FileMood

Download ml-class

Ml class

Name

ml-class

 DOWNLOAD Copy Link

Total Size

1.9 GB

Total Files

183

Hash

4C9577E80A76E69046AE4D74B51BCB1545D95F1E

/Lecture Slides/

Lecture1.pdf

4.9 MB

Lecture1.pptx

4.8 MB

Lecture10.pdf

1.6 MB

Lecture10.pptx

3.5 MB

Lecture11.pdf

1.2 MB

Lecture11.pptx

7.5 MB

Lecture12.pdf

2.4 MB

Lecture12.pptx

5.6 MB

Lecture13.pdf

2.3 MB

Lecture13.pptx

2.9 MB

Lecture14.pdf

1.7 MB

Lecture14.pptx

3.8 MB

Lecture15.pdf

3.5 MB

Lecture15.pptx

6.3 MB

Lecture16.pdf

1.5 MB

Lecture16.pptx

3.8 MB

Lecture17.pdf

2.1 MB

Lecture17.pptx

4.0 MB

Lecture18.pdf

2.1 MB

Lecture18.pptx

6.4 MB

Lecture2.pdf

3.0 MB

Lecture2.pptx

5.6 MB

Lecture3.pdf

1.9 MB

Lecture3.pptx

5.2 MB

Lecture4.pdf

1.8 MB

Lecture4.pptx

4.6 MB

Lecture6.pdf

1.9 MB

Lecture6.pptx

3.4 MB

Lecture7.pdf

1.5 MB

Lecture7.pptx

2.7 MB

Lecture8.pdf

5.5 MB

Lecture8.pptx

6.6 MB

Lecture9.pdf

3.5 MB

Lecture9.pptx

5.2 MB

octave_session.m

5.3 KB

/

MSBNx.exe

11.4 MB

Octave-3.2.4_i686-pc-mingw32_gcc-4.4.0_setup.exe

73.0 MB

Octave.Workshop.Installer.exe

122.8 MB

/Programming Exercises (completed)/

mlclass-ex1.rar

11.2 KB

mlclass-ex2.rar

15.6 KB

mlclass-ex3.rar

7.6 MB

mlclass-ex4.rar

7.6 MB

mlclass-ex5.rar

16.7 KB

mlclass-ex6.rar

582.2 KB

mlclass-ex7.rar

10.8 MB

mlclass-ex8.rar

560.0 KB

/Programming Exercises/

mlclass-ex1.zip

473.8 KB

mlclass-ex2.zip

245.7 KB

mlclass-ex3.zip

7.9 MB

mlclass-ex4.zip

8.0 MB

mlclass-ex5.zip

129.3 KB

mlclass-ex6.zip

915.7 KB

mlclass-ex7.zip

11.6 MB

mlclass-ex8.zip

811.4 KB

/Review Questions/

01 - Introduction.mht

291.6 KB

02 - Linear regression with one variable.mht

315.1 KB

03 - Linear Algebra.mht

317.4 KB

04 - Linear Regression with Multiple Variables.mht

309.6 KB

05 - Octave Tutorial.mht

300.5 KB

06 - Logistic Regression.mht

357.7 KB

07 - Regularization.mht

360.2 KB

08 - Neural Networks - Representation.mht

479.4 KB

09 - Neural Networks - Learning.mht

311.4 KB

10 - Advice for Applying Machine Learning.mht

329.4 KB

11 - Machine Learning System Design.mht

303.5 KB

12 - Support Vector Machines.mht

675.4 KB

13 - Clustering.mht

305.6 KB

14 - Dimensionality Reduction.mht

449.4 KB

15 - Anomaly Detection.mht

361.8 KB

16 - Recommender Systems.mht

324.2 KB

17 - Large Scale Machine Learning.mht

307.4 KB

18 - Application Example - Photo OCR.mht

461.9 KB

/Video Lectures/

01.1-V3-Introduction-Welcome.mp4

16.8 MB

01.2-V2-Introduction-WhatIsMachineLearning.mp4

12.0 MB

01.3-V2-Introduction-SupervisedLearning.mp4

14.3 MB

01.4-V2-Introduction-UnsupervisedLearning.mp4

19.1 MB

02.1-V2-LinearRegressionWithOneVariable-ModelRepresentation.mp4

9.9 MB

02.2-V2-LinearRegressionWithOneVariable-CostFunction.mp4

10.1 MB

02.3-V2-LinearRegressionWithOneVariable-CostFunctionIntuitionI.mp4

13.5 MB

02.4-V2-LinearRegressionWithOneVariable-CostFunctionIntuitionII.mp4

14.6 MB

02.5-V2-LinearRegressionWithOneVariable-GradientDescent.mp4

15.7 MB

02.6-V2-LinearRegressionWithOneVariable-GradientDescentIntuition.mp4

14.6 MB

02.7-V2-LinearRegressionWithOneVariable-GradientDescentForLinearRegression.mp4

14.2 MB

02.8-V2-What'sNext.mp4

6.4 MB

03.1-V2-LinearAlgebraReview(Optional)-MatricesAndVectors.mp4

10.3 MB

