Machine Learning Data Science with Python Kaggle Pandas |
||
Name |
Machine Learning & Data Science with Python, Kaggle & Pandas |
DOWNLOAD Copy Link |
Total Size |
9.8 GB |
|
Total Files |
463 |
|
Last Seen |
2025-01-04 23:39 |
|
Hash |
2573DF0A2B891C606621FA656140359C74749838 |
/.../35. Competition Section on Kaggle/ |
|
|
201.0 MB |
|
0.2 KB |
|
197.3 MB |
/ |
|
|
0.1 KB |
|
0.6 KB |
/.../41. Introduction to Machine Learning with Real Hearth Attack Prediction Project/ |
|
|
15.7 KB |
|
0.2 KB |
4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html |
0.1 KB |
|
133.0 MB |
|
122.9 MB |
|
110.1 MB |
|
80.2 MB |
/1. Installations/ |
|
2. Notebook Project Files Link regarding NumPy Python Programming Language Library.html |
0.2 KB |
|
4.3 KB |
|
124.1 MB |
|
120.4 MB |
|
48.6 MB |
/.../34. First Contact with Kaggle/ |
|
|
11.2 KB |
|
0.2 KB |
4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html |
0.1 KB |
|
136.1 MB |
|
128.9 MB |
|
45.7 MB |
/.../17. First Contact with Machine Learning/ |
|
|
6.8 KB |
|
6.4 KB |
|
0.3 KB |
|
28.9 MB |
|
14.7 MB |
/.../2. NumPy Library Introduction/ |
|
|
0.2 KB |
|
62.8 MB |
|
47.5 MB |
/49. Extra/ |
|
1. Machine Learning & Data Science with Kaggle, Pandas , Numpy.html |
0.3 KB |
/.../3. Creating NumPy Array in Python/ |
|
|
0.2 KB |
|
45.4 MB |
|
30.9 MB |
|
25.2 MB |
|
23.1 MB |
|
16.6 MB |
|
13.2 MB |
|
12.7 MB |
|
11.7 MB |
|
7.7 MB |
/.../4. Functions in the NumPy Library/ |
|
|
0.2 KB |
|
40.2 MB |
|
37.5 MB |
|
27.4 MB |
|
21.9 MB |
|
17.9 MB |
|
15.9 MB |
|
10.7 MB |
/.../7. Pandas Library Introduction/ |
|
|
0.2 KB |
|
0.2 KB |
|
35.6 MB |
/.../8. Series Structures in the Pandas Library/ |
|
|
0.2 KB |
|
50.5 MB |
|
41.1 MB |
|
31.4 MB |
|
20.5 MB |
|
19.9 MB |
|
19.2 MB |
|
12.5 MB |
/.../9. DataFrame Structures in Pandas Library/ |
|
|
0.2 KB |
|
27.2 MB |
|
23.7 MB |
|
16.6 MB |
|
12.7 MB |
/.../10. Element Selection Operations in DataFrame Structures/ |
|
|
0.2 KB |
|
48.6 MB |
3. Top Level Element Selection in Pandas DataFramesLesson 1.mp4 |
40.2 MB |
2. Element Selection Operations in Pandas DataFrames Lesson 2.mp4 |
33.4 MB |
4. Top Level Element Selection in Pandas DataFramesLesson 2.mp4 |
32.9 MB |
1. Element Selection Operations in Pandas DataFrames Lesson 1.mp4 |
31.3 MB |
5. Top Level Element Selection in Pandas DataFramesLesson 3.mp4 |
23.2 MB |
/.../11. Structural Operations on Pandas DataFrame/ |
|
|
0.2 KB |
|
70.2 MB |
|
54.1 MB |
|
41.6 MB |
|
36.2 MB |
|
35.2 MB |
|
16.3 MB |
/.../12. Multi-Indexed DataFrame Structures/ |
|
|
0.2 KB |
|
44.7 MB |
3. Selecting Elements Using the xs() Function in Multi-Indexed DataFrames.mp4 |
32.8 MB |
|
25.8 MB |
/.../13. Structural Concatenation Operations in Pandas DataFrame/ |
