FileMood

Download Machine Learning

Machine Learning

Name

Machine Learning

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

1.5 GB

Total Files

419

Hash

89BB6C39A682F248DD423495E0AEADA74ED70A94

/Assignments/IV/__MACOSX/

._mlclass-ex1-005

0.2 KB

/.../mlclass-ex1-005/

._ex1.pdf

0.2 KB

._mlclass-ex1

0.2 KB

/.../mlclass-ex1-005/mlclass-ex1/

._computeCost.m

0.2 KB

._computeCostMulti.m

0.2 KB

._ex1.m

0.2 KB

._ex1_multi.m

0.2 KB

._ex1data1.txt

0.2 KB

._ex1data2.txt

0.2 KB

._featureNormalize.m

0.2 KB

._gradientDescent.m

0.2 KB

._gradientDescentMulti.m

0.2 KB

._normalEqn.m

0.2 KB

._plotData.m

0.2 KB

._submit.m

0.2 KB

._submitWeb.m

0.2 KB

._warmUpExercise.m

0.2 KB

/Assignments/IV/

mlclass-ex1-005.zip

483.0 KB

/.../mlclass-ex1-005/

ex1.pdf

514.1 KB

/.../mlclass-ex1-005/mlclass-ex1/

computeCost.m

0.7 KB

computeCostMulti.m

0.7 KB

ex1.m

3.4 KB

ex1_multi.m

4.5 KB

ex1data1.txt

1.4 KB

ex1data2.txt

0.7 KB

featureNormalize.m

1.3 KB

gradientDescent.m

1.0 KB

gradientDescentMulti.m

1.1 KB

normalEqn.m

0.7 KB

plotData.m

0.9 KB

submit.m

17.3 KB

submitWeb.m

0.8 KB

warmUpExercise.m

0.5 KB

/Assignments/IX/__MACOSX/

._mlclass-ex4-005

0.2 KB

/.../mlclass-ex4-005/

._.DS_Store

0.1 KB

._ex4.pdf

0.2 KB

._mlclass-ex4

0.2 KB

/.../mlclass-ex4-005/mlclass-ex4/

._checkNNGradients.m

0.2 KB

._computeNumericalGradient.m

0.2 KB

._debugInitializeWeights.m

0.2 KB

._displayData.m

0.2 KB

._ex4.m

0.2 KB

._ex4data1.mat

0.2 KB

._ex4weights.mat

0.2 KB

._fmincg.m

0.2 KB

._nnCostFunction.m

0.2 KB

._predict.m

0.2 KB

._randInitializeWeights.m

0.2 KB

._sigmoid.m

0.2 KB

._sigmoidGradient.m

0.2 KB

._submit.m

0.2 KB

._submitWeb.m

0.2 KB

/.../mlclass-ex4-005/

.DS_Store

6.1 KB

ex4.pdf

392.6 KB

mlclass-ex4-005.zip

8.0 MB

/.../mlclass-ex4-005/mlclass-ex4/

checkNNGradients.m

2.0 KB

computeNumericalGradient.m

1.1 KB

debugInitializeWeights.m

0.8 KB

displayData.m

1.5 KB

ex4.m

8.1 KB

ex4data1.mat

7.5 MB

ex4weights.mat

79.6 KB

fmincg.m

8.7 KB

nnCostFunction.m

4.1 KB

predict.m

0.6 KB

randInitializeWeights.m

1.0 KB

sigmoid.m

0.1 KB

sigmoidGradient.m

0.8 KB

submit.m

17.1 KB

submitWeb.m

0.8 KB

/Assignments/IX/WebInfo/

Ex4 Tutorial - Forward and Back-propagation.htm

393.8 KB

/.../Ex4 Tutorial - Forward and Back-propagation_files/

1(1).png

12.2 KB

1.png

18.2 KB

13569_204305756345_554551345_4479361_7386622_n.jpg