03.2-V2-LinearAlgebraReview(Optional)-AdditionAndScalarMultiplication.mp4

8.2 MB

03.3-V2-LinearAlgebraReview(Optional)-MatrixVectorMultiplication.mp4

16.7 MB

03.4-V2-LinearAlgebraReview(Optional)-MatrixMatrixMultiplication.mp4

14.5 MB

03.5-V2-LinearAlgebraReview(Optional)-MatrixMultiplicationProperties.mp4

10.7 MB

03.6-V2-LinearAlgebraReview(Optional)-InverseAndTranspose.mp4

14.8 MB

04.1-LinearRegressionWithMultipleVariables-MultipleFeatures.mp4

6.4 MB

04.2-LinearRegressionWithMultipleVariables-GradientDescentForMultipleVariables.mp4

5.0 MB

04.3-LinearRegressionWithMultipleVariables-GradientDescentInPracticeIFeatureScaling.mp4

8.0 MB

04.4-LinearRegressionWithMultipleVariables-GradientDescentInPracticeIILearningRate.mp4

7.2 MB

04.5-LinearRegressionWithMultipleVariables-FeaturesAndPolynomialRegression.mp4

6.0 MB

04.6-V2-LinearRegressionWithMultipleVariables-NormalEquation.mp4

14.0 MB

04.7-LinearRegressionWithMultipleVariables-NormalEquationNonInvertibility(Optional).mp4

5.4 MB

05.1-OctaveTutorial-BasicOperations.mp4

21.7 MB

05.2-OctaveTutorial-MovingDataAround.mp4

26.7 MB

05.3-OctaveTutorial-ComputingOnData.mp4

10.9 MB

05.4-OctaveTutorial-PlottingData.mp4

11.9 MB

05.5-OctaveTutorial-ForWhileIfStatementsAndFunctions.mp4

20.6 MB

05.6-OctaveTutorial-Vectorization.mp4

17.6 MB

05.7-OctaveTutorial-WorkingOnAndSubmittingProgrammingExercises.mp4

7.6 MB

06.1-LogisticRegression-Classification.mp4

9.2 MB

06.2-LogisticRegression-HypothesisRepresentation.mp4

9.2 MB

06.3-LogisticRegression-DecisionBoundary.mp4

18.4 MB

06.4-LogisticRegression-CostFunction.mp4

14.8 MB

06.5-LogisticRegression-SimplifiedCostFunctionAndGradientDescent.mp4

13.7 MB

06.6-LogisticRegression-AdvancedOptimization.mp4

22.6 MB

06.7-LogisticRegression-MultiClassClassificationOneVsAll.mp4

7.6 MB

07.1-Regularization-TheProblemOfOverfitting.mp4

12.5 MB

07.2-Regularization-CostFunction.mp4

13.0 MB

07.3-Regularization-RegularizedLinearRegression.mp4

13.4 MB

07.4-Regularization-RegularizedLogisticRegression.mp4

14.2 MB

08.1-NeuralNetworksRepresentation-NonLinearHypotheses.mp4

12.1 MB

08.2-NeuralNetworksRepresentation-NeuronsAndTheBrain.mp4

12.0 MB

08.3-NeuralNetworksRepresentation-ModelRepresentationI.mp4

15.1 MB

08.4-NeuralNetworksRepresentation-ModelRepresentationII.mp4

15.1 MB

08.5-NeuralNetworksRepresentation-ExamplesAndIntuitionsI.mp4

8.7 MB

08.6-NeuralNetworksRepresentation-ExamplesAndIntuitionsII.mp4

17.7 MB

08.7-NeuralNetworksRepresentation-MultiClassClassification.mp4

5.7 MB

09.1-NeuralNetworksLearning-CostFunction.mp4

8.5 MB

09.2-NeuralNetworksLearning-BackpropagationAlgorithm.mp4

15.8 MB

09.3-NeuralNetworksLearning-BackpropagationIntuition.mp4

18.0 MB

09.3-NeuralNetworksLearning-ImplementationNoteUnrollingParameters.mp4

11.1 MB

09.4-NeuralNetworksLearning-GradientChecking.mp4

15.5 MB

09.5-NeuralNetworksLearning-RandomInitialization.mp4

8.3 MB

09.7-NeuralNetworksLearning-PuttingItTogether.mp4

18.7 MB

09.8-NeuralNetworksLearning-AutonomousDrivingExample.mp4

22.3 MB

10.1-AdviceForApplyingMachineLearning-DecidingWhatToTryNext.mp4

8.0 MB

10.2-AdviceForApplyingMachineLearning-EvaluatingAHypothesis.mp4

10.0 MB

10.3-AdviceForApplyingMachineLearning-ModelSelectionAndTrainValidationTestSets.mp4