|
|
0.2 KB |
|
67.0 MB |
|
63.1 MB |
|
60.1 MB |
|
58.8 MB |
|
42.7 MB |
|
32.0 MB |
/.../14. Functions That Can Be Applied on a DataFrame/ |
|
|
0.2 KB |
|
95.1 MB |
5. Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes.mp4 |
92.4 MB |
|
49.4 MB |
|
48.8 MB |
|
45.0 MB |
|
43.4 MB |
|
39.6 MB |
|
30.7 MB |
|
25.7 MB |
/.../15. Pivot Tables in Pandas Library/ |
|
|
0.2 KB |
|
56.9 MB |
|
41.0 MB |
/.../16. File Operations in Pandas Library/ |
|
|
0.2 KB |
|
67.5 MB |
|
37.4 MB |
|
36.3 MB |
|
22.9 MB |
|
20.7 MB |
/.../18. Evaluation Metrics in Machine Learning/ |
|
|
0.2 KB |
2. Machine Learning Model Performance Evaluation Classification Error Metrics.mp4 |
105.2 MB |
|
96.7 MB |
3. Evaluating Performance Regression Error Metrics in Python.mp4 |
47.9 MB |
|
20.9 MB |
/.../19. Supervised Learning with Machine Learning/ |
|
|
0.2 KB |
|
33.2 MB |
/.../21. Bias Variance Trade-Off in Machine Learning/ |
|
|
0.2 KB |
|
57.7 MB |
/.../22. Logistic Regression Algorithm in Machine Learning A-Z/ |
|
|
0.2 KB |
|
85.4 MB |
|
75.7 MB |
|
49.5 MB |
|
41.3 MB |
|
36.5 MB |
1. What is Logistic Regression Algorithm in Machine Learning.mp4 |
29.2 MB |
/.../24. K Nearest Neighbors Algorithm in Machine Learning A-Z/ |
|
|
0.2 KB |
|
62.3 MB |
|
36.8 MB |
|
32.9 MB |
|
30.1 MB |
/.../26. Decision Tree Algorithm in Machine Learning A-Z/ |
|
|
0.2 KB |
|
51.3 MB |
|
44.6 MB |
|
37.5 MB |
|
34.3 MB |
|
33.1 MB |
|
15.4 MB |
/.../28. Support Vector Machine Algorithm in Machine Learning A-Z/ |
|
|
0.2 KB |
|
49.6 MB |
|
43.7 MB |
|
39.4 MB |
|
37.3 MB |
|
22.9 MB |
/.../29. Unsupervised Learning with Machine Learning/ |
|
|
0.2 KB |
|
17.7 MB |
/.../30. K Means Clustering Algorithm in Machine Learning A-Z/ |
|
|
0.2 KB |
|
31.4 MB |
|
31.1 MB |
|
30.4 MB |
|
29.1 MB |
|
18.0 MB |
/.../31. Hierarchical Clustering Algorithm in machine learning data science/ |
|
|
0.2 KB |
|
37.2 MB |
|
30.3 MB |
|
30.0 MB |
/.../33. Recommender System Algorithm in Machine Learning A-Z/ |
|
|
0.2 KB |
|
24.1 MB |
|
18.8 MB |
/.../36. Dataset Section on Kaggle/ |
|
|
0.2 KB |
|
139.7 MB |
/.../37. Code Section on Kaggle/ |
|
|
0.2 KB |
|
167.6 MB |
|
110.9 MB |
|
83.4 MB |
/.../38. Discussion Section on Kaggle/ |
|
|
0.2 KB |
|
42.6 MB |
/.../39. Other Most Used Options on Kaggle/ |
|
|
0.2 KB |
|
112.2 MB |
|
54.7 MB |
|
42.9 MB |
/.../40. Details on Kaggle/ |
|
|
0.2 KB |
|
85.5 MB |
|
78.3 MB |
|
61.3 MB |
|
40.1 MB |
/.../42. First Organization/ |
|
|
0.2 KB |
|
67.1 MB |
|
66.7 MB |
|
10.5 MB |
/.../43. Preparation For Exploratory Data Analysis (EDA)/ |
|
|
0.2 KB |
|
95.8 MB |
|
48.0 MB |
|
46.7 MB |
|
16.6 MB |
/.../44. Exploratory Data Analysis (EDA) - Uni-variate Analysis/ |
|