0.6 KB

2.png

21.3 KB

204.min.js

6.5 KB

3.png

22.9 KB

ad.jpg

0.6 KB

course.css

0.2 KB

flexjoinLastChanceModal.html.js

3.5 KB

ga.js

40.1 KB

header(1).js

0.1 KB

header.html.js

26.9 KB

header.js

0.6 KB

logo

26.2 KB

markusFace.jpg

0.7 KB

MathJax.js

50.4 KB

require.js

24.1 KB

routes.js

358.5 KB

select2.css

17.2 KB

sidebar(1).js

0.1 KB

sidebar.html.js

7.3 KB

sidebar.js

1.6 KB

signature_track.js

4.2 KB

signatureTrackLastChanceModal.html.js

4.7 KB

spark.forum.hg.css

1.8 KB

spark.main.css

249.4 KB

student-page.html.js

1.1 KB

student-page.js

2.0 KB

university_logo

1.9 KB

util.js

23.8 KB

widgets.js

760.8 KB

/Assignments/VII/__MACOSX/

._mlclass-ex2-005

0.2 KB

/.../mlclass-ex2-005/

._ex2.pdf

0.2 KB

._mlclass-ex2

0.2 KB

/.../mlclass-ex2-005/mlclass-ex2/

._costFunction.m

0.2 KB

._costFunctionReg.m

0.2 KB

._ex2.m

0.2 KB

._ex2_reg.m

0.2 KB

._ex2data1.txt

0.2 KB

._ex2data2.txt

0.2 KB

._mapFeature.m

0.2 KB

._plotData.m

0.2 KB

._plotDecisionBoundary.m

0.2 KB

._predict.m

0.2 KB

._sigmoid.m

0.2 KB

._submit.m

0.2 KB

._submitWeb.m

0.2 KB

/Assignments/VII/

mlclass-ex2-005.zip

250.7 KB

/.../mlclass-ex2-005/

ex2.pdf

256.4 KB

ml_login_data.mat

0.3 KB

/.../mlclass-ex2-005/mlclass-ex2/

costFunction.m

1.0 KB

costFunctionReg.m

1.2 KB

ex2.m

3.7 KB

ex2_reg.m

3.0 KB

ex2data1.txt

3.8 KB

ex2data2.txt

2.2 KB

mapFeature.m

0.5 KB

plotData.m

0.7 KB

plotDecisionBoundary.m

1.5 KB

predict.m

0.8 KB

sigmoid.m

0.5 KB

submit.m

17.1 KB

submitWeb.m

0.8 KB

/Assignments/VIII/__MACOSX/

._mlclass-ex3-005

0.2 KB

/.../mlclass-ex3-005/

._.DS_Store

0.1 KB

._ex3.pdf

0.2 KB

._mlclass-ex3

0.2 KB

/.../mlclass-ex3-005/mlclass-ex3/

._displayData.m

0.2 KB

._ex3.m

0.2 KB

._ex3_nn.m

0.2 KB

._ex3data1.mat

0.2 KB

._ex3weights.mat

0.2 KB

._fmincg.m

0.2 KB

._lrCostFunction.m

0.2 KB

._oneVsAll.m

0.2 KB

._predict.m

0.2 KB

._predictOneVsAll.m

0.2 KB

._sigmoid.m

0.2 KB

._submit.m

0.2 KB

._submitWeb.m

0.2 KB

/Assignments/VIII/

mlclass-ex3-005.zip

7.9 MB

/.../mlclass-ex3-005/

.DS_Store

6.1 KB

ex3.pdf

330.4 KB

/.../mlclass-ex3-005/mlclass-ex3/

displayData.m

1.5 KB

ex3.m

2.1 KB

ex3_nn.m

2.6 KB

ex3data1.mat

7.5 MB

ex3weights.mat

79.6 KB

fmincg.m

8.7 KB

lrCostFunction.m

1.9 KB

ml_login_data.mat

0.3 KB

oneVsAll.m

2.2 KB

predict.m

1.2 KB

predictOneVsAll.m

1.6 KB