16.9 MB

10.4-AdviceForApplyingMachineLearning-DiagnosingBiasVsVariance.mp4

10.9 MB

10.5-AdviceForApplyingMachineLearning-RegularizationAndBiasVariance.mp4

14.5 MB

10.6-AdviceForApplyingMachineLearning-LearningCurves.mp4

14.2 MB

10.7-AdviceForApplyingMachineLearning-DecidingWhatToDoNextRevisited.mp4

9.4 MB

11.1-MachineLearningSystemDesign-PrioritizingWhatToWorkOn.mp4

12.9 MB

11.2-MachineLearningSystemDesign-ErrorAnalysis.mp4

17.8 MB

11.3-MachineLearningSystemDesign-ErrorMetricsForSkewedClasses.mp4

14.9 MB

11.4-MachineLearningSystemDesign-TradingOffPrecisionAndRecall.mp4

18.1 MB

11.5-MachineLearningSystemDesign-DataForMachineLearning.mp4

14.7 MB

12.1-SupportVectorMachines-OptimizationObjective.mp4

18.6 MB

12.2-SupportVectorMachines-LargeMarginIntuition.mp4

13.3 MB

12.3-SupportVectorMachines-MathematicsBehindLargeMarginClassificationOptional.mp4

24.0 MB

12.4-SupportVectorMachines-KernelsI.mp4

19.7 MB

12.5-SupportVectorMachines-KernelsII.mp4

19.2 MB

12.6-SupportVectorMachines-UsingAnSVM.mp4

27.0 MB

14.1-Clustering-UnsupervisedLearningIntroduction.mp4

4.3 MB

14.2-Clustering-KMeansAlgorithm.mp4

16.1 MB

14.3-Clustering-OptimizationObjective.mp4

9.2 MB

14.4-Clustering-RandomInitialization.mp4

9.8 MB

14.5-Clustering-ChoosingTheNumberOfClusters.mp4

10.6 MB

15.1-DimensionalityReduction-MotivationIDataCompression.mp4

18.5 MB

15.2-DimensionalityReduction-MotivationIIVisualization.mp4

7.2 MB

15.3-DimensionalityReduction-PrincipalComponentAnalysisProblemFormulation.mp4

12.0 MB

15.4-DimensionalityReduction-PrincipalComponentAnalysisAlgorithm.mp4

20.3 MB

15.5-DimensionalityReduction-ChoosingTheNumberOfPrincipalComponents.mp4

13.1 MB

15.6-DimensionalityReduction-ReconstructionFromCompressedRepresentation.mp4

6.2 MB

15.7-DimensionalityReduction-AdviceForApplyingPCA.mp4

16.6 MB

16.1-AnomalyDetection-ProblemMotivation-V1.mp4

9.3 MB

16.2-AnomalyDetection-GaussianDistribution.mp4

13.5 MB

16.3-AnomalyDetection-Algorithm.mp4

16.0 MB

16.4-AnomalyDetection-DevelopingAndEvaluatingAnAnomalyDetectionSystem.mp4

17.7 MB

16.5-AnomalyDetection-AnomalyDetectionVsSupervisedLearning-V1.mp4

11.3 MB

16.7-AnomalyDetection-MultivariateGaussianDistribution-OPTIONAL.mp4

18.1 MB

16.8-AnomalyDetection-AnomalyDetectionUsingTheMultivariateGaussianDistribution-OPTIONAL.mp4

18.6 MB

17.1-RecommenderSystems-ProblemFormulation.mp4

14.3 MB

17.2-RecommenderSystems-ContentBasedRecommendations.mp4

19.6 MB

17.3-RecommenderSystems-CollaborativeFiltering-V1.mp4

13.7 MB

17.4-RecommenderSystems-CollaborativeFilteringAlgorithm.mp4

12.0 MB

17.6-RecommenderSystems-ImplementationalDetailMeanNormalization.mp4

11.0 MB

18.1-LargeScaleMachineLearning-LearningWithLargeDatasets.mp4

7.5 MB

18.2-LargeScaleMachineLearning-StochasticGradientDescent.mp4

17.2 MB

18.3-LargeScaleMachineLearning-MiniBatchGradientDescent.mp4

8.4 MB

18.4-LargeScaleMachineLearning-StochasticGradientDescentConvergence.mp4

15.1 MB

18.5-LargeScaleMachineLearning-OnlineLearning.mp4

16.7 MB

18.6-LargeScaleMachineLearning-MapReduceAndDataParallelism.mp4

18.1 MB

19.1-ApplicationExamplePhotoOCR-ProblemDescriptionAndPipeline.mp4

9.0 MB

19.2-ApplicationExamplePhotoOCR-SlidingWindows.mp4

18.9 MB

19.3-ApplicationExamplePhotoOCR-GettingLotsOfDataArtificialDataSynthesis.mp4

21.4 MB

19.4-ApplicationExamplePhotoOCR-CeilingAnalysisWhatPartOfThePipelineToWorkOnNext.mp4

18.7 MB

20.1-Conclusion-SummaryAndThankYou.mp4

4.7 MB

 

Total files 183


Copyright © 2024 FileMood.com