.9 KB

/4. Neural Networks - Stacking cells to create network/

1. Basic Terminologies.mp4

42.4 MB

1. Basic Terminologies.srt

9.7 KB

2. Gradient Descent.mp4

63.3 MB

2. Gradient Descent.srt

12.2 KB

3. Back Propagation.mp4

128.1 MB

3. Back Propagation.srt

23.3 KB

/5. Important concepts Common Interview questions/

1. Some Important Concepts.mp4

65.2 MB

1. Some Important Concepts.srt

13.4 KB

2. Quiz.html

0.2 KB

/6. Standard Model Parameters/

1. Hyperparameters.mp4

47.5 MB

1. Hyperparameters.srt

9.2 KB

2. Quiz.html

0.2 KB

/7. Practice Test/

1. Test your conceptual understanding.html

0.2 KB

/8. Tensorflow and Keras/

1. Keras and Tensorflow.mp4

15.7 MB

1. Keras and Tensorflow.srt

3.6 KB

2. Installing Tensorflow and Keras.mp4

21.0 MB

2. Installing Tensorflow and Keras.srt

3.9 KB

/9. Python - Dataset for classification problem/

1. Dataset for classification.mp4

58.8 MB

1. Dataset for classification.srt

7.3 KB

2. Normalization and Test-Train split.mp4

46.3 MB

2. Normalization and Test-Train split.srt

5.9 KB

3. More about test-train split.html

0.6 KB

/

[CourseClub.Me].url

0.1 KB

[GigaCourse.Com].url

0.0 KB

 

Total files 139


Copyright © 2024 FileMood.com