sigmoid.m

0.1 KB

submit.m

17.0 KB

submitWeb.m

0.8 KB

/Assignments/XI/__MACOSX/

._mlclass-ex5-005

0.2 KB

/.../mlclass-ex5-005/

._.DS_Store

0.1 KB

._ex5.pdf

0.2 KB

._mlclass-ex5

0.2 KB

/.../mlclass-ex5-005/mlclass-ex5/

._ex5.m

0.2 KB

._ex5data1.mat

0.2 KB

._featureNormalize.m

0.2 KB

._fmincg.m

0.2 KB

._learningCurve.m

0.2 KB

._linearRegCostFunction.m

0.2 KB

._plotFit.m

0.2 KB

._polyFeatures.m

0.2 KB

._submit.m

0.2 KB

._submitWeb.m

0.2 KB

._trainLinearReg.m

0.2 KB

._validationCurve.m

0.2 KB

/Assignments/XI/

mlclass-ex5-005.zip

183.5 KB

/.../mlclass-ex5-005/

.DS_Store

6.1 KB

ex5.pdf

185.9 KB

/.../mlclass-ex5-005/mlclass-ex5/

ex5.m

6.8 KB

ex5data1.mat

1.3 KB

featureNormalize.m

0.5 KB

fmincg.m

8.7 KB

learningCurve.m

2.6 KB

linearRegCostFunction.m

1.3 KB

plotFit.m

0.8 KB

polyFeatures.m

0.7 KB

sigmoid.m

0.5 KB

submit.m

17.2 KB

submitWeb.m

0.8 KB

trainLinearReg.m

0.7 KB

validationCurve.m

1.9 KB

/Assignments/XII/__MACOSX/

._mlclass-ex6-005

0.2 KB

/.../mlclass-ex6-005/

._.DS_Store

0.1 KB

._ex6.pdf

0.2 KB

._mlclass-ex6

0.2 KB

/.../mlclass-ex6-005/mlclass-ex6/

._dataset3Params.m

0.2 KB

._emailFeatures.m

0.2 KB

._emailSample1.txt

0.2 KB

._emailSample2.txt

0.2 KB

._ex6.m

0.2 KB

._ex6_spam.m

0.2 KB

._ex6data1.mat

0.2 KB

._ex6data2.mat

0.2 KB

._ex6data3.mat

0.2 KB

._gaussianKernel.m

0.2 KB

._getVocabList.m

0.2 KB

._linearKernel.m

0.2 KB

._plotData.m

0.2 KB

._porterStemmer.m

0.2 KB

._processEmail.m

0.2 KB

._readFile.m

0.2 KB

._spamSample1.txt

0.2 KB

._spamSample2.txt

0.2 KB

._spamTest.mat

0.2 KB

._spamTrain.mat

0.2 KB

._submit.m

0.2 KB

._submitWeb.m

0.2 KB

._svmPredict.m

0.2 KB

._svmTrain.m

0.2 KB

._visualizeBoundary.m

0.2 KB

._visualizeBoundaryLinear.m

0.2 KB

._vocab.txt

0.2 KB

/Assignments/XII/

mlclass-ex6-005.zip

928.1 KB

/.../mlclass-ex6-005/

.DS_Store

6.1 KB

ex6.pdf

359.4 KB

/.../mlclass-ex6-005/mlclass-ex6/

dataset3Params.m

1.7 KB

emailFeatures.m

2.1 KB

emailSample1.txt

0.4 KB

emailSample2.txt

1.3 KB

ex6.m

4.1 KB

ex6_spam.m

4.6 KB

ex6data1.mat

1.0 KB

ex6data2.mat

7.6 KB

ex6data3.mat

6.0 KB

gaussianKernel.m

0.7 KB

getVocabList.m

0.8 KB

linearKernel.m

0.3 KB

plotData.m

0.6 KB

porterStemmer.m

9.9 KB

processEmail.m

4.0 KB

readFile.m

0.4 KB

spamSample1.txt

0.7 KB

spamSample2.txt

0.2 KB

spamTest.mat

112.7 KB

spamTrain.mat