|
0.2 KB |
4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp4 |
88.1 MB |
|
84.3 MB |
3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp4 |
78.4 MB |
5. Examining the Missing Data According to the Analysis Result.mp4 |
56.4 MB |
|
20.7 MB |
/.../45. Exploratory Data Analysis (EDA) - Bi-variate Analysis/ |
|
|
0.2 KB |
14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp4 |
95.1 MB |
10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp4 |
71.4 MB |
4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.mp4 |
59.0 MB |
|
55.5 MB |
1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.mp4 |
51.7 MB |
6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.mp4 |
49.4 MB |
9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.mp4 |
43.7 MB |
11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.mp4 |
39.9 MB |
13. Relationships between variables (Analysis with Heatmap) Lesson 1.mp4 |
38.1 MB |
2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.mp4 |
37.4 MB |
12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.mp4 |
37.2 MB |
|
36.9 MB |
5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.mp4 |
29.7 MB |
3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.mp4 |
25.3 MB |
/.../46. Preparation for Modelling in Machine Learning/ |
|
|
0.2 KB |
|
46.0 MB |
|
44.9 MB |
|
38.0 MB |
|
37.8 MB |
|
36.6 MB |
|
31.2 MB |
|
28.1 MB |
|
26.4 MB |
9. Applying One Hot Encoding Method to Categorical Variables.mp4 |
25.3 MB |
|
25.2 MB |
10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.mp4 |
12.0 MB |
/.../47. Modelling for machine learning/ |
|
|
0.2 KB |
|
61.6 MB |
|
55.2 MB |
|
43.7 MB |
|
31.7 MB |
|
31.2 MB |
|
30.8 MB |
|
26.9 MB |
|
25.7 MB |
/48. Conclusion/ |
|
|
0.2 KB |
|
30.0 MB |
/.pad/ |
|
|
247.5 KB |
|
841.2 KB |
|
185.3 KB |
|
833.5 KB |
|
262.4 KB |
|
129.6 KB |
|
123.5 KB |
|
728.9 KB |
|
852.7 KB |
|
219.6 KB |
|
2.2 KB |
|
60.5 KB |
|
204.1 KB |
|
36.8 KB |
|
749.1 KB |
|
776.0 KB |
|
651.3 KB |
|
307.5 KB |
|
360.7 KB |
|
5.3 KB |
|
925.3 KB |
|
1.0 MB |
|
448.9 KB |
|
569.9 KB |
|
627.3 KB |
|
476.0 KB |
|
496.8 KB |
|
864.6 KB |
|
246.1 KB |
|
358.8 KB |
|
809.1 KB |
|
133.0 KB |
|
751.9 KB |
|
972.1 KB |
|
52.0 KB |
|
675.0 KB |
|
19.9 KB |
|
128.5 KB |
|
448.5 KB |
|
904.3 KB |
|
141.1 KB |
|
638.9 KB |
|
243.1 KB |
|
608.5 KB |
|
734.9 KB |
|
759.2 KB |
|
994.7 KB |
|
1.0 MB |
|
806.7 KB |
|
228.3 KB |
|
123.6 KB |
|
342.2 KB |
|
875.6 KB |
|
404.8 KB |
|
695.1 KB |
|
32.3 KB |
|
845.8 KB |
|
559.2 KB |
|
686.6 KB |
|
876.4 KB |
|
882.3 KB |
|
947.9 KB |
|
453.2 KB |
|
663.2 KB |
|
687.1 KB |
|
230.1 KB |
|
290.4 KB |
|
303.9 KB |
|
732.0 KB |
|
460.0 KB |
|
90.4 KB |
|
472.3 KB |
|
737.6 KB |
|
127.5 KB |
|
171.5 KB |