428.8 KB

submit.m

16.8 KB

submitWeb.m

0.8 KB

svmPredict.m

1.7 KB

svmTrain.m

6.0 KB

visualizeBoundary.m

0.7 KB

visualizeBoundaryLinear.m

0.4 KB

vocab.txt

20.2 KB

/.../mlclass-ex7-005/

.DS_Store

6.1 KB

ex7.pdf

748.7 KB

/.../mlclass-ex7-005/mlclass-ex7/

bird_small.mat

45.6 KB

bird_small.png

33.0 KB

computeCentroids.m

1.3 KB

displayData.m

1.5 KB

drawLine.m

0.2 KB

ex7.m

5.6 KB

ex7_pca.m

7.2 KB

ex7data1.mat

1.0 KB

ex7data2.mat

4.8 KB

ex7faces.mat

11.0 MB

featureNormalize.m

0.5 KB

findClosestCentroids.m

1.1 KB

kMeansInitCentroids.m

0.7 KB

pca.m

0.9 KB

plotDataPoints.m

0.4 KB

plotProgresskMeans.m

0.8 KB

projectData.m

1.0 KB

recoverData.m

1.1 KB

runkMeans.m

2.0 KB

submit.m

17.0 KB

submitWeb.m

0.8 KB

/Assignments/XIV/

XI.zip

11.6 MB

/Assignments/XVI/

mlclass-ex8-005.zip

820.2 KB

/.../mlclass-ex8-005/

.DS_Store

6.1 KB

ex8.pdf

269.7 KB

/.../mlclass-ex8-005/mlclass-ex8/

checkCostFunction.m

1.6 KB

cofiCostFunc.m

2.5 KB

computeNumericalGradient.m

1.1 KB

estimateGaussian.m

1.0 KB

ex8.m

3.8 KB

ex8_cofi.m

7.1 KB

ex8_movieParams.mat

201.2 KB

ex8_movies.mat

223.4 KB

ex8data1.mat

9.5 KB

ex8data2.mat

93.5 KB

fmincg.m

8.7 KB

loadMovieList.m

0.7 KB

movie_ids.txt

48.4 KB

multivariateGaussian.m

0.8 KB

normalizeRatings.m

0.5 KB

selectThreshold.m

1.4 KB

submit.m

17.5 KB

submitWeb.m

0.8 KB

visualizeFit.m

0.6 KB

/Lectures/

1 - 1 - Welcome (7 min).mp4

12.5 MB

1 - 2 - What is Machine Learning- (7 min).mp4

9.8 MB

1 - 3 - Supervised Learning (12 min).mp4

14.1 MB

1 - 4 - Unsupervised Learning (14 min).mp4

17.5 MB

10 - 1 - Deciding What to Try Next (6 min).mp4

7.2 MB

10 - 2 - Evaluating a Hypothesis (8 min).mp4

8.9 MB

10 - 3 - Model Selection and Train-Validation-Test Sets (12 min).mp4

14.8 MB

10 - 4 - Diagnosing Bias vs. Variance (8 min).mp4

9.4 MB

10 - 5 - Regularization and Bias-Variance (11 min).mp4

13.2 MB

10 - 6 - Learning Curves (12 min).mp4

13.5 MB

10 - 7 - Deciding What to Do Next Revisited (7 min).mp4

8.6 MB

11 - 1 - Prioritizing What to Work On (10 min).mp4

11.7 MB

11 - 2 - Error Analysis (13 min).mp4

16.2 MB

11 - 3 - Error Metrics for Skewed Classes (12 min).mp4

13.9 MB

11 - 4 - Trading Off Precision and Recall (14 min).mp4

16.8 MB

11 - 5 - Data For Machine Learning (11 min).mp4

13.5 MB

12 - 1 - Optimization Objective (15 min).mp4

17.5 MB

12 - 2 - Large Margin Intuition (11 min).mp4

12.4 MB

12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mp4

22.9 MB

12 - 4 - Kernels I (16 min).mp4

18.4 MB

12 - 5 - Kernels II (16 min).mp4

18.3 MB

12 - 6 - Using An SVM (21 min).mp4

25.1 MB

13 - 1 - Unsupervised Learning- Introduction (3 min).mp4

4.0 MB

13 - 2 - K-Means Algorithm (13 min).mp4

14.5 MB

13 - 3 - Optimization Objective (7 min).mp4

8.5 MB

13 - 4 - Random Initialization (8 min).mp4

9.1 MB

13 - 5 - Choosing the Number of Clusters (8 min).mp4

9.9 MB

14 - 1 - Motivation I- Data Compression (10 min).mp4

15.0 MB

14 - 2 - Motivation II- Visualization (6 min).mp4

6.6 MB

14 - 3 - Principal Component Analysis Problem Formulation (9 min).mp4

11.0 MB

14 - 4 - Principal Component Analysis Algorithm (15 min).mp4

18.7 MB

14 - 5 - Choosing the Number of Principal Components (11 min).mp4

12.4 MB

14 - 6 - Reconstruction from Compressed Representation (4 min).mp4

5.2 MB

14 - 7 - Advice for Applying PCA (13 min).mp4

15.4 MB

15 - 1 - Problem Motivation (8 min).mp4

8.8 MB

15 - 2 - Gaussian Distribution (10 min).mp4

12.3 MB

15 - 3 - Algorithm (12 min).mp4

14.6 MB

15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mp4

15.9 MB

15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mp4

9.7 MB

15 - 6 - Choosing What Features to Use (12 min).mp4

14.8 MB

15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mp4

16.7 MB

15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mp4

17.1 MB

16 - 2 - Content Based Recommendations (15 min).mp4

17.8 MB

16 - 3 - Collaborative Filtering (10 min).mp4

12.3 MB

16 - 4 - Collaborative Filtering Algorithm (9 min).mp4

10.8 MB

16 - 5 - Vectorization- Low Rank Matrix Factorization (8 min).mp4

10.2 MB

16 - 6 - Implementational Detail- Mean Normalization (9 min).mp4

10.2 MB

17 - 1 - Learning With Large Datasets (6 min).mp4

6.8 MB

17 - 2 - Stochastic Gradient Descent (13 min).mp4

16.1 MB

17 - 3 - Mini-Batch Gradient Descent (6 min).mp4

7.7 MB

17 - 4 - Stochastic Gradient Descent Convergence (12 min).mp4

14.0 MB

17 - 5 - Online Learning (13 min).mp4

15.6 MB

17 - 6 - Map Reduce and Data Parallelism (14 min).mp4

16.8 MB

18 - 1 - Problem Description and Pipeline (7 min).mp4

8.3 MB

18 - 2 - Sliding Windows (15 min).mp4

17.3 MB

18 - 3 - Getting Lots of Data and Artificial Data (16 min).mp4

19.7 MB

18 - 4 - Ceiling Analysis- What Part of the Pipeline to Work on Next (14 min).mp4