|
357.0 KB |
|
530.0 KB |
|
295.1 KB |
|
312.8 KB |
|
330.8 KB |
|
600.7 KB |
|
94.9 KB |
|
315.7 KB |
|
368.5 KB |
|
313.7 KB |
|
674.4 KB |
|
838.9 KB |
|
921.7 KB |
|
276.4 KB |
|
428.6 KB |
|
653.7 KB |
|
727.0 KB |
|
829.5 KB |
|
978.4 KB |
|
50.3 KB |
|
295.6 KB |
|
464.0 KB |
|
762.1 KB |
|
662.3 KB |
|
808.2 KB |
|
961.5 KB |
|
255.1 KB |
|
293.4 KB |
|
305.2 KB |
|
398.7 KB |
|
456.4 KB |
|
508.8 KB |
|
565.7 KB |
|
616.4 KB |
|
844.7 KB |
|
994.1 KB |
|
140.5 KB |
|
234.7 KB |
|
357.4 KB |
|
393.4 KB |
|
493.4 KB |
|
761.9 KB |
|
981.0 KB |
|
77.8 KB |
|
444.6 KB |
|
895.9 KB |
|
339.5 KB |
|
22.0 KB |
|
182.6 KB |
|
328.0 KB |
|
478.9 KB |
|
607.1 KB |
|
638.1 KB |
|
751.5 KB |
|
507.6 KB |
|
831.3 KB |
|
66.2 KB |
|
91.8 KB |
|
122.9 KB |
|
233.9 KB |
|
253.9 KB |
|
364.8 KB |
|
537.8 KB |
|
689.6 KB |
|
804.4 KB |
|
1.0 MB |
|
104.9 KB |
|
346.1 KB |
|
363.4 KB |
|
453.9 KB |
|
671.9 KB |
|
168.1 KB |
|
252.4 KB |
|
441.9 KB |
|
192.3 KB |
|
419.5 KB |
|
889.9 KB |
|
1.0 MB |
|
54.9 KB |
|
314.7 KB |
|
836.9 KB |
|
428.4 KB |
|
525.5 KB |
|
560.1 KB |
|
836.2 KB |
|
918.2 KB |
|
955.3 KB |
|
984.2 KB |
|
2.7 KB |
|
1.0 MB |
|
115.0 KB |
|
461.2 KB |
|
745.4 KB |
|
964.0 KB |
|
1.0 MB |
|
166.1 KB |
|
175.2 KB |
|
875.0 KB |
|
93.6 KB |
|
540.4 KB |
|
98.8 KB |
|
251.7 KB |
|
282.9 KB |
|
472.5 KB |
|
68.6 KB |
|
744.3 KB |
|
835.3 KB |
|
43.8 KB |
|
563.9 KB |
|
899.2 KB |
|
1.0 MB |
|
83.8 KB |
|
568.9 KB |
|
167.2 KB |
|
172.4 KB |
|
183.3 KB |
|
449.9 KB |
|
899.2 KB |
|
303.8 KB |
|
1.0 MB |
|
371.0 KB |
|
447.1 KB |
|
940.6 KB |
|
952.8 KB |
|
37.7 KB |
|
568.2 KB |
|
846.5 KB |
|
850.3 KB |
|
14.3 KB |
|
598.7 KB |
/.../20. Linear Regression Algorithm in Machine Learning A-Z/ |
|
|
112.1 MB |
|
94.4 MB |
|
79.9 MB |
|
73.7 MB |
1. Linear Regression Algorithm Theory in Machine Learning A-Z.mp4 |
35.7 MB |
/.../6. Operations in Numpy Library/ |
|
|
75.4 MB |
|
33.5 MB |
|
25.4 MB |
|
22.2 MB |
/.../25. Hyperparameter Optimization/ |
|
|
49.8 MB |
|
34.8 MB |
/.../5. Indexing, Slicing, and Assigning NumPy Arrays/ |
|
|
47.9 MB |
|
37.1 MB |
|
35.9 MB |
|
27.9 MB |
|
23.4 MB |
|
21.5 MB |
|
19.1 MB |
|
17.3 MB |
|
13.3 MB |
/.../27. Random Forest Algorithm in Machine Learning A-Z/ |
|
|
40.6 MB |
|
40.5 MB |
|
24.0 MB |
/.../32. Principal Component Analysis (PCA) in Machine Learning A-Z/ |
|
|
39.8 MB |
4. Principal Component Analysis (PCA) with Python Part 3.mp4 |
39.1 MB |
2. Principal Component Analysis (PCA) with Python Part 1.mp4 |
27.3 MB |
3. Principal Component Analysis (PCA) with Python Part 2.mp4 |
8.8 MB |
/.../23. K-fold Cross-Validation in Machine Learning A-Z/ |
|
|
36.3 MB |
|
18.3 MB |
Total files 463 |
Copyright © 2025 FileMood.com