16.9 MB

19 - 1 - Summary and Thank You (5 min).mp4

6.4 MB

2 - 1 - Model Representation (8 min).mp4

9.4 MB

2 - 2 - Cost Function (8 min).mp4

9.5 MB

2 - 3 - Cost Function - Intuition I (11 min).mp4

12.8 MB

2 - 4 - Cost Function - Intuition II (9 min).mp4

11.9 MB

2 - 5 - Gradient Descent (11 min).mp4

14.2 MB

2 - 6 - Gradient Descent Intuition (12 min).mp4

13.7 MB

2 - 7 - Gradient Descent For Linear Regression (10 min).mp4

12.8 MB

2 - 8 - What-'s Next (6 min).mp4

6.4 MB

3 - 1 - Matrices and Vectors (9 min).mp4

10.0 MB

3 - 2 - Addition and Scalar Multiplication (7 min).mp4

7.8 MB

3 - 3 - Matrix Vector Multiplication (14 min).mp4

15.7 MB

3 - 4 - Matrix Matrix Multiplication (11 min).mp4

13.2 MB

3 - 5 - Matrix Multiplication Properties (9 min).mp4

10.3 MB

3 - 6 - Inverse and Transpose (11 min).mp4

13.5 MB

4 - 1 - Multiple Features (8 min).mp4

9.3 MB

4 - 2 - Gradient Descent for Multiple Variables (5 min).mp4

6.1 MB

4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mp4

9.9 MB

4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mp4

9.7 MB

4 - 5 - Features and Polynomial Regression (8 min).mp4

8.7 MB

4 - 6 - Normal Equation (16 min).mp4

18.0 MB

4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mp4

6.5 MB

5 - 1 - Basic Operations (14 min).mp4

18.6 MB

5 - 2 - Moving Data Around (16 min).mp4

21.8 MB

5 - 3 - Computing on Data (13 min).mp4

16.0 MB

5 - 4 - Plotting Data (10 min).mp4

14.0 MB

5 - 5 - Control Statements- for, while, if statements (13 min).mp4

17.3 MB

5 - 6 - Vectorization (14 min).mp4

16.9 MB

5 - 7 - Working on and Submitting Programming Exercises (4 min).mp4

5.7 MB

6 - 1 - Classification (8 min).mp4

9.2 MB

6 - 2 - Hypothesis Representation (7 min).mp4

8.7 MB

6 - 3 - Decision Boundary (15 min).mp4

17.6 MB

6 - 4 - Cost Function (11 min).mp4

13.7 MB

6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mp4

12.5 MB

6 - 6 - Advanced Optimization (14 min).mp4

19.0 MB

6 - 7 - Multiclass Classification- One-vs-all (6 min).mp4

7.3 MB

7 - 1 - The Problem of Overfitting (10 min).mp4

11.7 MB

7 - 2 - Cost Function (10 min).mp4

12.2 MB

7 - 3 - Regularized Linear Regression (11 min) (1).mp4

12.6 MB

7 - 3 - Regularized Linear Regression (11 min).mp4

12.6 MB

7 - 4 - Regularized Logistic Regression (9 min).mp4

11.4 MB

8 - 1 - Non-linear Hypotheses (10 min).mp4

11.4 MB

8 - 2 - Neurons and the Brain (8 min).mp4

10.4 MB

8 - 3 - Model Representation I (12 min).mp4

14.2 MB

8 - 4 - Model Representation II (12 min).mp4

14.1 MB

8 - 5 - Examples and Intuitions I (7 min).mp4

8.3 MB

8 - 6 - Examples and Intuitions II (10 min).mp4

14.7 MB

8 - 7 - Multiclass Classification (4 min).mp4

5.1 MB

9 - 1 - Cost Function (7 min).mp4

8.0 MB

9 - 2 - Backpropagation Algorithm (12 min).mp4

14.6 MB

9 - 3 - Backpropagation Intuition (13 min).mp4

16.2 MB

9 - 4 - Implementation Note- Unrolling Parameters (8 min).mp4

9.8 MB

9 - 5 - Gradient Checking (12 min).mp4

14.2 MB

9 - 7 - Putting It Together (14 min).mp4

17.1 MB

9 - 8 - Autonomous Driving (7 min).mp4

15.6 MB

 

Total files 419


Copyright © 2025 FileMood.com